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Abstract

We provide an overview and synthesis of the literature on how social networks
in�uence behaviors, with a focus on di¤usion. We discuss some highlights from the
empirical literature on the impact of networks on behaviors and di¤usion. We also
discuss some of the more prominent models of network interactions, including recent
advances regarding interdependent behaviors, modeled via games on networks.
Keywords: Di¤usion, Learning, Social Networks, Network Games, Graphical Games,

Games on Networks
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1 Introduction

How we act, as well as how we are acted upon, are to a large extent in�uenced by our

relatives, friends, and acquaintances. This is true of which profession we decide to pursue,

whether or not we adopt a new technology, as well as whether or not we catch the �u. In

this chapter we provide an overview of research that examines how social structure impacts

economic decision making and the di¤usion of innovations, behaviors, and information.

We begin with a brief overview of some of the stylized facts on the role of social structure

on di¤usion in di¤erent realms. This is a rich area of study that includes a vast set of case

studies suggesting some important regularities. With that empirical perspective, we then

discuss insights from the epidemiology and random graph literatures that help shed light
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on the spread of infections throughout a society. Contagion of this form can be thought

of as a basic, but important, form of social interaction, where the social structure largely

determines patterns of di¤usion. This literature presents a rich understanding of questions

such as: �How densely connected does a society have to be in order to have an infection

reach a nontrivial fraction of its members?�, �How does this depend on the infectiousness

of the disease?�, �How does it depend on the particulars of the social network in place?�,

�Who is most likely to become infected?�, and �How widespread is an infection likely to

be?�, among others. The results on this apply beyond infectious diseases, and touch upon

issues ranging from the spread of information to the proliferation of ideas.

While such epidemiological models provide a useful look at some types of di¤usion,

there are many economically relevant applications in which a di¤erent modeling approach

is needed, and, in particular, where the interaction between individuals requires a game

theoretic analysis. In fact, though disease and the transmission of certain ideas and bits

of information can be modeled through mechanical or purely probabilistic sorts of di¤usion

processes, there are other important situations where individuals take decisions and care

about how their social neighbors or peers behave. This applies to decisions of which prod-

ucts to buy, which technology to adopt, whether or not to become educated, whether to learn

a language, how to vote, and so forth. Such interactions involve equilibrium considerations

and often have multiple potential outcomes. For example, an agent might care about the

proportion of neighbors adopting a given action, or might require some threshold of stimulus

before becoming convinced to take an action, or might want to take an action that is di¤erent

from that of his or her neighbors (e.g., free-riding on their information gathering if they do

gather information, but gathering information him or herself if neighbors do not). Here we

provide an overview of how the recent literature has modeled such interactions, and how it

has been able to meld social structure with predictions of behavior.
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2 Empirical Background: Social Networks and Di¤u-
sion

There is a large body of work that identi�es the e¤ects of social interactions on a wide range

of applications spanning �elds: epidemiology, marketing, labor markets, political science,

and agriculture are only a few.

While some of the empirical tools for the analysis of social interaction e¤ects have been

described in Block, Blume, and Durlauf (Chapter ?, this volume), and many of their imple-

mentations for research on housing decisions, labor markets, addictions, and more, have been

discussed in Ioannides (Chapter ?, this volume), Epple and Romano (Chapter ?, this vol-

ume), Topa (Chapter ?, this volume), Fafchamps (Chapter ?, this volume), Jackson (Chapter

?, this volume), and Munshi (Chapter ?, this volume), we now describe empirical work that

ties directly to the models that are discussed in the current chapter. In particular, we dis-

cuss several examples of studies that illustrate how social structure impacts outcomes and

behaviors.

The relevant studies are broadly divided into two classes. First, there are cross-sectional

studies that concentrate on a snapshot of time and look for correlations between social inter-

action patterns and observable behaviors. This class relates to the analysis below of strategic

games played by a network of agents. While it can be very useful in identifying correlations, it

is important to keep in mind that identifying causation is complicated without the fortuitous

exogenous variation or structural underpinnings. Second, there are longitudinal studies that

take advantage of the inherent dynamics of di¤usion. Such studies have generated a number

of interesting observations and are more suggestive of some of the insights the theoretical lit-

erature on di¤usion has generated. Nonetheless, these sorts of studies also face challenges in

identifying causation because of potential unobserved factors that may contemporaneously

in�uence linked individuals.

The empirical work on these topics is immense and we provide here only a narrow look

of the work that is representative of the type of studies that have been pursued and relate
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to the focus of this chapter.

