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1. Introduction

Many committees spend time deliberating issues and gathering information before reach-
ing a decision or issuing a recommendation. Examples of such committees include juries,
boards of directors, standard-setting organizations, congressional and university com-
mittees, and government agencies such as the FDA or EPA. This paper presents a simple
model of deliberation that captures some key features of committee decision processes.

We consider an environment in which committee members jointly decide, over time,
how much information to collect before making one of two possible decisions (hiring or
not hiring a candidate, adopting a new standard or sticking to the status quo, convicting
or acquitting a defendant). Information arrives continuously (and publicly) according to
a Weiner process. We allow agents’ preferences to be heterogeneous in two dimensions:
the urgency to reach a decision, i.e., agents’ discount factors, and the appropriate standard
of evidence to apply in order to adopt one of the two decisions, namely, agents’ static
preferences over the two alternatives.

The case of a homogeneous committee reduces to the classic sequential sampling prob-
lem that has been studied in the statistics literature since Wald (1947a, b). In this approach,
an agent acquires information sequentially. At each stage, the agent chooses whether to
stop and make a decision or to proceed to acquire additional information, which is costly.
The optimal procedure involves a sequential likelihood ratio test, whereby intermediate
values of the likelihood ratio require obtaining a new sample, while high (low) values of
the likelihood ratio require stopping and making one (or the other) decision.

The starting point of our analysis (Proposition 1) is a derivation of an analogue to the
sequential sampling results for heterogeneous committees. We show that equilibria are
still characterized in terms of waiting thresholds. The committee obtains additional in-
formation for intermediate values of the likelihood ratio and makes decisions for high
(low) values of the likelihood ratio. This characterization allows us to compare institu-
tions (namely, deliberation protocols and voting rules). It also allows us to study the
effects of a committee’s composition—in terms of its members’ discount factors and static
preferences—on the length of deliberation, the accuracy of decisions, and the generated
welfare for the committee and for society at large.

In evaluating voting rules, we need to balance several considerations. We show (in
Proposition 2) that one weakness of majority rule is that deliberation can be excessively
influenced by impatient agents. Since impatient agents prefer quicker decisions, they can
be easily persuaded to change their votes. Under majority rule, it takes the change of
only one vote to alter the outcome. Therefore, in equilibrium, patient agents supporting
different alternatives cut short deliberations to capture any impatient member before she
changes sides. Because quick decisions are strategic complements—if the supporters of
one alternative expect the supporters of the other alternative to decide quickly, they will
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decide quickly as well—the mere presence of one impatient agent can cause the whole group to
rush to a decision, even when all other agents are very patient. We call this phenomenon a hasty
equilibrium. This insight crucially depends on allowing for two dimensions of hetero-
geneity. Indeed, in one-dimensional static voting environments, no agent with extreme
preferences can influence the outcome under majority rule.

Super-majority rules, by comparison, are more robust against hasty decisions. Under
super-majority rules, more than one vote must change to alter the outcome. Deliberations
do not collapse unless the number of impatient agents is sufficiently large (Proposition 3).
Moreover, because slow decisions are strategic substitutes, one very patient agent would
not cause the group to deliberate indefinitely unless unanimity is required. Compared
to majority rule, super-majority rules also tend to produce more accurate decisions and
longer deliberations (Proposition 4). Hence, even when the agents themselves, who bear more
of the delay costs, prefer majority rule, society at large, which benefits from a more accurate deci-
sion, may be better off with a super-majority rule.

An advantage of majority rule is that it always produces an outcome that is favored
by a majority. Indeed, under majority rule, if a majority of agents prefers a different alter-
native to the one adopted in equilibrium, it can simply adopt the one preferred. Another
advantage of majority rule is that all agents of the committee prefer it to stricter major-
ity requirements in symmetric environments where all agents are equally patient and the
static preferences for the two alternatives are balanced. Suppose that such a committee is
comprised of an odd number of individuals. Majority rule then generates outcomes that
would emerge from delegating all decisions to the most moderate member, with median
static preferences. Therefore, in such environments, members of a committee would unani-
mously prefer to delegate deliberation power to a moderate chairman rather than be governed by a
deliberation rule such as unanimity (Proposition 5).

Super-majority rules have an important drawback. In an asymmetric environment,
a high majority requirement may allow a small group with extreme preferences to hold
out and force other members to accept an alternative that they do not like. This problem
is the most severe under unanimity rule. In that case, the deliberation outcome may be
preferred by only one member; the rest of group may prefer the other alternative but vote
for the less preferred choice to avoid costly delay (Proposition 6). Thus, while our re-
sults support the use of super-majority rules in situations where agents have diverse time
preferences, they also warn against setting a high majority requirement. In particular,
requiring unanimity does not always build consensus.

One way to combine some features of majority and super-majority rules is to have a
two-stage decision process. First, agents vote to end deliberation in a sequential process
similar to that of our benchmark setup. When deliberation comes to a halt, agents vote
simultaneously to select an alternative. We model the deliberation process with a thresh-
old rule kD such that deliberation ends as soon as kD members of the committee vote to
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end deliberation. Decision rules are analogously captured by a rule kd that describes the
specific qualified majority required for reaching a decision after deliberation stops. We
show that in certain cases, decision rules are irrelevant, while deliberation rules always affect
the length of deliberation and accuracy of ultimate decisions (Proposition 8). This separation,
however, makes it impossible to have outcomes where agents vote against their static
preferences in order to avoid costly delays (Proposition 7).

Our results are relevant to the design of deliberative mechanisms and for understand-
ing the dynamics of information collection in a variety of collective decision processes
such as R&D, hiring decisions, FDA drug approval, and so on. In Section 8, we discuss
in more detail two applications: standard-setting organizations and juries. Standard-
setting processes fit our benchmark setup in which deliberation and decision making are
intertwined—decisions are sequential and are often of the form of “continue” or “take a
decision” (approve or not). Juries fit our two-stage deliberation setting and they are an in-
teresting application for our model for three main reasons. First, the deliberation process
is clear-cut and circumscribed: there is a well-defined beginning and end of deliberation,
the time it takes the jury to deliberate is measurable, and one single verdict is the typical
outcome of such deliberation. Second, the jury setting allows us to contrast our analysis
with much of the extant literature on deliberation that has focused predominantly on the
jury context. Third, the empirical literature has documented some patterns of deliberation
in juries that can be explained with our model.

Related Literature

In economics, the past two decades have delivered a rich collection of work on committee
decision making; see Li and Suen (2009) for an extended survey. Our paper ties directly
to several sets of studies.

Some literature on committee decision making focuses on how private information
of individual agents is aggregated under alternative voting rules. A key finding in this
literature is that unanimity leads to less informative outcomes than majority rule.1 We
identify additional disadvantages of majority rule, but our result that unanimity can lead
to more accurate outcomes than majority rules contrasts with these results.

Our paper is also related to recent contributions that adopt a collective search ap-
proach (Albrecht, Anderson, and Vroman 2010; Compte and Jehiel 2010, 2011; Moldovanu
and Shi 2013). Most related, Albrecht, Anderson, and Vroman (2010) find that in a het-
erogeneous search committee, each committee member will apply a lower acceptance

1See Feddersen and Pesendorfer (1998). Persico (2004) also obtains this result when allowing for private
information collection prior to voting. Austen-Smith and Feddersen (2006) consider a round of cheap-talk
communication before voting and also show that unanimity leads to less communication and poorer infor-
mation aggregation. Gerardi and Yariv (2007, 2008) depart from these papers by studying general commu-
nication protocols. They show that the set of equilibrium outcomes is invariant to the voting rules, as long
as they are non-unanimous. In fact, unanimous voting rules generate a subset of equilibrium outcomes.
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standard than what she would have were she the sole decision maker. This effect is also
present in our model. However, in their model, in contrast with ours, having one commit-
tee member who is willing to accept proposals very quickly cannot cause the rest of the
committee to stop searching entirely. The key difference is that, in the case of search, inde-
pendent draws of alternatives appear every period, and the group’s decision is whether
to adopt an alternative or to continue with search. In our setup, alternatives are fixed
but new information about the existing alternatives appears over time, and the group’s
decision is when to stop collecting evidence and decide which alternative to adopt. The
relative merits of different alternatives evolve as information arrives: the leading alterna-
tive is expected to still lead within a short interval of time, but has a possibility of being
overtaken by another alternative after sufficient information has been accumulated over
a longer interval.2

In our model, a majority may decide to act early to prevent members from changing
sides. A similar result is obtained by Strulovici (2010) in the context of dynamic collective
experimentation. In his model, a new policy may affect various voters differently. He
shows that, in equilibrium, a group that is pessimistic about the new policy may vote to
end the experiment prematurely to prevent the new policy from gaining more supporters.

From a technical perspective, the starting point of our analysis is Wald (1947a, 1947b),
who pioneered the study of sequential testing and provided a characterization of the op-
timal test as a sequential likelihood ratio test. Dvoretsky, Keifer, and Wolfowitz (1953),
Mikhalevich (1958), and Shiryaev (1967) provide early treatments of the hypothesis test-
ing problem in continuous time.3 Two recent papers also apply the framework of sequen-
tial testing. Henry and Ottaviani (2017) study the process of a firm conducting clinical
trials to get approval from a regulator such as the FDA. They comsider the impact of
commitment power of either the firm or the regulator. In particular, their welfare bench-
mark corresponds to the Wald optimal test in which payoffs are summed across the firm
and regulator. Gul and Pesendorfer (2012) study the competition between two political
parties to provide public information that may influence voters’ choices. In equilibrium,
each party chooses a threshold and stops providing information once the voter’s belief

2Messner and Polborn (2012) study a two-period model where voters receive information over time
about the desirability of an irreversible decision. The main message of that paper is that the optimal voting
rule requires a super-majority. Bognar, Meyer-ter-Vehn, and Smith (2015) also study a model of dynamic
deliberation, but with very different ingredients. In their model, jurors have private information about a
payoff-relevant state. They assume that jurors sequentially exchange coarse messages. That model pro-
duces many equilibria that can be ranked in terms of generated welfare. When there is no discounting, they
show that longer conversations are better. A related paper is that of Eso and Fong (2008), who study a dy-
namic cheap-talk model with multiple senders, where the receiver can choose when to make her decision.
They show that when the senders are all informed of the state of nature, a perfect Bayesian equilibrium
exists with instantaneous, full revelation, regardless of the size and direction of the senders’ biases. Wil-
son (2014) considers exogenous costs for both sending messages and receiving them, and illustrates the
dependence of effective communication on agents’ quality of information and messaging costs.

3See also De Groot (1970) for a modern exposition, and Moscarini and Smith (2001) for an extension that
allows for richer sampling strategies.
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is less favorable than that threshold. This is similar to our model under unanimity rule.
However, in their model, since the parties have opposite policy preferences, their choices
are always strategic substitutes—if one party stops later, the other party will stop earlier.
In contrast, in our model, because the voters share a common interest conditional on the
true state, their one-sided best-response functions are non-monotone.

2. The Model

A group of 2m − 1 agents chooses between two alternatives, α and β.4 The payoff from
each alternative depends on the underlying state ω ∈ {A,B}. In state A, agent i’s payoff
from α is 1, and his payoff from β is 0. In state B, agent i’s payoff from α is 0, and his
payoff from β is evi . Thus, all agents prefer action α in state A and action β in state B,
but agents differ in the intensity of this preference, their static preferences, and vi ∈ R
is a measure of the intensity of agent i’s preference for β relative to α. Agents’ static
preferences are heterogenous, with v1 < . . . < v2m−1. The median static preference is
vm. Agents do not observe the state but share a common prior belief. It is convenient
to represent agents’ beliefs by the log ratio of the probabilities of the two states. We let
θ0 = log(Pr[ω = A]/Pr[ω = B]) represent the initial belief. With this parameterization, the
probability of state A is given by eθ/(1 + eθ) when the belief is θ. The immediate expected
payoff from choosing α is higher than that from choosing β for agent i if and only if θ ≥ vi.

Time is continuous on [0,∞). At every instant t, each agent independently votes for
α, β, or neither. We initially focus on a simple class of decision rules. Under decision
rule k ∈ {m,m + 1, . . . , 2m − 1}, an alternative is adopted at time t if it receives k votes
or more. Voting continues until either α or β receives sufficient votes. Voting for neither
alternative is effectively a vote in favor of continuing to gather information. Voting for one
alternative is also a vote in favor of stopping information acquisition.5 We call rule k = m

majority rule and any rule k > m a super-majority rule. We refer to the super-majority
rule k = 2m − 1 as unanimity rule. The usage is natural in contexts where alternatives
are treated symmetrically, and deliberation continues until an alternative has received
enough support. In Section 7, we consider an alternative structure by modeling a two-
stage deliberation process that separates voting on information gathering from voting on
the final decision.

Each agent i discounts the future at a rate ri > 0. If an alternative is chosen at time t,
then agent i’s payoff is discounted by the factor e−rit. In general, agents are heterogeneous

4The assumption of an odd number of agents is used only when we consider majority rule.
5Throughout the paper, majority rule or super-majority rule refer to an “absolute” rule. Under an abso-

lute rule, abstention is treated as a vote to support neither alternative. In contrast, a “simple” rule discards
abstention votes in the tally. This distinction is based on Riker (1982). Our results would not change under
the following alternative rule: each agent can choose to support α, support β, delay, or abstain; an alter-
native is adopted if the fraction of votes, excluding abstentions, passes a threshold. Because there is no
private information in this model, there is no strategic advantage to abstention relative to voting for delay
(Feddersen and Pesendorfer 1996).
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both in their static preferences vi and in their time preferences ri.6

Public information arrives continuously as long as deliberation has not stopped and
an alternative has not been chosen. The arrival of information is represented by a Wiener
process dS that has a positive drift µ and an instantaneous variance ρ2 if the state is A, or
drift −µ and variance ρ2 if the state is B. For any time t > 0, the accumulated evidence St
is a sufficient statistic for all the information that has arrived before t. The log-likelihood
ratio of observing St = s under the two states is

log
h( (s−µt)

ρ
√
t

)

h( (s+µt)
ρ
√
t

)
=

2µs

ρ2
,

where h(·) is the standard normal density function. Hence, a higher observed value of the
accumulated evidence St is stronger evidence in favor of state A. The log posterior prob-
ability ratio is given by the sum of the log prior probability ratio and the log-likelihood
ratio. So, if we let S ′t = 2µSt/ρ

2, the common belief of the group at time t is given by:

θt = θ0 + S ′t.

Denote µ′ ≡ 2µ2/ρ2. Then, agents’ common belief is given by a Wiener process, with drift
µ′ and instantaneous variance 2µ′ under stateA and drift−µ′ and variance 2µ′ under state
B. A higher value of µ′ (higher µ or lower ρ) indicates a more informative deliberative
process.

When m = 1, decisions correspond to an individual. This is the classic case analyzed
in the literature on sequential analysis that started with Wald (1947a, b).7 In this case,
predictions are unique and can be characterized as follows.

Proposition 0. When agent i is the only agent in the group (i.e., m = 1), a unique equilibrium
exists and is characterized by two thresholds g∗i < G∗i such that:

• the agent stops information collection and chooses α whenever θt ≥ G∗i ;

• the agent stops information collection and chooses β whenever θt < g∗i ;

• the agent continues collecting information whenever θt ∈ [g∗i , G
∗
i ).

6While our setup uses heterogeneous discount rates to model different preferences over how quickly to
act, a very similar model can be constructed with explicit information acquisition costs. Suppose that, for
agent i, the cost of information collection is δdt for a time interval of length dt, and the payoffs from α and
β are λi and λie

vi , respectively. Agents with low values of λi are low-stake voters: their primary concern
is to reduce the explicit information collection cost. In such an alternative setup, low-stake agents play a
similar role to that played by impatient agents in our model.

7Wald studied a discrete time process. The continuous time case was studied by Dvoretsky et al. (1953).
See also Mikhalevich (1958) and Shiryaev (1967).
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Whenm > 1, in principle, an agent’s decision at time t could be a function of the entire
sample path of St, her own decisions, and other agents’ decisions before time t. However,
the difference between the expected payoffs of the two decisions α and β depends solely
on the current belief θt and strictly increases in it. We focus on equilibria in which agents
adopt Markov cutoff strategies (much like the optimal policies characterized by Wald for
an individual decision maker). Formally, agent i’s strategy σi is represented by a pair of
cutoffs (gi, Gi), with gi ≤ Gi. Strategy (gi, Gi) means voting for α when θt ≥ Gi, voting for
β when θt < gi, and abstaining when θt ∈ [gi, Gi).8

For any strategy profile σ = (σ1, . . . , σ2m−1), let G[k](σ) denote the k-th smallest Gi

in σ, and let g[k](σ) denote the k-th largest gi in σ. We call the interval (g[k](σ), G[k](σ))

the waiting region, because the group does not make a decision as long as the belief stays
within this interval. The width of the waiting region, G[k](σ) − g[k](σ), is an indicator of
the expected time to make a decision. Note, however, that a wider waiting region does
not necessarily mean that the group always waits longer, unless two waiting regions are
nested (i.e., one waiting region contains the other). If two waiting regions are nested, deci-
sions reached within the larger waiting region are more accurate because each alternative
would be adopted when the probability of its corresponding state is higher.

Let ui(g,G | θ) represent the payoff to agent i when the belief is θ and the waiting
region is (g,G). If θ ≥ G, then α is adopted and the expected payoff is

ui(g,G | θ) =
eθ

1 + eθ
.

If θ < g, then β is adopted and the expected payoff is

ui(g,G | θ) =
evi

1 + eθ
.

For θ ∈ [g,G), the payoff function satisfies

ui(g,G | θ) = e−ridtE [ui(g,G | θ + dS ′)] .

Because dS ′ is a diffusion process with expected drift µ′(eθ−1)/(1+eθ) and instantaneous
variance 2µ′, we can use Ito’s lemma to derive a differential equation in ui. Solving this
differential equation and imposing the value-matching condition at the two boundaries
of the waiting region, we obtain:

ui(g,G | θ) =
eθ

1 + eθ
Ψi(g,G | θ) +

evi

1 + eθ
ψi(g,G | θ),

8Of course, at a formal level, our analysis can be thought of as static: individuals can commit to thresh-
olds and then go through the voting process.
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where

Ψi(g,G | θ) =
e−R1(θ−g) − e−R2(θ−g)

e−R1(G−g) − e−R2(G−g)
,

ψi(g,G | θ) =
e−R1(G−θ) − e−R2(G−θ)

e−R1(G−g) − e−R2(G−g)
,

with

R1 =
1

2

(
1−

√
1 +

4ri
µ′

)
, R2 =

1

2

(
1 +

√
1 +

4ri
µ′

)
.

Note that R2 > 1, R1 < 0, and R1 + R2 = 1. The values of R1 and R2 depend on i, but we
omit this dependence in the notation to avoid clutter.9

The two functions Ψi and ψi can be given a statistical interpretation (Cox and Miller
1965). When θ ∈ (g,G), agent i’s payoff depends on which threshold is reached first and
on the length of time it takes to reach it. The function Ψi(g,G | θ) provides the proba-
bility of adopting α in state A when the current belief is θ, times the expected discount
factor conditional on the belief reaching the threshold G before reaching g in state A. The
function ψi can be interpreted analogously.

Definition 1. Let (ĝ, Ĝ) = (g[k](σ), G[k](σ)). A strategy profile σ is an equilibrium under deci-
sion rule k if the following conditions are satisfied for any agent i:

1. For any belief θ and any strategy σ′i,

ui(ĝ, Ĝ | θ) ≥ ui(g
[k](σ′i, σ−i), G

[k](σ′i, σ−i) | θ).

2. (a) Gi > (<) Ĝ if ∂ui/∂G|(ĝ,Ĝ; θ=Ĝ) > (<) 0;
(b) gi > (<) ĝ if ∂ui/∂g|(ĝ,Ĝ; θ=ĝ) > (<) 0.

Condition 1 of Definition 1 is the standard Nash equilibrium requirement. Condition
2 says that agent i does not vote for an alternative at the threshold if her marginal gain
from extending the threshold is positive, and, conversely, that she votes for an alternative
before the belief reaches the threshold for that alternative if her marginal gain from reduc-
ing the threshold is positive. Note that as long as the decision rule k is not the unanimity
rule, for any pair of thresholds (g,G), it would be a Nash equilibrium in our model for
all agents to adopt the same strategy (g,G), because no agent could unilaterally change
the waiting region. Condition 2 rules out trivial equilibria that commonly arise in voting
games because of the use of weakly dominated strategies, e.g., involving all agents voting
unanimously for one alternative regardless of beliefs.

9Note that R1 and R2 are homogeneous of degree 0 in ri/µ′. In principle, we could therefore carry the
analysis using discount factors normalized by µ′. We maintain our notation for transparency.
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3. Best Responses in Stopping Decisions

This section covers some of the basic features of best responses in our setting. The results
underlie our equilibrium characterization in later sections. While the analysis here con-
stitutes an important preliminary step, some of which may be of independent interest,
it is more technical in nature. A reader interested only in the qualitative insights of our
analysis may skip this section.

In the classic individual optimal-stopping problem, an agent i chooses (gi, Gi) to max-
imize ui(g,G | θ). The group decision model differs in that the influence of each agent
is constrained by the cutoffs of other agents. Indeed, in terms of adopting α, there are
three possible cases to consider for agent i: (i) The posterior belief exceeds G[k](σ−i). In
this case, there is a k-majority of other agents favoring the adoption of α immediately and
agent i has no impact on the decision. (ii) The posterior belief is lower than G[k−1](σ−i),
so that fewer than k− 1 other agents agree to adopt α. In this case, the agent cannot force
the adoption of α. (iii) The posterior belief is between G[k−1](σ−i) and G[k](σ−i). That is,
exactly k− 1 other agents want to adopt α immediately. In this case, agent i can affect the
stopping decision, i.e., she may be pivotal. Heterogeneity implies that agents disagree
on their ideal thresholds for stopping deliberation and, therefore, the identity of the piv-
otal agent depends on the posterior. From the perspective of the agent, her problem is a
constrained version of the single-person problem, where she takes as given that there is a
region where she cannot stop information collection.

We say that agent i’s span of control over the upper threshold is the interval

IG(σ−i) =
[
G[k−1](σ−i), G

[k](σ−i)
]
.

Analogously, we define Ig(σ−i) = [g[k](σ−i), g
[k−1](σ−i)] as agent i’s span of control over

the lower threshold. Then, Condition 1 of the equilibrium definition is equivalent to
requiring that (g[k](σ), G[k](σ)) be a solution to the following constrained maximization
problem for each agent i and for every belief θ:

max
g,G

ui(g,G | θ) subject to (g,G) ∈ Ig(σ−i)× IG(σ−i). (1)

We proceed as follows. We first study a one-sided stopping problem in which an agent
takes one of the stopping boundaries as fixed and chooses the other stopping boundary.
We show that the corresponding best responses are well behaved. We then use the solu-
tion to this one-sided problem to characterize the solution to the constrained two-sided
stopping problem (1). Intuitively, when contemplating voting in favor of, say, the α alter-
native, a committee member has to consider the circumstances under which the β alterna-
tive will be selected, which are determined in equilibrium. In that respect, the committee
member uses a one-sided best response, subject to the constraints imposed by her span of
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control.

We first describe two important consequences of a change in one stopping boundary
on an agent’s utility, holding the other stopping boundary fixed:

Lemma 1. For θ ∈ (g,G), the following properties hold for any agent i:

1. Dynamic consistency: The signs of ∂ui/∂G and ∂ui/∂g do not depend on θ.

2. Single crossing: (a) If ∂ui/∂G ≥ 0 at G′ > G, then ∂ui/∂G > 0 at G (holding g constant).
(b) If ∂ui/∂g ≤ 0 at g′ < g, then ∂ui/∂g < 0 at g (holding G constant).

The partial derivative of ui with respect to a threshold reflects the trade-off between
the cost of delay and the value of additional information. Part 1 of Lemma 1 says that this
trade-off is dynamically consistent: if an agent prefers to extend a threshold when her
belief reaches it, she prefers to extend this threshold before reaching it. Part 2 of Lemma
1 says that ui is single-peaked in each threshold, holding the other constant. Intuitively, if
an agent prefers waiting to selecting α at a later threshold G′, she strictly prefers waiting
to selecting α at an earlier threshold G, where the case for α is weaker.

We can now turn to the characterization of one-sided best responses. For any agent i,
denote by φi(G) the lower best-response function for agent i, which gives, for any fixedG,
the optimal lower cutoff g that maximizes ui(g,G | θ) subject to g ≤ G. The dynamic con-
sistency and single-crossing properties of Lemma 1 guarantee that φi(G) is well defined
and is independent of the current belief θ. Similarly, the upper best-response function
Φi(g) is defined as the optimal upper cutoff G that maximizes ui(g,G | θ) subject to G ≥ g.
Recall that g∗i and G∗i are the optimal cutoffs for agent i when she can choose both thresh-
olds. The point (g∗i , G

∗
i ) must be a fixed point of (φi,Φi).

Lemma 2. The following properties hold for any agent i:

1. (a) Φi(g) is continuous everywhere and is twice differentiable except at g = vi, with Φi(g) >

g if g < vi and Φi(g) = g otherwise.
(b) φi(G) is continuous everywhere and is twice differentiable except at G = vi, with
φi(G) < G if G > vi and φi(G) = G otherwise.

2. (a) For G > vi, φ′′i (G) > 0, φ′i(G) < 1, and φi(G) reaches a minimum when G = G∗i and
goes to∞ as G goes to∞.
(b) For g < vi, Φ′′i (g) < 0, Φ′i(g) < 1, and Φi(g) reaches a maximum when g = g∗i and goes
to −∞ as g goes to −∞.

3. (a) For any G, φi(G) increases in vi and increases in ri, with limvi→−∞ φi(G) = −∞ and
limri→∞G− φi(G) = 0.
(b) For any g, Φi(g) increases in vi and decreases in ri, with limvi→∞Φi(g) = ∞ and
limri→∞Φi(g)− g = 0.
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Figure 1. The upper best-response function Φi(g) is increasing for g < g∗i , decreasing for g ∈ (g∗i , vi), and
coincides with the 45-degree line for g > vi. The two best-response functions partition the space into four
regions. The arrows associated with each region show that agent i’s utility increases if the cutoff moves in
the indicated direction. This figure is drawn using the parameters vi = 0, ri = 0.039, and µ′ = 0.1.

Figure 1 depicts a typical pair of lower and upper best-response functions φi and Φi.
We focus on the properties of φi in the following discussion; the properties of Φi are anal-
ogous.

If the threshold G for adopting α is set below vi, there is no point in delaying the
adoption of β, as agent iwould still prefer β to α when her belief reaches the threshold for
adopting α. Thus, φi(G) = G. By contrast, if G > vi, agent i strictly prefers α to β when
her belief is at G. Hence, when her belief is sufficiently close to G, even an extremely
impatient agent i will prefer delaying the decision β, which, at this belief is the “wrong”
decision for her, in the hope that the belief will reach G and α will be chosen instead.
Thus, φi(G) < G. Note that φi(G) is continuous at G = vi. When G is just above vi, the
difference in expected payoff between α and β is very small at G. Hence, agent i gains
little from delaying the adoption of β.

Part 2 of Lemma 2 describes agent i’s best response when G > vi. Some of these prop-
erties are technical, but two features are of economic interest. First is the non-monotonicity
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of φi(G). Intuitively, from the perspective of agent i, α is chosen “too early” when G < G∗i
(the unconstrained optimal cutoff), and is chosen “too late” when G > G∗i . In either
case, the agent responds by adopting β earlier. The possibility that a loss of control (over
the upper boundary) may reduce the incentive to obtain information is discussed in Al-
brecht, Anderson, and Vroman (2010) in the context of a collective search model, and
by Strulovici (2010) in a two-armed-bandit experiment setting. The non-monotonicity of
φi implies there is an important strategic difference between being forced to choose too
late and being forced to choose too soon, i.e., between too much and too little waiting.
Quick decisions are strategic complements: suppose another agent j is expected to de-
cide quickly from the perspective of agent i (i.e., has a threshold Gj below G∗i ), then an
even faster decision (a reduction in Gj) would lead agent i to wish to decide more quickly
(increase her threshold gi). Intuitively, agent i prefers to select β with weaker support for
fear of accepting α with increasingly weaker support if information collection continues.
In contrast, slow decisions are strategic substitutes: suppose another agent j is expected
to decide slowly from the perspective of agent i (i.e., has a threshold Gj above G∗i ), then
an even slower decision (an increase in Gj) would lead agent i to wish to decide more
quickly (increase her threshold gi). Intuitively, agent i prefers to select β with weaker
support in order to avoid a prolonged and costly information collection phase as agent j
becomes stricter in the support she requires for accepting α. An implication of this is that
excessive deliberation is self-limiting, while rushing to a decision is self-reinforcing.

The second feature of economic interest is that φi(G) is unbounded from above. In
particular, it is possible that φi(G) > vi when G is sufficiently large. An agent who prefers
α to β may nevertheless vote to adopt β immediately if she anticipates that she would
have to wait for a very long time for the group to adopt α.

Part 3 of Lemma 2 describes how φi varies with vi and ri. In terms of Figure 1, an
increase in vi would shift both φi and Φi in the north-east direction, causing agent i to
adopt β earlier and α later. An increase in ri “bends” φi and Φi toward the 45-degree
line, which prompts agent i to adopt both α and β earlier. As agent i becomes extremely
impatient, the lower best-response threshold becomes arbitrarily close to the upper best-
response threshold.

Let IG(σ−i) = [Gi, Gi] and Ig(σ−i) = [g
i
, gi]. Given the single-crossing property (Lemma

1), ĝ is optimal in [g
i
, gi] for any belief θ given Ĝ only if it satisfies:

ĝ


≥ φi(Ĝ) if ĝ = g

i
,

= φi(Ĝ) if ĝ ∈ (g
i
, gi),

≤ φi(Ĝ) if ĝ = gi.

(2)
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Similarly, Ĝ is optimal in [Gi, Gi] for any belief θ given ĝ only if it satisfies:

Ĝ


≥ Φi(ĝ) if Ĝ = Gi,

= Φi(ĝ) if Ĝ ∈ (Gi, Gi),

≤ Φi(ĝ) if Ĝ = Gi.

(3)

The following lemma shows that these conditions are also sufficient; that is, they char-
acterize Condition 1 of our equilibrium definition and therefore provide the connection
between one-sided best responses and the equilibria of our model.

Lemma 3. A pair of thresholds (ĝ, Ĝ), with ĝ < Ĝ, solves the constrained optimization problem
(1) for all beliefs θ if and only if it satisfies conditions (2) and (3).

Lemma 3 plays a crucial role in our analysis. Despite the fact that dynamic consistency
holds for one-sided preferences, dynamic consistency does not generally hold when both
thresholds change at the same time. An agent may prefer waiting region (g,G) to (g′, G′)

at some belief θ, but have the opposite preference at some other belief θ′. Nevertheless,
Lemma 3 shows that a solution to the constrained optimization problem (1) for all θ ex-
ists. Furthermore, it reduces our original two-sided collective stopping problem, which
is difficult to solve directly, into two readily solvable one-sided problems. In the proof
of Lemma 3, we use part 2 of Lemma 2 to establish that only one pair of cutoffs in the
constraint set satisfies both (2) and (3). Because (2) and (3) are necessary for constrained
maximization, this unique cutoff pair must be optimal in the constraint set.10

4. Equilibrium Analysis

Given decision rule k, define the lower pivotal best-response function φpiv(G; k) to be the
k-th largest φi(G) for each G. Thus, in a one-sided stopping problem, where α is adopted
atG, there are k agents who support β when the belief reaches φpiv(G; k). Similarly, define
the upper pivotal best-response function Φpiv(g; k) to be the k-th smallest Φi(g) for each
g. Notice that these do not necessarily correspond to cutoffs any of the agents would
use if they were deciding on their own. In what follows, we sometimes suppress the
argument k when doing so does not cause confusion. If the static preferences vi are all
the same and agents only differ in their discount factors ri, then every k is associated
with a unique pivotal agent for both thresholds: this is the k-th most impatient agent. If
the discount factors ri are all the same and agents only differ in their static preferences
vi then, as we will see, there are different pivotal agents for the two thresholds: these are
the agents with the k-th lowest and the k-th highest static preferences. More generally,
however, when agents are heterogeneous in both dimensions, determining the identity
of the pivotal agents is not so simple. Furthermore, because individual best-response

10As the utility function ui is not quasi-concave in cutoffs, the Kuhn-Tucker conditions are not sufficient
for optimality in an arbitrary convex constraint set.
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Figure 2. The bold line shows the lower pivotal best-response function when there are three agents and
when the decision rule is majority rule. For G < v2, φpiv coincides with the 45-degree line. For fixed G,
the median agent (agent 2) is pivotal in the decision to adopt β if G ∈ (v2, G

′). Agent 1 is more impatient
than others; he would prefer to adopt β earlier than agent 2 (but later than agent 3) if G ∈ (G′, G′′). For
G > G′′, agent 1 prefers to adopt β the earliest and agent 3 becomes pivotal. In this figure, (v1, v2, v3) =
(−0.6, 0, 0.6), (r1, r2, r3) = (0.6, 0.039, 0.039), and µ′ = 0.1.

functions may cross if agents have different time preferences, the identity of the pivotal
agent who supports β may change as G changes. See Figure 2 for an illustration.

The following proposition establishes some basic properties of equilibrium.

Proposition 1. For any decision rule k, any (ĝ, Ĝ) is an equilibrium outcome of the deliberation
game if and only if it is a fixed point of (φpiv,Φpiv) and ĝ < Ĝ. An equilibrium of the deliberation
game exists and the equilibrium waiting region must be non-degenerate. When there are multiple
equilibria, the equilibrium waiting regions are nested. That is, if both

(
ĝ1, Ĝ1

)
and

(
ĝ2, Ĝ2

)
are

equilibrium outcomes and ĝ1 > ĝ2, then Ĝ1 < Ĝ2. There is a unique equilibrium outcome if the
decision rule requires unanimity or if there is a single dimension of heterogeneity.
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It is obvious that any equilibrium cutoffs must be fixed points of the pivotal best-
response functions. Sufficiency follows from Lemma 3: if (ĝ, Ĝ) is an unequal fixed point
of (φpiv,Φpiv), i.e., ĝ < Ĝ, then the strategy profile σ where, for each i,

σi = (φi(Ĝ),Φi(ĝ)),

satisfies (2) and (3). Under majority rule, (vm, vm) is a fixed point of (φpiv,Φpiv) but not
an equilibrium, because agent m can gain by waiting briefly before adopting one of the
alternatives.

Multiplicity of Equilibria. Multiple equilibria can arise for non-unanimous deci-
sion rules when there is heterogeneity in both dimensions. Thus, expectations can play
an important role in deliberations. Agents may decide slowly if they expect others are
taking their time, but they may also rush to a decision to preempt others from reaching
a different decision in a hurry (a phenomenon we call hasty equilibrium). Figure 3 pro-
vides an example. We discuss these types of equilibria in detail and return to the issue
of multiplicity in the next section. When there are multiple equilibria, the equilibrium
waiting regions are nested; that is, the most patient equilibrium waiting region contains
all other equilibrium waiting regions, while the least patient equilibrium waiting region is
contained in all others.

Moderation in Committees with Homogeneous Time Preferences. It is useful to
point out a feature of equilibrium when all agents have the same time preference. In this
case, recalling that v1 < . . . < v2m−1, it can be shown that the equilibrium waiting region
(ĝ, Ĝ) under decision rule k is the same as the equilibrium waiting region under unanim-
ity rule for a two-agent group consisting of agents 2m− k and k. Furthermore, ĝ ≥ g∗2m−k
and Ĝ ≤ G∗k, with equality if and only if k = m. Because one-sided best-response func-
tions do not cross when agents have the same discount rate, agent 2m − k is pivotal for
adopting β, while agent k is pivotal for α. The exact intensity of the static preferences
of the remaining agents do not matter for the determination of the equilibrium. Fur-
thermore, in the case of identical time preferences, under majority rule, the equilibrium
waiting region coincides with the optimal waiting region for the median agent. Under
super-majority rule, the pivotal agent for α (i.e., agent k) adopts α before reaching the
point that she deems optimal. Recall that agent k has a stronger preference for β than
agent 2m − k does. If agent k were to make the decision alone, she would adopt α only
when the belief is sufficiently strong to reach G∗k. The fact that Ĝ < G∗k means that group
decision-making leads to a moderation effect: the two pivotal agents choose thresholds
that are less extreme than those they would choose were they in full control of the delib-
eration process. This follows from strategic substitution. Because agent 2m − k prefers
to adopt β later than agent k does, agent k’s continuation value from waiting is lowered,
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Figure 3. Multiple equilibria exist when vm+1 − vm is small. The hasty equilibrium is P1 in this figure;
there are two other more patient equilibria, P2 and P3. The figure is drawn using the same parameters as in
Figure 4(c), but with vm+1 − vm = 0.4 instead of 0.6. When vm+1 − vm becomes larger, the best-response
functions φm+1 and Φm are pulled apart, and eventually do not intersect. Then, the hasty equilibrium P1
remains the only equilibrium.

and she accommodates agent 2m− k by adopting α earlier.11

5. The Drawbacks of Majority Rule

In our deliberation process, agents make two related decisions: which alternative to
adopt, and how long to wait. The static preference vi is related to the first decision, and
the time preference ri is related to the second. When there is two-dimensional hetero-
geneity, the median voter theorem does not apply; that is, how long the group waits does
not depend only on the median discount rate. Because quick decisions are strategic com-

11When agents have different time preferences, we can no longer identify the pivotal agents based on
their static preferences alone. Nevertheless, a generalized form of this moderation effect still holds. In any
equilibrium under decision rule k, the lower equilibrium threshold is higher than the k-th highest g∗i and
the upper equilibrium threshold is lower than the k-th lowest G∗i .
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plements, the presence of an impatient agent may cause other agents to stop deliberations
early. Since under majority rule it takes only one vote to change the outcome from one
alternative to another, the most impatient agent tends to have a disproportionate influ-
ence on the length of collective deliberations. The impact one impatient agent can have
is a potential drawback of majority rule and a useful illustration of the consequences of
two-dimensional heterogeneity.

Figure 4 illustrates how the presence of an impatient agent affects equilibrium out-
comes. Agent 1 becomes increasingly impatient across the three panels. Despite having
a weaker preference for β than other agents, agent 1 is willing to adopt decision β before
the other agents do as r1 increases. He becomes pivotal for β when r1 increases from panel
(a) to panel (b) of Figure 4. Agent 2 responds by stopping earlier to adopt α because she
expects the impatient agent will stop early to adopt β. The waiting region of equilibrium
P2 is narrower than that of equilibrium P1. One may think of the impatient agent 1 as
a “swing voter.” While he prefers α, he is willing to settle for β as long as the evidence
swings a bit in favor of β. His vote, therefore, easily switches between α and β. Hence,
both agent 2, who prefers α, and agent 3, who prefers β, have an incentive to stop de-
liberations early to prevent agent 1 from switching sides. These effects are magnified in
equilibrium through strategic complementarity.

In panel (b) of Figure 4, agent 1 is both more impatient and has a stronger prefer-
ence for α than the other agents. Nevertheless, he continues to influence the deliberation
outcome as r1 increases further. In panel (c), φ1 approaches the 45-degree line, and the
equilibrium P3 is near (vm, vm). In this equilibrium, although the impatient agent 1 has
a stronger preference for α than other agents, he votes for β as soon as the belief drops
slightly below the threshold for α to avoid further delay. In contrast, although agent 2 is
patient, she votes for α as soon as the belief goes slightly above her static preference. The
value of waiting is low for her because she is almost indifferent between α and β at the
belief under which β is adopted.

In Figure 4, there are only three agents, but the same logic applies regardless of the
size of the group and their preferences.

Proposition 2. Under majority rule, there is an equilibrium in which deliberation ends arbitrar-
ily quickly when one agent is sufficiently impatient: for any ε > 0, there exists r(ε) > 0 such that
if ri ≥ r(ε) for some agent i, then there is an equilibrium waiting region (ĝ, Ĝ) with width less
than ε.

A narrow waiting region implies short deliberations and, consequently, inaccurate
decisions. We call the type of equilibrium highlighted in Proposition 2, one in which
the waiting region is no wider than ε, an ε-hasty equilibrium. For vanishingly small ε, in
an ε-hasty equilibrium, the group decides almost immediately, and which alternative is
chosen depends only on whether the initial belief θ0 is greater or lower than the static
preference of agent m, i.e., the agent with the median static preference (under majority
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Figure 4. Deliberation collapses as one of the agents becomes extremely impatient. When r1 = r2 = r3 =
0.039 (panel (a)), agent 1 is not pivotal and the equilibrium is P1. If r1 increases to 0.6, his best-response
function φ1 bends toward the 45-degree line. Agent 1 becomes pivotal and the equilibrium is P2. If r1
increases further to 9 (panel (c)), φ1 bends further and the equilibrium P3 is very close to the 45-degree
line. The implied waiting region is very short. The circles in each panel indicate the respective equilibrium
points when the decision rule requires unanimity.
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rule, any equilibrium waiting region must feature vm ∈ (ĝ, Ĝ), a point we return to in
Proposition 6).12 The equilibrium outcome is, therefore, almost identical to that of a static
problem in which the median voter decides without the benefit of any information col-
lection. Note that the effect of the impatient agent on the equilibrium outcome cannot be
counterbalanced by the presence of one or more extremely patient agents in the group. In
Proposition 2, r(ε)—the discount rate that ensures an equilibrium with a waiting region
no wider than ε—does not depend on the preferences of the other agents. Hence, the
welfare loss to the other agents could be large. Under majority rule, one agent is enough
to trigger a hasty equilibrium outcome, even when every other agent is patient. In this
sense, majority rule is not a robust decision-making mechanism because the length of
deliberation can be dominated by one agent with an extreme time preference.13

As long as there is a very impatient agent, a hasty equilibrium exists. Whether the
equilibrium is unique depends on whether the preferences of the other agents are suffi-
ciently different. In Figures 3 and 4, all agents except the impatient agent i < m have the
same discount rate. In Figure 3, the difference between vm+1 and vm is small, and there
exist two other equilibria that have wider waiting regions than the hasty equilibrium. In
Figure 4(c), the difference between vm+1 and vm is large, and the hasty equilibrium is the
unique equilibrium.

When multiple equilibria exist, in general, these equilibrium outcomes cannot be Pareto
ranked. Different agents may have different preferences over different equilibria. More
importantly, even the same agent may have different preferences over two equilibria at
different beliefs. For example, an agent with strong static preference for α would prefer
a hasty equilibrium when the belief is high (so she can obtain α immediately), but would
prefer an equilibrium with a wider waiting region when the belief is low (so she will not
get β immediately). Thus, even if a majority of agents initially prefers an equilibrium
with a wider waiting region to a hasty equilibrium, some of these agents may change
their minds as the belief changes.14

Compared to majority rule, super-majority rules are more resistant to the excessive
influence of a few impatient agents. In Figure 4(c), if unanimity rule is used instead of
majority rule, the equilibrium, now given by the intersection of φ2 and Φ3, will no longer
be a hasty equilibrium. There is no need under unanimity rule for agents 2 and 3 to rush

12See Proposition 6 and its proof.
13Since the agents’ utility functions are continuous in cutoffs, an equilibrium of the continuous-time

model would be an epsilon-Nash equilibrium of the discrete-time model with short time periods. When
there is a very impatient agent, we can verify that there is a mixed-strategy discrete-time equilibrium out-
come close to the hasty equilibrium outcome in the continuous time model.

14The result that one very impatient agent can trigger hasty deliberations depends on two features of
our model: first, information arrives continuously, and second, as information arrives, an agent’s relative
preference between the two alternatives may change. In contrast, in the collective search model of Albrecht,
Anderson, and Vroman (2010), a new proposal is drawn every period, and in equilibrium, the agents never
adopt a past proposal. In their model, an extremely impatient agent is essentially redundant because she
will accept almost any proposal.
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to a decision because the impatient voter is no longer sufficient to swing the outcome. We
now elaborate on the robustness of super-majority rules against the presence of impatient
agents.

Define the number of requisite swing votes of a rule as the minimum number of vote
changes to shift the outcome from adopting one alternative immediately to adopting the
other alternative immediately. The number of requisite swing votes of majority rule is
1—if α and β each receive m votes, the last vote determines the outcome. More generally,
under rule k, an alternative must receive at least k votes to be adopted. Because there are
2m− 1 agents altogether, the number of requisite swing votes of rule k is 2k − (2m− 1).

In what follows, we say that a group of agents can trigger a collapse of deliberation if, for
any ε > 0, there is an equilibrium with a waiting region no wider than εwhen every agent
in that group has a discount rate greater than some r̃(ε) > 0, regardless of the preferences
of other agents.

Proposition 3. A group of agents cannot trigger a collapse of deliberation whenever the size of
the group is smaller than the number of requisite swing votes.

Under rule k, at least 2k − (2m − 1) agents switch their votes from α at the upper
cutoff to β at the lower cutoff. Each of them can unilaterally delay the adoption of either
alternative at the equilibrium threshold. It can be shown that, given ri, agent i always
prefers delaying the adoption of at least one of the alternatives when the waiting region
becomes too narrow. Hence, unless all agents who vote for both alternatives at the cutoffs
are very impatient, no hasty equilibrium can exist. By contrast, in a hasty equilibrium
under majority rule, only the very impatient agent is voting for both α and β at the adop-
tion thresholds. Of the remaining 2m − 2 agents, half vote only for α but not β, and
the other half vote only for β but not α. While each of these 2m − 2 agents may like to
simultaneously delay the adoption of both alternatives, none of them can do so.15

Until now, we have focused on when extreme outcomes (collapse of deliberation) may
arise. In evaluating voting rules, it is important to understand more generally how the
quality of decisions and their timeliness respond to changes in the voting rules. It is also
interesting to study the role of the composition of the committee.

Recall that all agents prefer the same alternative if they know the true state. The accu-
racy with which an alternative is selected is the probability that it is optimal when chosen.
For example, if the group selects α when the belief reaches Ĝ, the accuracy of the decision

15Although we consider decision rules that treat the two alternatives symmetrically, we note that the
issues we describe also exist in the case of asymmetric decision rules. For a rule that requires kα votes to
adopt α and kβ votes to adopt β, the number of requisite swing votes is kα + kβ − (2m − 1). As in the
symmetric case, one impatient agent may trigger a collapse of deliberation if the number of requisite swing
votes is one and, conversely, a group of impatient agents cannot trigger a collapse of deliberation if its size
is smaller than the number of requisite swing votes. We thank a referee for raising this point.
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is the probability that the state is A at that point, which is given by eĜ/
(

1 + eĜ
)

.

Some of our analysis is sharper when we assume symmetry within the committee.
Formally, a committee is symmetric if r1 = . . . = r2m−1 and vm − vj = v2m−j − vm for
j = 1, . . . ,m− 1. In a symmetric committee, we say that preferences become more diverse
when, for any j = 1, . . . ,m − 1, vj decreases and v2m−j increases by the same amount. In
other words, a more diverse symmetric committee is one in which agents on both sides
of the median agent hold stronger opposing preferences for their favored alternatives.

Proposition 4.

1. As k increases, or as ri decreases for any agent i, at least one of the alternatives is adopted
later and selected with greater accuracy in the most patient equilibria as well as the least
patient equilibria.

2. The equilibrium waiting region under rule k is no wider than the equilibrium waiting region
corresponding to any subset of k agents using unanimity rule.

3. In a symmetric committee, both alternatives are adopted later and with a greater accuracy
when all agents become more patient, when the size of the majority requirement increases,
or when the static preferences of agents become more diverse.

It is easiest to glean an intuition into part 3 of the proposition. Since the pivotal agents
in a symmetric committee are agents 2m−k and k (see the discussion at the end of Section
4), raising the majority requirement from k to k′ has the same effect as making preferences
in the outcome-equivalent two-person committee more diverse (raising the static prefer-
ence of one juror from v2m−k to v2m−k′ , while raising that of another from vk to vk′). In
part 3 of Proposition 4, we show that such a change will expand the equilibrium waiting
region (i.e., lower ĝ and raise Ĝ), as each of the pivotal agents demands greater evidence
before adopting the alternative against which she is biased. Deliberations are longer be-
cause, starting from any initial belief within the waiting region, the time it takes to reach
the boundaries increases. Decisions are more accurate because α is adopted only when
the belief reaches a higher upper cutoff Ĝ, which corresponds to a higher probability that
the state is A. Likewise, a lower equilibrium ĝ means that β is adopted at a point when
the probability of state B is higher. This result provides a contrast between our char-
acterization and those pertaining to private information collection, as in Feddersen and
Pesendorfer (1998), Persico (2004), and Austen-Smith and Feddersen (2005, 2006).

A symmetric committee provides a particularly simple setting to study the effect of
raising the size of the majority requirement k. Symmetry is sufficient but not necessary for
part 3 of Proposition 4 to hold. However, large departures from symmetry may invalidate
the result that an increase in k always produces more accurate decisions. Imagine, for
example, that agent 2m−k′ is much more biased for α than agent 2m−k, while agent k′ is
only slightly more biased for β than agent k. When the decision rule is raised from k to k′,
each of the two pivotal agents under decision rule k′ wants to extend the threshold before

22



adopting the alternative they control. Because slow decisions are strategic substitutes,
the less extreme agent k′ may want to accommodate the longer expected waiting time
caused by the other more extreme pivotal agent by adopting α earlier. If the second effect
dominates, then it is possible for the equilibrium upper cutoff Ĝ to decrease, making the
decision for α less accurate when it is adopted. In the general case where preferences are
not symmetric or when there is two-dimensional heterogeneity, it is not always the case
that increasing k lowers ĝ and raises Ĝ. Nevertheless, part 1 shows that the waiting region
always become wider when k increases or when ri decreases for some agent i. Therefore,
at least one of the alternatives will be adopted later and with greater accuracy.

Part 2 of Proposition 4 provides an interesting contrast with Proposition 3: the effects
of very impatient agents and very patient agents are not symmetric. Voting to delay
an alternative by a very patient agent would not cause other agents to adopt the other
alternative later. Unless they can block a decision by themselves, a subset of very patient
agents cannot prevent the group from reaching a decision. It takes 2m− k votes to block
a decision under rule k. As the majority requirement is increased by one, the maximum
number of very patient agents that can be allowed without causing endless deliberations
falls by one. In contrast, the number of requisite swing votes increases by two. Hence,
a properly chosen super-majority rule is robust to the presence of a few extreme agents
whose discount rates are either very high or very low. For example, suppose the very
impatient agents and the very patient agents each make up 1/4 of the size of the group.
Then a decision rule with less than 3/4 super-majority requirement would prevent the
patient agents from creating protracted deliberations, and the impatient agents cannot
trigger a collapse of deliberation as long as the super-majority requirement is greater than
5/8.

6. Advantages of Majority Rule

We now turn to the advantages of majority rule. We highlight two important benefits:
in many environments, majority rule is preferred by the committee members themselves
and majority rule respects static preferences.

We consider how committee members evaluate voting rules and their associated accuracy-
timeliness trade-off. We can obtain a particularly clean result by maintaining the assump-
tion of symmetry. Because all agents have the same time preference, the median agent is
pivotal for both α and β under majority rule. The equilibrium waiting region is simply
her optimal waiting region (g∗m, G

∗
m). Let (ĝ, Ĝ) represent the equilibrium waiting region

under super-majority rule k. Proposition 4 shows that Ĝ − ĝ > G∗m − g∗m. Furthermore,
by symmetry, these two equilibrium waiting regions are both centered at vm. We call a
committee unbiased if its preference profile satisfies symmetry, and if the initial belief θ0
equals vm.

Proposition 5. In an unbiased committee, all agents are better off in the equilibrium outcome
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induced by majority rule than in the equilibrium outcome induced by any super-majority rule.

This result demonstrates that, if the initial beliefs are not tilted in favor of a particular
alternative, then there is no conflict in the committee as to how to resolve the accuracy-
timeliness trade-off. From the perspective of agentm, it is obvious that the waiting region
(g∗m, G

∗
m) is preferable to (ĝ, Ĝ). From the perspective of any other agent j 6= m, the ideal

waiting region is centered at vj . Thus, both majority rule and super-majority rule generate
a waiting region that is centered at the “wrong” place for agent j. But since agent j
has the same time discount rate as agent m, super-majority rule also produces a waiting
region that is “too wide.” This does not necessarily mean that agent j prefers majority
rule to super-majority rule, because agent j’s utility also depends on the initial belief θ0.
However, when the initial belief is near the center of the waiting region, there is unanimity
in favor of majority rule: all agents deem the waiting region under super-majority rule
too wide and prefer to use majority rule. Equivalently, in an unbiased committee, all
agents prefer to delegate the decision-making power to the median voter.16 In the proof,
we show that, just as in the case of part 3 of Proposition 4, the result is robust to small
violations of symmetry.

If, on the other hand, the initial belief θ0 is greater thanG∗m but smaller than Ĝ, majority
rule would have adopted α immediately, while there is still some prospect of getting β

under super-majority rule. Thus, an agent j with a sufficiently strong preference for β
may prefer super-majority rule to majority rule despite the longer wait. However, in this
example, all agents with a preference for α stronger than that of the median agent prefer
to adopt α immediately than to wait at this belief θ0. In fact, we can show that, in general,
even though the preference for majority rule may not be unanimous, there is always a
majority of group members who prefer majority rule to a super-majority rule.

Propositions 4 and 5 suggest that, while symmetric committees themselves prefer
majority rules, the quality of decisions is actually superior with more restrictive super-
majority rules. That increased quality comes at the cost of longer deliberation, which is
borne by the agents themselves. Whenever there are positive externalities from high qual-
ity collective decisions, which may be especially relevant for juries or standard-setting
committees since their decisions arguably impact individuals who do not bear the delib-
eration cost themselves, super-majority rules may be preferable.

In the more general case of two-dimensional heterogeneity and asymmetric commit-
tees, there is an additional concern that arises when using super-majority rules. One
criterion for evaluating the quality of a collective decision is whether it accords with the
static preferences of members of the group. Under majority rule, if a majority of agents
prefer a different alternative to the one adopted in equilibrium, they can simply adopt

16Indeed, majority rule would generate the same outcomes as the median voter would by behaving opti-
mally as a single decision-maker.
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the one they prefer. This simple reasoning immediately implies that majority rule respects
static preferences, i.e., at least a majority of agents favors the alternative chosen to the one
not chosen at the final belief.

Proposition 6. With majority rule, outcomes respect static preferences. With super-majority
rules, outcomes do not necessarily respect static preferences. For a fixed profile of discount rates
and for fixed static preferences of agents 1, ..., k − 1, there exists v such that, if vi > v for i ≥
k, super-majority rule k leads to the selection of the outcome β at θ ≥ ĝ, even though agents
1, ..., k − 1 prefer α to β.

Figure 5 illustrates. Panel (a) shows a symmetric committee with three agents under
unanimity rule. The equilibrium waiting region (ĝ, Ĝ) contains vm. That is, when β is
adopted at ĝ, agent m and agent 3 (a majority) both prefer the adopted alternative to
the one not chosen. However, when agent 3 has extreme preference for β (v3 is large
compared to static preference parameters of other agents), the equilibrium ĝ is greater
than vm, meaning that both agent 1 and agent m (a majority) actually prefer α to β despite
voting for β at that cutoff.

Intuitively, under super-majority rules, a majority of agents may vote for β when they
prefer α in order to get a faster decision. Thus, having a greater majority requirement
does not always help build consensus. Although a greater majority requirement may
create the appearance of a greater consensus, some of those who vote for an alternative
may merely be trying to avoid costly delay.17

7. Two-Stage Process: Deliberation Rules and Decision Rules

In our analysis thus far, a single rule k affects two types of decisions: how long to acquire
information, and what action to take once information collection comes to an end. It is
natural to consider the consequences of a two-stage procedure that distinguishes between
a deliberation rule and a decision rule. A special case of a deliberation rule in a jury setting
corresponds to repeated straw polls, with a final vote taken according to the decision rule
once the outcome of the straw poll indicates that sufficient consensus has been achieved.18

In general, deliberation rules may differ from decision rules. For instance, many commit-
tees feature a chairperson who has the same power as all the other members over action
decisions, but has a special role to play (and more power) in deliberation decisions. The
chairperson case can be modeled as either a dictator at the deliberation stage, or as the
median voter in the committee.

17In The Federalist No. 58, James Madison explained why he did not favor super-majority rules: “It would
be no longer the majority that would rule; the power would be transferred to the minority. . . . [A]n in-
terested minority might take advantage of it to screen themselves from equitable sacrifices to the general
weal, or in particular emergencies to extort unreasonable indulgences” (Hamilton, Madison, and Jay 1982,
pp. 298–299).

18The guidelines distributed to jurors in many U.S. courts indicate that this protocol reflects the deliber-
ation process suggested to juries. See Murphy and Boatright (1999a, 1999b).
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Figure 5. Three agents make a decision under unanimity rule. In panel (a), static preferences are not
far apart, and equilibrium P1 produces outcomes that respect static preferences. In panel (b), agent 3 is
extremely biased for β, and both agent 1 and agent m actually prefer α to β when β is adopted at ĝ in
equilibrium P2. A two-stage decision process with rule kD = 3, kd = 2 moves the equilibrium outcome
from P2 to P3. The equilibrium waiting region is (vm,Φpiv(vm)). Deliberation stops at vm and, at the
decision stage, agents m and 3 vote to adopt β. However, the waiting region is also wider (P3 is farther
from the 45-degree line than is P2). In panel (a), (v1, vm, v3) = (−0.2, 0, 0.2) and r1 = rm = r3 = 0.039.
In panel (b), v3 is changed to 1.7.

We model the deliberation rule as a threshold rule kD such that deliberation ends as
soon as kD members of the committee vote to end deliberation. The decision rule is anal-
ogously captured by a rule kd that describes the specific qualified majority required for
reaching a decision about which action to take after deliberation stops. In a two-stage
process, it might be the case that at the decision stage, there is no kd-majority of votes
for either alternative. In this case, we say that the committee is indecisive. We assume that
when the committee is indecisive, α or β is determined by the flip of a fair coin.19 A classic
example of an indecisive committee corresponds to a hung jury that does not reach the
quorum required for conviction or acquittal.

The analysis of two-stage processes allows us to highlight two distinct points. The
first point pertains to whether outcomes respect static preferences. We saw that, under
super-majority rules, in the one-stage process, it is possible that agents may vote against
their static preferences in order to shorten deliberation. This is no longer possible in a

19The exact assumption we make about the consequences of indecisive committees is inconsequential as
most of our analysis focuses on cases where indecisiveness does not occur.
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two-stage process because the vote on the decision is separated from the vote on ending
deliberation; once a successful vote to end deliberation has taken place, no agent has any
incentive to vote against her static preference. This feature of the two-stage process thus
prevents a minority of agents from gaining excessive leverage under super-majority rules.
In this setting, super-majority rules in the deliberation stage may become more attractive
from a societal perspective, as they still retain their function of promoting longer delib-
eration. The second point pertains to the relative importance of deliberation rules and
decision rules for the time it takes committees to make a decision and for the accuracy of
these decisions.

In order to tackle the first point, we assume that the decision rule kd is majority rule,
which simplifies the analysis considerably since the committee is never indecisive in the
second stage. However, we make no restrictions on the deliberation rule kD. In the second
stage, we assume that each agent votes for the alternative she likes given the current belief
θ. Hence, α is adopted if θ ≥ vm and β is adopted when θ < vm. This is often referred to as
“sincere voting” and results from ruling out weakly dominated strategies at the subgame
corresponding to the decision stage. In the first stage, each agent knows that voting for
ending deliberation when θ ≥ vm is tantamount to voting for α. Therefore, instead of
analyzing the two-stage game, we study a modification of the one-stage game, which we
call the constrained deliberation game. In the constrained deliberation game, as before, at
every instant t, each agent independently votes for α, β, or neither, and an alternative is
adopted at time t if it receives kD votes or more. The constraint is that agents can vote
for α only when θ ≥ vm and for β only when θ < vm. Because of these constraints, we
need to slightly modify the second part of our definition of equilibrium in section 2. I
the one-stage process, each agent votes for an alternative before the belief reaches the
equilibrium cutoff whenever the marginal gain from an earlier decision is positive. In the
two-stage process, we require an agent to do so only when the constraints are not binding.
In what follows, we slightly abuse language by referring to equilibria of this constrained
deliberation game as the outcomes of the two-stage process described above.

Recall that for any agent i, we denoted by φi(G) the agent’s lower best-response func-
tion, the optimal lower cutoff g for any fixed upper cutoff G. In the constrained game, the
agent cannot vote for β when θ ≥ vm. Therefore, her constrained best response would be
given by min{φi(G), vm}. A similar calculation follows for the agent’s constrained upper
best response. We denote the constrained best-response functions for agent i as follows:

φci(G) ≡ min{φi(G), vm},
Φc
i(g) ≡ max{Φi(g), vm}.

Define φcpiv(G; kD) to be the kD-th largest φci(G) for each G, and Φc
piv(g; kD) to be the kD-th

smallest Φc
i(g) for each g. Using the same reasoning as in the unconstrained case, it is

straightforward to see that (ĝc, Ĝc) is an equilibrium outcome of the constrained deliber-
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ation game, if and only if it is a fixed point of (φcpiv,Φ
c
piv) and ĝc < Ĝc.

There are two types of equilibrium outcomes in this constrained deliberation game,
and therefore in the two-stage process. An unconstrained outcome is one in which neither
cutoff is constrained (i.e., ĝc < vm < Ĝc). A constrained outcome is one in which one of the
equilibrium cutoffs is vm. It is straightforward to show that for any g and G

φcpiv(G; kD) = min{φpiv(G), vm},
Φc
piv(g; kD) = max{Φpiv(g), vm}.

Hence, an unconstrained outcome is an equilibrium outcome under the two-stage deci-
sion process if and only if it is also an equilibrium outcome in the unconstrained deliber-
ation game.

When an equilibrium outcome in the unconstrained deliberation game does not re-
spect static preferences, it can no longer be implemented under the two-stage decision
process.

A constrained outcome (ĝc, Ĝc) is an equilibrium of the two-stage process if and only
if ĝc < Ĝc and one of the following conditions holds:

1. (ĝc, Ĝc) = (vm,Φpiv(vm)), and φpiv(Φpiv(vm)) ≥ vm;

2. (ĝc, Ĝc) = (φpiv(vm), vm), and Φpiv(φpiv(vm)) ≤ vm.

Indeed, a constrained outcome is constrained either on the lower or the upper cutoff.
Condition 1 corresponds to the former, where the lower cutoff is constrained: ĝc = vm. To
see the intuition for this condition, notice that the upper cutoff must be a best response
for the corresponding pivotal agent, and so it must be the case that Ĝc = Φpiv(vm). Fur-
thermore, the lower cutoff must be a constrained best response for the relevant pivotal
agent, so that

φcpiv(Ĝ
c; kD) = min{φpiv(Ĝc), vm} = min{φpiv(Φpiv(vm)), vm} = vm.

It follows that φpiv(Φpiv(vm)) ≥ vm. Analogous considerations pertain to outcomes with a
constrained upper cutoff, generating condition 2 above.

Panel (b) of Figure 5 depicts a constrained equilibrium with three agents. In the figure,
the equilibrium outcome in the unconstrained game under unanimity rule is (ĝ, Ĝ) (point
P2). In this equilibrium, agents 1 and m prefer α but vote to adopt β at ĝ. Under the
two-stage decision process, the equilibrium outcome is (vm,Φpiv(vm)) (point P3). Notice
that all three agents prefer to adopt β earlier but cannot vote for β until θ reaches vm.
Intuitively, P2 is not an equilibrium outcome in a two-stage decision process because if
deliberation ends at ĝ, agents 1 and m will vote for α in the second stage. Anticipating
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that, agent 3, who prefers waiting at ĝ, would hold on until either agent m switches and
supports β (when θ = vm) or she switches and prefers α to waiting (when θ = Φpiv(vm)).
From panel (b) of Figure 5, it is clear that the waiting region of a constrained equilibrium
is wider than that of the equilibrium it replaces in the unconstrained game, and hence
the corresponding decisions taken by the committee are more accurate. In fact, this is
generally the case, and we have the following proposition.

Proposition 7. Consider an equilibrium outcome (ĝ, Ĝ) of the one-stage process for a committee
with preference profile (v1, ..., v2m−1) and voting rule k. If either ĝ ≥ vm or Ĝ ≤ vm, then there
exists an equilibrium outcome (ĝc, Ĝc) for the same committee in the constrained deliberation game
with deliberation rule kD = k such that the waiting region (ĝc, Ĝc) contains (ĝ, Ĝ).

The proposition predicts that deliberation is longer on average in a two-stage process.
The result also implies that a group agents cannot trigger a collapse of deliberation in a
two-stage process under deliberation rule kD and decision rulem in the constrained game
if it cannot do so under the same rule k = kD in the one-stage process. If preferences are
symmetric, the one-stage and two-stage processes have the same set of equilibrium out-
comes. But when preferences are not symmetric, having a separate decision vote offers
additional protection against outcomes dominated by extreme minority preferences. This
protection, however, is not without cost: since deliberation is likely to be longer, commit-
tee members may actually prefer the unconstrained equilibrium to the constrained one.

We now turn to the relative impacts of deliberation and decision rules. We allow any
decision rule and any deliberation rule. The equilibrium notion we use is that of Nash
equilibrium with strategies that are not weakly dominated at any subgame corresponding
to the decision stage. We focus on scenarios in which all agents are very patient. It is
easy to see that in any equilibrium of the one-stage deliberation game, when agents are
sufficiently patient, the waiting region must contain the static preference vi for all agents i.
This means that when an alternative is adopted at the cutoff, it is unanimously preferred
by all agents. We show that the resulting unconstrained outcome of the one-stage game is
an equilibrium outcome of the two-stage decision process, regardless of the second-stage
decision rule kd.20 In particular, neither the time to a decision nor the relative probability
of the two types of errors depends on the decision rule.

Proposition 8. Consider any profile of static preferences and any two-stage decision rule (kD, kd).
There exists r > 0 such that, whenever ri ≤ r for all i, if (ĝ, Ĝ) is an equilibrium outcome of
the one-stage process under rule k, then it is an equilibrium outcome of the two-stage process for
deliberation rule kD = k and any decision rule kd. Furthermore, in the corresponding equilibrium,
voting is unanimous at the decision stage.

20We say that (g,G) is an equilibrium outcome of the two-stage process with voting rules (kD, kd) if there
is an equilibrium of the two stage-process that induces a conclusion of information collection when beliefs
are outside of the interval (g,G), a choice of α for beliefs greater than G, and a choice of β for beliefs lower
than g.
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Proposition 8 implies that, when agents are sufficiently patient, the decision rule has
no influence on certain equilibrium outcomes. Furthermore, these equilibria can be im-
plemented using a one-stage process. In the following section, we discuss some empirical
and experimental evidence on juries consistent with this result.

8. Empirical Relevance

8.1. Application to Juries

In this section, we discuss some evidence on juries documented in the literature. Some of
this evidence speaks to the basic structure of the model and some is directly related to our
results. This evidence suggests that our model is broadly consistent with some patterns
in the data.

In the model, longer deliberation corresponds to additional signals received by the
committee. Our interpretation is that this is a reasonable shortcut for thinking about how
deliberation helps jurors gain an understanding of the evidence presented at trial. Even
though no additional explicit information is received by the jurors during deliberation,
it has the function of processing information and understanding the relative importance
of different, potentially contrasting pieces of evidence.21 In particular, the model fits a
plausible deliberation protocol in which the jury conducts repeated straw polls until a
sufficient consensus emerges.

Legal scholars emphasize the fact-finding role of juries (e.g., Vidmar and Hans 2007).
A substantial fraction of deliberation appears to be devoted to a discussion of the facts
(Pennington 1983). In fact, starting from Kalven and Zeisel (1966), numerous scholars
have argued that juries succeed at reaching an understanding of the facts. In a study of
mock juries, Ellsworth (1989) writes: “In general, over the course of deliberation, jurors
appear to focus more on the important facts and issues, come to a clearer understanding
of them, and approach consensus on the facts.” This literature also suggests the impor-
tance of the interaction between decision rules and deliberation protocols. For instance,
Hastie, Penrod, and Pennington (1983) point out that the volume of discussion substan-
tially increases with the decision rule.

Importance of deliberation and verdict patterns. In terms of the underlying assump-
tions of the model, there is evidence suggesting the importance of deliberation and the
idea of collective information collection. Hannaford et al. (2000) studied the timing of
jury opinion formation. Their data include survey responses of 1,385 jurors from 172 tri-
als. Over 95 percent of jurors reported changing their minds at least once over the course

21During deliberation, the jury must sift through the mass of sometimes conflicting evidence presented
by two opposing parties during the trial to figure out the relevance of different pieces of information and
the weight to attribute to these in converging to a verdict. Thus, it makes sense to think of part of the
deliberation process as a continuation of the information acquisition that took place during trial.
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Figure 6. Distribution of jury outcomes according to initial jury leanings. Source: Hans (2007).

of the trial. Importantly, over 40 percent of jurors reported changing their minds dur-
ing the final deliberations, suggesting that deliberation is a key component of opinion
formation for jurors.

Hans (2007) studied jury deliberation by using surveys conducted by the National
Center for State Courts. The data contain reports from close to 3,500 jurors who had
participated in felony trials. Figure 6 summarizes one key finding by Hans (2007). The
figure groups each jury into five categories depending on the outcome of an initial straw
poll. These categories range from “strongly favor innocent,” where the great majority of
jurors initially favored acquittal, to “leaning toward innocent,” where a small majority
initially favors acquittal, to “closely divided,” where the jury is evenly split (5–7, 6–6, or
7–5), to “leaning toward guilty,” and finally to “favor guilty.” For each initial leaning of
the jury, the figure describes the distribution of ultimate outcomes.

Note first that the patterns of opinion change are consistent with collective informa-
tion acquisition driven by a Bayesian updating process (as in our model). When the initial
vote in the jury strongly supports a particular outcome, that outcome is more likely to
ultimately emerge. For instance, 77 of the 89 juries with strong majorities for guilt con-
victed the defendant. However, the ultimate outcome does change during deliberation:
11 of these 89 juries ended up acquitting the defendant. Recall that the verdict had to be
unanimous. Therefore, in all these 11 cases, almost all jurors changed their mind during
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deliberation.22 Thus, the deliberation process did have a large effect in these juries.

Jury composition. In line with our Proposition 4, increased heterogeneity in static
preferences has been found to increase quality and length of deliberation; see Goeree and
Yariv (2011), who present experimental evidence that increased preference heterogeneity
increases deliberation length and accuracy of decisions. In our model, more diverse static
preferences increase the length of deliberation since the pivotal members at the deliber-
ation stage become more extreme. This translates immediately into longer deliberation
and, in symmetric committees, more accurate decisions.

Effects of the decision rule. The message of our Proposition 8 is that, under some con-
ditions, the decision rule in a two-stage process does not affect outcomes. Baldwin and
McConville (1980) studied a reform in 1974 in England that allowed for majority verdicts
in criminal trials, while prior to the reform unanimity was required. A predominance
of verdicts (311 out of 326 cases) were unanimous even after the reform, suggesting that
the decision rule did not have much of an effect. Kalven and Zeisel (1966) report sim-
ilar patterns for U.S. states that do not require unanimity for conviction: most verdicts
are unanimous anyway. Hastie, Penrod, and Pennington (1983) find, however, that the
volume of discussion substantially increases with the decision rule. In laboratory exper-
iments, Goeree and Yariv (2011) find that, when subjects cannot talk before voting, the
decision rule has an effect, whereas, when subjects can talk, the decision rule has very
little effect.23 Our model provides a possible explanation for the fact that in some cir-
cumstances the decision rule seems to have little effect on decisions. We show that, when
agents are sufficiently patient, in equilibrium, deliberation always ends with unanimous
decisions: whenever there is disagreement on the appropriate decision, members of the
committee agree that it is worthwhile to continue deliberating.

8.2. Standard-setting Committees

Standard-setting organizations are voluntary organizations that provide a platform for
interested parties to coordinate on technological standards. Some standard-setting orga-
nizations consist solely of platform sponsors; others also include user groups, academics,
and government agencies (e.g., the American National Standards Institute, or the World
Wide Web Consortium). The standard-setting process begins when one or multiple spon-
sors submit proposed standards. A committee is then formed to consider the pros and
cons of different proposals. Expert opinions play an important role in this process. For
example, laboratory and field experimental studies were commissioned to evaluate dif-
ferent bar code designs (Brown 1997).

22Initial consensus may be overstated as the first poll is not taken until some consensus has already
emerged.

23Blinder and Morgan (2008) also find few differences in outcomes when decision rules are changed in
an experiment concerning monetary policy.
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The evaluation process takes time. The average duration to adopt an internet standard
is about 3.5 years (Simcoe 2012). In addition to different preferences over alternatives,
various parties may also disagree over the timing of the decision. In the history of stan-
dardization of containers, trucking firms had lower stakes than shipping lines because
the latter had to make substantial investments in ships and docks. As a result, trucking
firms wanted to reach agreement on container sizes more quickly (Levinson 2006). More
generally, sponsors, who have vested interests in their own technologies tend to be more
patient, while users—downstream firms that build applications on the platform—may
prefer quicker resolution.

There is a limited literature on standard-setting committees. Farrell and Saloner (1988)
and Farrell and Simcoe (2012) model the standardization process as a war of attrition be-
tween two platform sponsors. This perspective ignores the fact that deliberation, while
costly, also produces valuable information. Simcoe (2012) introduces a model of collective
search, whereby each sponsor draws a new value for its technology. In reality, the alter-
natives under consideration are not fixed, but as long as these modifications are marginal
rather than radical, our model captures the strategic effects resulting from the evolving
nature of the information accumulation process.

There is no consensus on what decision rules a standard-setting organization should
use to adopt standards. Chiao, Lerner, and Tirole (2007) report that in their sample
of standard-setting organizations, 34 percent use majority rule, 27 percent use super-
majority rules, and 13 percent use consensus to adopt standards. Our results suggest
that there is no single decision rule that suits all standard-setting organizations. Major-
ity rule may be more suitable to organizations whose members have similar time pref-
erences, such as those that consist solely of technology providers, as it ensures that the
adopted standard is preferred by a majority of the members. For standard-setting or-
ganizations that have a diverse membership or when the standard affects the welfare of
non-members, a super-majority rule may perform better, as it promotes deliberation and
prevents low-stake or impatient members from exerting disproportionate influence. Our
results, however, also point to the potential danger of a high majority requirement. In-
stead of promoting consensus, such rules may also allow a deep-pocketed firm, who can
afford a drawn-out process, to force other interested parties to concede.

9. Conclusions

Deliberation is an integral part of many real-life collective decisions. In addition to the
examples mentioned above, there has been a more recent surge of interest in the idea of
“deliberative democracy” in political science (e.g., Gutmann and Thompson 2004; Fishkin
2009; Steiner 2012), emphasizing consensus building more than preference revelation.

In this paper, we introduce a formal model of open-ended collective deliberations and
explain how different decision rules aggregate heterogenous static and time preferences.
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Our analysis highlights the difference between static voting and dynamic deliberation.
Whereas super-majority rules favor a particular alternative in a static environment, they
force agents to gather more information in deliberative processes. We show that several
features of our model are consistent with jury behavior, and our results explain why many
deliberative bodies adopt super-majority rules.
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Appendix

Proof of Lemma 1. Part 1. A direct calculation gives:

∂ui
∂G

=
(R2 −R1) e

−(G−g)eθΨi

(1 + eθ) (e−R1(G−g) − e−R2(G−g))

(
evi−g − ef(ri,G−g)

)
,

where

f(ri, G− g) = log
R2e

R1(G−g) −R1e
R2(G−g)

R2 −R1

.

Therefore, the sign of ∂ui/∂G depends only on the sign of vi − g − f(ri, G− g) and not on
the value of θ. Similarly,

∂ui
∂g

=
(R2 −R1) e

−(G−g)eviψi
(1 + eθ) (e−R1(G−g) − e−R2(G−g))

(
ef(ri,G−g) − eG−vi

)
.

Therefore, the sign of ∂ui/∂g depends only on the sign of f(ri, G− g)−G+ vi and not on
the value of θ.

Part 2. The derivative ∂ui/∂G has the same sign as vi−g−f(ri, G−g), which is strictly
decreasing in G. Similarly, ∂ui/∂g has the same sign as f(ri, G − g) − G + vi, which is
strictly decreasing in g.

Proof of Lemma 2. We only establish the statements for the upper best-response function;
the proof for the corresponding part (b) follows from similar reasoning.

Part 1. From the proof of Lemma 1, the sign of ∂ui/∂G depends only on the sign of
vi − g − f(ri, G− g) when θ ∈ [g,G]. Suppose g ≥ vi. As f(ri, G− g) > 0 when G > g, we
have ∂ui/∂G < 0. This shows that Φi(g) = g when g ≥ vi.

Suppose g < vi. As vi−g−f(ri, G−g) is strictly decreasing inG, and is strictly negative
at G = g and strictly positive when G is sufficiently large, there is a unique G′ > g such
that ∂ui/∂G = 0 at G = G′. By Lemma 1, ui(g,G′ | θ) ≥ u(g,G | θ) for any G ≥ g and for
all θ ∈ [g,min{G,G′}] ∪ [max{G,G′},∞]. If G < θ < G′, then ui(g,G

′ | θ) > ui(g, θ | θ) =

ui(g,G | θ). If G > θ > G′, then ui(g,G | θ) < ui(g, θ | θ) = ui(g,G
′ | θ). This shows that

Φi(g) = G′ > g when g < vi.

The continuity of Φi follows from the continuity of f(ri, G − g) and the fact that
f(ri, 0) = 0. Thus, limg↑vi Φi(g) = vi. Twice differentiability follows from the implicit
function theorem, since the function defining the first-order condition is smooth.

Part 2. To show that limg→−∞Φi(g) = −∞, suppose to the contrary that there is a finite
lower bound b to Φi(g). We first show that there exists a g′ such that vi−g−f(ri, b−g) < 0
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for all g < g′. To see this, observe that

lim
g→−∞

f(ri, b− g)

vi − g
= lim

g→−∞
f2(ri, b− g) = R2 > 1.

Furthermore, for any g < g′ and g < vi, vi − g − f(ri, G− g) > 0 when G = g. Thus, there
exists a G′ ∈ (g, b) that satisfies vi − g − f(ri, G

′ − g) = 0. Because Φi(g) = G′ when g < vi,
it follows that Φi(g) < b for all g < g′, a contradiction.

Let f2 and f22 represent the first and second derivatives of f with respect to G− g. For
g < vi, differentiate the first-order condition, vi − g − f(ri,Φi(g)− g)) = 0, with respect to
g to get

Φ′i(g) = 1− 1

f2
,

Φ′′i (g) =
f22 (Φ′i − 1)

f 2
2

.

For G− g > 0,

f2 = −R1R2
eR2(G−g) − eR1(G−g)

R2eR1(G−g) −R1eR2(G−g)
> 0,

f22 = − R1R2(R2 −R1)
2eG−g

(R2eR1(G−g) −R1eR2(G−g))
2 > 0.

Therefore, Φ′i(g) < 1 and Φ′′i (g) < 0.

Finally, we show that Φi(g) reaches a maximum at g = g∗i . For any g < vi, the one-sided
stopping problem satisfies a smooth pasting condition at the one-sided optimal threshold
Φi(g) (see, for example, Dixit 1993). Therefore, at G = Φi(g) and θ = Φi(g),

∂ui
∂θ

=
d(eθ/(1 + eθ))

dθ
.

Differentiate both sides with respect to g to yield, at G = Φi(g) and θ = Φi(g),(
d2(eθ/(1 + eθ))

dθ2
− ∂2ui
∂θ∂G

− ∂2ui

∂θ2

)
Φ′i(g) =

∂2ui
∂θ∂g

.

At g = g∗i , we have G = Φi(g
∗
i ) = G∗i . Both ∂ui/∂G and ∂ui/∂g are equal to 0 at the

optimal thresholds, and dynamic consistency implies that this value does not change with
θ. Therefore, at g = g∗i , G = G∗i and θ = G∗i , we obtain:(

d2(eθ/(1 + eθ))

dθ2
− ∂2ui

∂θ2

)
Φ′i(g

∗
i ) = 0.
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Because the stochastic process dS ′ has an expected drift µ′(eθ − 1)/(1 + eθ) and an instan-
taneous variance 2µ′, applying Ito’s lemma gives:

r

µ′
ui =

eθ − 1

1 + eθ
∂ui
∂θ

+
∂2ui

∂θ2
.

Using the smooth pasting condition for ∂ui/∂θ, we obtain:

d2(eθ/(1 + eθ))

dθ2
− ∂2ui

∂θ2
= − r

µ′
ui < 0.

This establishes that Φ′i(g
∗
i ) = 0. When g < vi, as Φi(g) is strictly concave, it reaches a

maximum at g = g∗i .

Part 3. For g < vi, Φi(g) satisfies vi − g − f(ri,Φi(g) − g) = 0. Because the left side of
this equation increases without bound in vi, and because f2 > 0, Φi(g) increases without
bound in vi. Moreover, for g ≤ vi, a marginal increase in vi has no effect on Φi(g), whereas
raising vi to v′i > g will bring Φi(g) from g to a value strictly greater than g.

Let f1 be the derivative of f with respect to ri. From the definitions of R1 and R2, we
note that ∂R2/∂ri > 0 and ∂R1/∂ri = −∂R2/∂ri. Therefore, f1 has the same sign as:

e(R2−R1)(G−g) − 1 + (R2 −R1)R2(G− g)

1− (R2 −R1)R1(G− g)

> 1 + (R2 −R1)(G− g)− 1 + (R2 −R1)R2(G− g)

1− (R2 −R1)R1(G− g)

=
−(R2 −R1)

2R1(G− g)2

1− (R2 −R1)R1(G− g)
> 0.

Because f(ri, G − g) increases in both ri and G − g, Φi(g) decreases in ri for g < vi. For
g ≥ vi, Φi(g) does not change with ri.

Furthermore, we have f(0, G− g) = 0 and

lim
ri→∞

f(ri, G− g) = lim
ri→∞

(
1 +

ri
µ′

)(
eR1(G−g) + eR2(G−g)

)
=∞.

Thus, for any g < vi and any ε > 0, we can choose ri such that

vi − g − f(ri, ε) = 0.

Because f1 > 0 and f2 > 0, for any ri ≥ ri we must have Φi(g)− g ≤ ε.

We use Lemma 2 to establish two additional claims. Claim 1 is concerned with the
property of the composite function Φi(φi(G)). Claim 2 says that if the waiting region is

37



narrower than the optimal waiting region for agent i, then he strictly prefers to adopt at
least one of the alternatives later. Likewise, if the waiting region is wider than his optimal
waiting region, then he prefers to adopt one of the alternatives earlier.

Claim 1. For any agent i,

1. Φi(φi(G)) > G for all G ∈ (vi, G
∗
i );

2. Φi(φi(G)) < G for all G > G∗i .

Proof. Part 1. Let h(G) ≡ Φi(φi(G))−G. Then for G ∈ (vi, G
∗
i ),

h′′(G) = Φ′′i (φi(G)) [φ′i(G)]
2

+ Φ′i(φi(G))φ′′i (G) < 0,

because by part 2 of Lemma 2, Φi is strictly concave, φi is strictly convex, and Φ′i(φi(G)) <

0 since φi(G) > g∗i . Thus, h is strictly concave for G ∈ (vi, G
∗
i ). This, together with

h(vi) = h(G∗i ) = 0, implies that h(G) > 0 for G ∈ (vi, G
∗
i ).

Part 2. Since maxg Φi(g) = G∗i , we have h(G) ≤ G∗i −G < 0 for all G > G∗i .

Claim 2. For any agent i and any (g,G) /∈ {(g∗i , G∗i ), (vi, vi)},

1. if G− g ≤ G∗i − g∗i , then either g > φi(G) or G < Φi(g);

2. if G− g ≥ G∗i − g∗i , then either g < φi(G) or G > Φi(g).

Proof. Part 1. Suppose G − g ≤ G∗i − g∗i . (i) If G > G∗i , then because G − φi(G) is strictly
increasing in G (part 2 of Lemma 2), we have G − φi(G) > G∗i − φi(G∗i ) ≥ G − g. Hence,
g > φi(G). (ii) If g < g∗i , then because Φi(g) − g is strictly decreasing in g, we have
Φi(g) − g > Φi(g

∗
i ) − g∗i ≥ G − g. Hence, Φi(g) > G. (iii) Suppose g ≥ g∗i and G ≤ G∗i . If

G > g ≥ vi, then φi(G) < vi ≤ g because φi is decreasing for G ∈ [vi, G
∗
i ]. If vi ≥ G > g,

then Φi(g) > vi ≥ G because Φi is decreasing for g ∈ [g∗i , vi]. If G ≥ vi ≥ g, then by Claim
1, Φi(φi(G)) > G for G ∈ (vi, G

∗
i ). As Φi is decreasing for g ∈ [g∗i , vi], if g ≤ φi(G) then we

must have Φi(g) ≥ Φi(φi(G)) > Gi.

Part 2. Suppose G− g ≥ G∗i − g∗i . Because (g,G) 6= (g∗i , G
∗
i ), either G > G∗i or g < g∗i . If

G > G∗i , then G > Φi(g) for any g. If g < g∗i , then g < φi(G) for any G.

Proof of Lemma 3. A cutoff pair (ĝ, Ĝ), with ĝ 6= Ĝ, solves the constrained optimization
problem for some θ within the boundaries only if it satisfies the Kuhn-Tucker conditions:

∂ui
∂G


≤ 0 if Ĝ = Gi,

= 0 if Ĝ ∈ (Gi, Gi),

≥ 0 if Ĝ = Gi;

∂ui
∂g


≤ 0 if ĝ = g

i
,

= 0 if ĝ ∈ (g
i
, gi),

≥ 0 if ĝ = gi.
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From the definition of the the best-response functions, (ĝ, Ĝ) satisfies the Kuhn-Tucker
conditions if and only if it satisfies (2) and (3).

We now show that there is only one pair of thresholds that satisfies the Kuhn-Tucker
conditions. Suppose, by way of contradiction, that (g′, G′) and (ĝ, Ĝ) both satisfy the
Kuhn-Tucker conditions. Because the one-sided preferences are single-peaked, g′ 6= ĝ

and G′ 6= Ĝ. There are two cases to consider.

Case 1: g′ > ĝ and G′ > Ĝ. Because g′ > g
i

and G′ > Gi, the Kuhn-Tucker conditions
require that at the point (g′, G′), ∂ui/∂g ≥ 0 and ∂ui/∂G ≥ 0. (This means that (g′, G′) is
in region Q2 of Figure 1.) Therefore, g′ ≤ φi(G

′) and G′ ≤ Φi(g
′). Because Φi(g

′) ≤ G∗i ,
Ĝ < G′ ≤ Φi(g

′) ≤ G∗i . By part 2 of Lemma 2, φi(Ĝ) > φi(G
′) ≥ g′ > ĝ. Hence, ∂ui/∂g > 0

at (ĝ, Ĝ). (Intuitively, because (ĝ, Ĝ) is south-west of (g′, G′), it must belong to either
region Q1 or Q2 in Figure 1.) However, because ĝ < gi, the Kuhn-Tucker conditions
require ∂ui/∂g ≤ 0 at that point.

Case 2: g′ > ĝ and G′ < Ĝ. Because g′ > g
i

and G′ < Gi, the Kuhn-Tucker conditions
require that at the point (g′, G′), ∂ui/∂g ≥ 0 and ∂ui/∂G ≤ 0. (This means that (g′, G′) is
in region Q1 in Figure 1.) By part 1 of Claim 2, G′− g′ > G∗i − g∗i . Because Ĝ− ĝ > G′− g′,
Ĝ−ĝ > G∗i−g∗i . It then follows from part 2 of Claim 2 that either ∂ui/∂g > 0 or ∂ui/∂G < 0

at (ĝ, Ĝ). (Intuitively, as Φi has a positive slope for g ≤ g∗i and φi has a positive slope for
G ≥ G∗i , (ĝ, Ĝ), which is north-west of (g′, G′), must belong to region Q1.) However, as
ĝ < gi and Ĝ > Gi, the Kuhn-Tucker conditions require ∂ui/∂g ≤ 0 and ∂ui/∂G ≥ 0 at
that point.

Thus, for any θ, the only (g,G) that satisfies the Kuhn-Tucker conditions with θ ∈
(g,G) is the pair (ĝ, Ĝ). Because a solution to the constrained maximization problem (1)
always exists, (ĝ, Ĝ) is a solution to (1) if ui(ĝ, Ĝ | θ) is greater than evi/(1 + eθ) when
adopting β immediately is feasible at θ, and greater than eθ/(1 + eθ) when adopting α

immediately is feasible.

Suppose θ ∈ [ĝ, Ĝ]. Adopting β immediately is feasible if θ < gi. In this case, the Kuhn-
Tucker conditions imply that at the point (ĝ, Ĝ; θ), ∂ui/∂g ≤ 0 (as ĝ ≤ θ < gi). It follows
from Lemma 1 that ui(ĝ, Ĝ | θ) ≥ ui(θ, Ĝ | θ) = evi/(1 + eθ). Adopting α immediately is
feasible if θ ≥ Gi. In this case, the Kuhn-Tucker conditions imply that at the point (ĝ, Ĝ; θ),
∂ui/∂G ≥ 0, and it follows that ui(ĝ, Ĝ | θ) ≥ ui(ĝ, θ | θ) = eθ/(1 + eθ).

Suppose θ > Ĝ. Under (ĝ, Ĝ), α is adopted immediately. If adopting β immediately
is feasible (i.e., θ < gi), then it must also be feasible at Ĝ. But we have already shown
in the last paragraph that agent i prefers α to β at Ĝ whenever adopting β immediately
is feasible. Because the relative payoff of α increases an agent’s belief, agent i must also
prefer α to β at θ. By similar logic, if α is feasible at some θ < ĝ, agent i must prefer β to
α.

39



Proof of Proposition 1. Necessary and sufficient condition for equilibrium. Sufficiency. Sup-
pose (ĝ, Ĝ) is an unequal fixed point of (φpiv,Φpiv). Consider the strategy profile σ where,
for each i,

σi = (φi(Ĝ),Φi(ĝ)).

It is straightforward to see that (g[k](σ), G[k](σ)) = (ĝ, Ĝ). Furthermore, for each agent
i, ĝ satisfies (2) given Ĝ, and Ĝ satisfies (3) given Ĝ. Hence, by Lemma 3, σ is a Nash
equilibrium. Furthermore, by the single-crossing property of Lemma 1, σ also satisfies
condition 2 of the equilibrium definition. The above argument shows that if (ĝ, Ĝ) is an
unequal fixed point of (φpiv,Φpiv), then it is an equilibrium outcome of the game.

Necessity. Suppose σ is an equilibrium strategy profile. Let (ĝ, Ĝ) = (g[k](σ), G[k](σ)).
By the single-crossing property of Lemma 1, we can restate condition 2 of Definition 1 as
requiring that, for each agent i, Gi > Ĝ if Φi(ĝ) > Ĝ and Gi < Ĝ if Φi(ĝ) < Ĝ. It follows
that a pivotal agent i with Gi = Ĝ must have Gi = Φi(ĝ). There are k − 1 agents with
Gj ≤ Ĝ; the lower bound of their upper spans of control IG(σ−j) is Ĝ because they can
delay but not accelerate the adoption of α. By Lemma 3 we have Φj(ĝ) ≤ Ĝ for each
of these k − 1 agents. Similarly, there are 2m − k − 1 agents with Gj ≥ Ĝ; the upper
bound of their upper spans of control IG(σ−j) is Ĝ because they can accelerate but not
delay the adoption of α. By Lemma 3 we have Φj(ĝ) ≥ Ĝ for these agents. This argument
establishes that agent i’s upper best-response function is the k-th smallest upper best-
response function when the lower cutoff is at ĝ. Hence, Ĝ = Φi(ĝ) = Φpiv(ĝ). Similar
reasoning for the lower best-response shows that ĝ = φpiv(Ĝ). Thus, (ĝ, Ĝ) must be a
fixed point of (φpiv,Φpiv).

Non-degeneracy. We now show that g[k](σ) < G[k](σ). Note that (x, x) is an equal fixed
point of (φpiv,Φpiv) if φpiv(x) = Φpiv(x) = x. When g ≥ vk, Φi(g) = g for i ≤ k and Φi(g) > g

for i > k. Hence, Φpiv(g) = g for g ≥ vk. In contrast, when g < vk, Φi(g) > g for all i ≥ k.
It follows that Φpiv(g) > g for g < vk. By similar logic, φpiv(G) = G when G ≤ v2m−k and
φpiv(G) < G when G > v2m−k. Because v2m−k > vk when k > m, (φpiv,Φpiv) has no equal
fixed point when k > m.

When k = m, the only equal fixed point is (vm, vm). Suppose, by way of contradiction,
that (vm, vm) is an equilibrium outcome. Condition 2 of Definition 1 would require each
i > m to choose Gi > vm and each j < m to choose gj < m. If agent m chooses Gm > vm,
then α will not be adopted at vm. In other words, agent m can delay the adoption of α by
choosing Gm > vm. By a similar logic, agent m can delay the adoption of β by choosing
gm < vm. Pick ε ∈ (0, G∗m− vm) such that agent m can delay the adoption of α by ε and the
adoption of β by vm − φm(vm + ε). Because agent m’s span of control is non-degenerate,
such deviation is feasible if ε is sufficiently small. From Claim 1, Φm(φm(vm+ε)) > vm+ε.
Hence, by Lemma 1,

um (φi(vm + ε), vm + ε | vm) > um (φi(vm + ε), vm | vm) = evm/(1 + evm).
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So (vm, vm) cannot be optimal for agent m.

Equilibrium existence. An equilibrium exists if and only if (φpiv,Φpiv) has an unequal
fixed point. Consider any k ≥ m. Given that for any x < v1 and all i, φi(x) = x

and Φi(x) > x, we have Φpiv(φpiv(x)) > x. Because for all i, Φi(x) ≤ G∗i , we have
Φpiv(φpiv(x)) < x for any x > maxi {G∗i }. By continuity, there exists x′ ∈ [v1,maxi {G∗i }],
such that Φpiv(φpiv(x

′)) = x′. Hence, (φpiv,Φpiv) has a fixed point under any rule k ≥ m.

We have already shown that (φpiv,Φpiv) has no equal fixed point under a super-majority
rule k > m. Hence, any fixed point under rule k > m must be unequal. Finally, consider
majority rule k = m. Note that

Φi(g) = g for g ≥ vm−1 and i < m;

Φi(g) > g for g < vm+1 and i > m.

Because Φm is continuous, Φm(vm) = vm, and Φm(g) > g for g < vm, we have Φpiv(g) =

Φm(g) for g slightly less than vm. By similar logic, φpiv(G) = φm(G) for G slightly greater
than vm. Hence, by Claim 1, for G slightly greater than vm,

Φpiv(φpiv(G)) = Φm(φm(G)) > G.

It follows that under rule k = m, Φpiv(φpiv(G
′)) = G′ for some G′ ∈ (G,maxi {G∗i }] .

Nested equilibria. For any equilibrium outcome (ĝ, Ĝ),

Ĝ− φpiv(Ĝ) = Ĝ− ĝ = Φpiv(ĝ)− ĝ.

Suppose (ĝ′, Ĝ′) is another equilibrium outcome, and assume without loss of generality
that Ĝ− ĝ ≥ Ĝ′− ĝ′. BecauseG−φpiv(G) is strictly increasing inG and Φpiv(g)−g is strictly
decreasing in g (as both Φi and φi have a slope strictly less than 1 for all i), we must have
Ĝ > Ĝ′ and ĝ < ĝ′, which contradicts the initial assumption.

Equilibrium uniqueness. Unanimity. Because any agent can delay a decision under the
unanimity rule, (ĝ, Ĝ) is an equilibrium only if for all i

ĝ ≤ φi(Ĝ); and Ĝ ≥ Φi(ĝ).

By part 1 of Claim 2, we obtain Ĝ − ĝ ≥ G∗i − g∗i and, hence, either Ĝ ≥ G∗i or ĝ ≤ g∗i .
Suppose Ĝ ≥ G∗i . Consider any waiting region (g′, G′) that strictly contains (ĝ, Ĝ). By part
2 of Lemma 2, G∗i = maxg Φi(g) and φi is increasing for G > G∗i . Hence,

G′ > Ĝ ≥ G∗i ≥ Φi(g
′);

g′ < ĝ ≤ φi(Ĝ) < φi(G
′).
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In other words, agent i strictly prefers adopting α before G′ and β before g′. By similar
logic, the same is true when ĝ ≤ g∗i . Because given g′ every agent i strictly prefers to adopt
α before G′, (g′, G′) cannot be an equilibrium. As all equilibria must be nested, (ĝ, Ĝ) is
unique.

Homogeneous time preference. When all agents have the same discount rate, their
one-sided best response functions do not cross. In this case, φpiv(·) = φ2m−k(·) and Φpiv(·) =

Φk(·). To prove uniqueness, we need to show that (φm−k,Φk) has a unique unequal fixed
point. For majority rule k = m, it follows from Claim 1 that (φm,Φm) has a unique un-
equal fixed point at (g∗m, G

∗
m). Consider super-majority rule k > m. By Claim 1 and part 3

of Lemma 2, if G < G∗2m−k we have

Φk(φ2m−k(G)) > Φ2m−k(φ2m−k(G)) ≥ G.

Because Φk(g) ≤ G∗k for any g, if G > G∗k we have

Φk(φ2m−k(G)) < G.

Given that both φ′2m−k(G) and Φ′k(φ2m−k(G)) are strictly positive and less than 1 for G ∈
(G∗2m−k, G

∗
k), Φk(φ2m−k(G)) − G is strictly decreasing in that range. Hence, there exists a

unique G′ ∈ [G∗2m−k, G
∗
k], such that Φk(φ2m−k(G

′)) = G′.

Homogeneous static preference. When all agents have the same vi, the pivotal best-
response functions are given by the best-response functions of the agent with the k-
th most impatient agent. Uniqueness follows Claim 1, which establishes that the best-
response functions of any single agent has a unique unequal fixed point at the Wald-
optimal thresholds.

Proof of Proposition 2. Let i be an impatient agent. Assume that i ≤ m. The case in
which i ≥ m can be treated symmetrically. Pick any ε ≤ (0, vm+1 − vm). By part 3 of
Lemma 2 there exists r(ε) such that for any ri ≥ r(ε) andG ≤ vm+1, we have φi(G) > G−ε.

For all agents j ≥ m + 1, φj(G) = G if G < vm+1. Thus, φpiv(G) ≥ φi(G) if G < vm+1.
Given that vm + ε < vm+1, we have

φpiv(vm + ε) ≥ φi(vm + ε) > vm + ε− ε = vm.

For all agents j ≤ m, Φj(g) = g if g > vm. Thus, Φpiv(g) = g if g > vm. This, together
with the displayed inequality above, implies that

Φpiv(φpiv(vm + ε)) = φpiv(vm + ε) < vm + ε,

where the last inequality follows because φpiv(G) < G for any G > vm.
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We have already shown in the proof of equilibrium existence in Proposition 1 that
Φpiv(φpiv(G

′)) > G′ for G′ slightly above vm. Therefore, there is an upper threshold Ĝ ∈
(G′, vm + ε) that satisfies the equilibrium condition. Furthermore, because Ĝ < vm+1,
φpiv(Ĝ) ≥ φi(Ĝ). Therefore, Ĝ− φpiv(Ĝ) ≤ Ĝ− φi(Ĝ) < ε. The equilibrium waiting region
is no wider than ε.

Proof of Proposition 3. Because (g∗i , G
∗
i ) is the unique unequal fixed point of (φi,Φi), by

part 1 of Proposition 4 below, G∗i − g∗i decreases in ri. Therefore, there exists r̃(ε) such that
G∗i − g∗i ≥ ε for any agent i with ri ≤ r̃(ε).

Suppose the equilibrium waiting region is (ĝ, Ĝ) and the number of agents with ri ≥
r̃(ε) is strictly less than the number of requisite swing votes under rule k. Then, there
must be at least one agent with ri < r̃(ε) who both votes for α at Ĝ and votes for β at ĝ.
Suppose by way of contradiction that Ĝ − ĝ < ε. Then, for an agent with ri < r̃(ε), we
have Ĝ − ĝ < ε ≤ G∗i − g∗i . But for such (ĝ, Ĝ), by part 1 of Claim 2, either ∂ui/∂g < 0 or
∂ui/∂G > 0. This agent cannot both vote for α at Ĝ and vote for β at ĝ, a contradiction.

Proof of Proposition 4. Part 1. We show that the width of the waiting region in the most
and least patient equilibria increases whenever Φpiv shifts up or φpiv shifts down.

Let (ĝ, Ĝ) be the fixed point of (φpiv,Φpiv) in the most patient equilibrium. Let (g′, G′)

be the fixed point of (φpiv, Φ̃piv) in the most patient equilibrium, where Φ̃piv(g) ≥ Φpiv(g)

for all g. We have
Φ̃piv(φpiv(Ĝ))− Ĝ ≥ Φpiv(φpiv(Ĝ))− Ĝ = 0.

In the proof of equilibrium existence in Proposition 1, we have shown that Φ̃piv(φpiv(G))−
G < 0 for G that is sufficiently large. Because multiple equilibrium thresholds are nested,
G′ is the largest solution to Φ̃piv(φpiv(G)) − G = 0. It follows that G′ ≥ Ĝ. Furthermore,
G−φpiv(G) is increasing inG because the slope of φi(G) is less than 1 for every i. Therefore,

G′ − g′ = G′ − φpiv(G′) ≥ Ĝ− φpiv(Ĝ) = Ĝ− ĝ.

Similar reasoning applies to the least patient equilibrium and to the case when φpiv shifts
down.

Because Φpiv(g; k′) ≥ Φpiv(g; k) and φpiv(G; k′) ≤ φpiv(G; k) for k′ > k, the width of the
equilibrium waiting region is increasing in k both in the most patient equilibrium and in
the least patient equilibrium. Similarly, a decrease in ri shifts up Φi and shifts down φi.
As a result, Φpiv also shifts up and φpiv shifts down (weakly). The waiting region in the
most patient and the least patient equilibria becomes wider.

Part 2. Let C denote a subset of k agents. The upper and lower pivotal functions for
the group C under the unanimity rule are Φ∗(g) ≡ maxi∈C Φi(g) and φ∗(G) ≡ mini∈C φi(G),
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respectively. Let (g∗, G∗) denote the unique unequal fixed point of (φ∗,Φ∗).

In the original game with 2m− 1 agents, Φpiv(g) ≤ Φ∗(g) for all g and φpiv(G) ≥ φ∗(G)

for all G under rule k, regardless of the preferences of the agents outside C. Recall that
the width of the waiting region in the most patient equilibrium increases whenever Φpiv

shifts up or φpiv shifts down. Because (g∗, G∗) is the unique, and hence most patient, fixed
point of (φ∗,Φ∗), we have

Ĝ− ĝ ≤ G∗ − g∗,

for any fixed point (ĝ, Ĝ) of (φpiv,Φpiv).

Part 3. An increase in k, a decrease in the common discount rate r, or more diverse
preferences in a symmetric jury shifts up Φpiv and shifts down φpiv. Thus, Ĝ− ĝ increases.
From the proof of Lemma 1, the equilibrium cutoffs must satisfy these first-order condi-
tions:

vk − ĝ − f(r, Ĝ− ĝ) = 0,

f(r, Ĝ− ĝ)− Ĝ+ v2m−k = 0.

Adding these two equations implies that ĝ + Ĝ = vk + v2m−k = 2vm, which is fixed. Thus,
Ĝ must increase and ĝ must fall.

Proof of Proposition 5. From the proof of part 3 of Proposition 4 for a symmetric com-
mittee, the equilibrium waiting region under super-majority rule k > m, (ĝ, Ĝ), strictly
contains the equilibrium waiting region under majority rule m, (g∗m, G

∗
m). Further, both

waiting regions are centered at vm.

Consider any θ0 ∈ [g∗m, G
∗
m]. Instead of writing the utility of agent j as a function of the

cutoffs g and G, we can define c = (g+G)/2 and y = G− g to express utility as a function
of the center and the width of the waiting region. Using the formula in the text, and after
some re-arrangement, we obtain:

uj(g,G | θ0) =
1

1 + eθ0
q̃j(c, y; θ0)

q(y)
;

where

q̃j(c, y; θ0) =

(
evjeR1(θ0−c) + eceR2(θ0−c)

)
e−R1y/2 −

(
eceR1(θ0−c) + evjeR2(θ0−c)

)
e−R2y/2

e−R1y/2 − e−R2y/2
,

q(y) = e−R1y/2 + e−R2y/2.

Note that c = vm under both majority rule and super-majority rule. Moreover, the width
of the equilibrium waiting region under majority rule, denoted y∗, is smaller than that
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under super-majority rule, denoted ŷ. At θ0 = vm, the utility of agent j is

uj(g,G | vm) =
1

1 + evm
evj + evm

q(y)
.

The function q(y) is decreasing for y < y∗ and increasing for y > y∗. Since ŷ > y∗, we have
uj(g

∗, G∗ | vm) > uj(ĝ, Ĝ | vm) for all j. By continuity, there is a region containing vm such
that uj(g∗, G∗ | θ0) > uj(ĝ, Ĝ | θ0) for all j and all θ0 in this region.

Proof of Proposition 6. From Lemma 2, part 1, and from the definition of the pivotal best-
response functions,

Φpiv(g; k)

{
> g if g < vk,

= g if g ≥ vk;
φpiv(G; k)

{
< G if G > v2m−k,

= G if G ≤ v2m−k.

Because an equilibrium pair of thresholds (ĝ, Ĝ) is an unequal fixed point, we must have
Ĝ = Φpiv(ĝ) > ĝ. This implies that ĝ < vk, which means that if β is adopted when the
belief hits ĝ, at least 2m − k agents (including agents k to 2m − 1) must prefer β to α at
the current belief. Similarly, the upper threshold must satisfy Ĝ > v2m−k, which implies
that at least 2m − k agents (including agents 1 to 2m − k) must prefer α to β when α is
adopted. For k = m, we must have vm ∈ (ĝ, Ĝ), which implies that equilibrium outcomes
respect the static preferences for a majority of voters.

Fix the discount rates of all agents and fix the static preferences of k − 1 agents. We
prove that there exists v such that if vi ≤ v for i ≤ 2m − k, then Ĝ < v2m−k+1. By part 2
of Lemma 2, Φpiv(g) goes to minus infinity as g goes to minus infinity. Therefore, we can
define g′ such that

Φpiv(g) < v2m−k+1, for g < g′.

By part 3 of Lemma 2, φi(v2m−k+1) goes to minus infinity as vi goes to minus infinity.
Therefore, there exists v such that, for i ≤ 2m − k, if vi ≤ v then φi(v2m−k+1) ≤ g′. Under
decision rule k, at least one agent from the group {1, . . . , 2m− k}must vote for β in order
for β to be adopted by the group. Therefore, φpiv(v2m−k+1) ≤ g′. This, together with the
displayed inequality above, implies that

Φpiv

(
φpiv(v2m−k+1)

)
< v2m−k+1.

Recall from the proof of equilibrium existence in Proposition 1 that for any x < v1,
Φpiv(φpiv(x)) − x is strictly positive. Therefore, there exists Ĝ ∈ (x, v2m−k+1) that satis-
fies Φpiv(φpiv(Ĝ)) − Ĝ = 0. Because Ĝ < v2m−k+1, we have Ĝ < vi for all i ≥ 2m − k. All
these k − 1 agents prefer β to α when α is adopted.
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Proof of Proposition 7. We prove the proposition for the case where the lower cutoff is
constrained. The proof of the other case is similar.

If φpiv(G) ≥ vm, then φcpiv(G) = min{φpiv(G), vm} = vm. Since Φpiv(vm) > vm, we have
Φc
piv(vm) = Φpiv(vm). This proves that (vm,Φpiv(vm)) is an unequal fixed point of (φcpiv,Φ

c
piv)

if φpiv(Φpiv(vm)) ≥ vm and Φpiv(vm) > vm.

Conversely, (vm,Φpiv(vm)) cannot be an unequal fixed point of (φcpiv,Φ
c
piv) if either

φpiv(Φpiv(vm)) < vm or Φpiv(vm) ≤ vm. If φpiv(Φpiv(vm)) < vm, then φcpiv(Φpiv(vm)) =

φpiv(Φpiv(vm)) < vm. Recall that Φpiv(vm) ≥ vm for all kD ≥ m. Hence, Φpiv(vm) = vm
if Φpiv(vm) ≤ vm. But then (vm, vm) is not unequal.

Finally, Φpiv(vm) > vm holds only when kD > m. For any rule kD > m,

φpiv(Φpiv(vkD)) = φpiv(vkD) < vkD .

It follows that if (vm,Φpiv(vm)) is an unequal fixed point of (φcpiv,Φ
c
piv), then

φpiv(Φpiv(vm)) ≥ φcpiv(Φpiv(vm)) = vm.

Hence, (φpiv,Φpiv) must have an unequal fixed point (ĝ, Ĝ) with ĝ ∈ [vm, vkD). At this
equilibrium outcome, at mostm agents prefers β at ĝ. Furthermore, since Φc

piv(g) ≥ Φpiv(g)

and φcpiv(G) ≤ φpiv(G), the same reasoning as in the proof of Proposition 4 establishes that
the waiting region is wider under the constrained two-stage decision process.

Proof of Proposition 8. Suppose (ĝ, Ĝ) is an equilibrium in the one-stage deliberation
game with rule k = kD. Suppose agent j is pivotal for the upper cutoff in this equi-
librium. For any fixed g, the best response of agent j diverges to infinity as rj goes to
zero. Because limrj→0R1 = 0 and limrj→0R2 = 1, we have

lim
rj→0

f(rj, G− g) = lim
rj→0

log
R2e

R1(G−g) −R1e
R2(G−g)

R2 −R1

= 0.

The sign of ∂uj/∂G depends only on the sign of vj− g− f(rj, G− g). This implies that, for
any g < vj , limrj→0 ∂uj/∂G > 0 for any G. Thus G must increase without bound as rj goes
to 0. A similar argument establishes that g must decrease without bound as the pivotal
agent for the lower cutoff has a discount rate that goes to 0. Finally, since f(r,G − g) is
monotone increasing in r (proof of Lemma 2, part 3), there exists r such that Ĝ > v2m−1
and ĝ < v1 whenever ri ≤ r for all agents i.

Next, we show that such (ĝ, Ĝ) is an equilibrium outcome of the two-stage decision
process with any decision rule kd. We first note that it is an equilibrium for each agent i
to vote for α if θ ≥ vi and to vote for β otherwise, because α is preferred to flipping a coin
(which is in turn preferred to β) whenever θ ≥ vi, while β is preferred to flipping a coin
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(which is in turn preferred to α) whenever θ < vi. Given such equilibrium second-stage
strategy, and given the fact that Ĝ > v2m−1, αwill be adopted with unanimous support for
any kd if the belief reaches the upper cutoff. Likewise, β will be adopted with unanimous
support for any kd if the belief reaches the lower cutoff.

In the first stage, suppose each agent i adopts the strategy (gi, Gi) = (φi(Ĝ),Φi(ĝ)). As
ri goes to 0, we have Gi > v2m−1 for every i. Given this first-stage strategy, the span of
control IG(σ−i) for any agent i over the upper cutoff is above v2m−1. Similarly, the span of
control for any agent over the lower cutoff is below v1. For any decision rule kd which is
non-unanimous, it is not feasible for any agent to unilaterally deviate to obtain an indeci-
sive outcome, given the strategy profile of other agents. Furthermore, it is not profitable
to unilaterally deviate to delay or hasten the adoption of either alternative, because (ĝ, Ĝ)

solves the constrained maximization problem 1 for the one-stage problem. If the decision
rule kd is unanimous, it is feasible for an agent to deviate by changing his thresholds in
the first stage and withholding his support for an alternative in the second stage to ob-
tain an indecisive outcome. But doing so is worse than just changing the thresholds in
the first stage and voting sincerely in the second stage, because an indecisive outcome is
worse than α for any θ ∈ IG(σ−i), and is worse than β for any θ ∈ Ig(σ−i). Since the latter
deviation is unprofitable, deviation to force flipping a coin cannot be profitable for any
belief within an agent’s span of control.
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