2.1 The E¤ects of Networks from Static Perspectives

Studies that are based on observations at one point of time most often compare the frequency

of a certain behavior or outcome across individuals who are connected as opposed to ones that

are not. For example, Glaeser, Sacerdote, and Scheinkman (1996) showed that the structure

of social interactions can help explain the cross-city variance in crime rates in the U.S.;

Bearman, Moody, and Stovel (2004) examined the network of romantic connections in high-

school, and its link to phenomena such as the spread of sexually transmitted diseases (see the

next subsection for a discussion of the spread of epidemics). Such studies provide important

evidence for the correlation of behaviors with characteristics of individuals�connections. In

the case of diseases, they provide some direct evidence for di¤usion patterns.

With regards to labor markets, there is a rich set of studies showing the importance of

social connections for di¤using information about job openings, dating back to Rees (1966)

and Rees and Schultz (1970). In�uential studies by Granovetter (1973, 1985, 1995) show

that even casual or infrequent acquaintances (�weak ties�) can play a role in di¤using infor-

mation. Those studies were based on interviews that directly ask subjects how they obtained

information about their current jobs. Other studies, based on outcomes, such as Topa (2001),

Conley and Topa (2002), and Bayer, Ross, and Topa (2008), identify local correlations in

employment status within neighborhoods in Chicago, and consider neighborhoods that go

beyond the geographic but also include proximity in other socioeconomic dimensions, ex-

amining the extent to which local interactions are important for employment outcomes.

Bandiera, Barankay, and Rasul (2008) create a bridge between network formation (namely,

the creation of friendships amongst fruit pickers) and the e¤ectiveness of di¤erent labor con-

tracts. The extensive literature on networks in labor markets1 documents the important role

of social connections in transmitting information about jobs, and also di¤erentiates between

1For more references see the survey by Ioannides and Datcher-Loury (2004), Chapter 10 in Jackson (2008),
and Jackson(Chapter ?, this volume).
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di¤erent types of social contacts and shows that even weak ties can be important in relaying

information.

There is further (and earlier) research that examines the di¤erent roles of individuals

in di¤usion. Important work by Katz and Lazarsfeld (1955) (building on earlier studies

of Lazarsfeld, Berelson, and Gaudet (1944), Merton (1948), and others ), identi�es the

role of �opinion leaders� in the formation of various beliefs and opinions. Individuals are

heterogeneous (at least in behaviors), and some specialize in becoming well informed on

certain subjects, and then information and opinions di¤use to other less informed individuals

via conversations with these opinion leaders. Lazarsfeld, Berelson, and Gaudet (1944) study

voting decisions in an Ohio town in the 1940 U.S. presidential campaign, and document the

presence and signi�cance of such opinion leaders. Katz and Lazarsfeld (1955) interviewed

women in Decatur, Illinois, and asked about a number of things such as their views on

household goods, fashion, movies, and local public a¤airs. When women showed a change in

opinion in follow-up interviews, Katz and Lazarsfeld traced in�uences that led to the change

in opinion, again �nding evidence for the presence of opinion leaders.

Di¤usion of new products is understandably a topic of much research. Rogers (1995)

discusses numerous studies illustrating the impacts of social interactions on the di¤usion of

new products, and suggests various factors that impact which products succeed and which

products fail. For example, related to the idea of opinion leaders, Feick and Price (1987)

surveyed 1531 households and provided evidence that consumers recognize and make use of

particular individuals in their social network termed �market mavens,� those who have a

high propensity to provide marketplace and shopping information. Whether or not products

reach such mavens can in�uence the success of a product, independently of the product�s

quality. Tucker (2008) uses micro-data on the adoption and use of a new video-messaging

technology in an investment bank consisting of 2118 employees. Tucker notes the e¤ects of

the underlying network in that employees follow the actions of those who either have formal

power, or informal in�uence (which is, to some extent, endogenous to a social network).

In the political context, there are several studies focusing on the social sources of infor-
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mation electors choose, as well as on the selective mis-perception of social information they

are exposed to. A prime example of such a collection of studies is Huckfeldt and Sprague

(1995), who concentrated on the social structure in South Bend, Indiana, during the 1984

elections. They illustrated the likelihood of socially connected individuals to hold similar

political a¢ liations. In fact, the phenomenon of individuals connecting to individuals who

are similar to them is observed across a wide array of attributes and is termed by sociologists

homophily (for overviews see McPherson, Smith-Lovin, and Cook, 2001, Jackson, 2007, as

well as the discussion of homophily in Jackson, Chapter ? in this volume).

While cross-sectional studies are tremendously interesting in that they suggest dimensions

on which social interactions may have an impact, they face many empirical challenges. Most

notably, correlations between behaviors and outcomes of individuals and their peers may be

driven by common unobservables and therefore be spurious. Given the strong homophily

patterns in many social interactions, individuals who associate with each other often have

common unobserved traits, which could lead them to similar behaviors. This makes empirical

analysis of the social impact on di¤usion of behaviors based on cross sectional data di¢ cult

to draw (causal) conclusions from.2

Given some of the challenges with causal inference based on pure observation, laboratory

experiments and �eld experiments are quite useful in eliciting the e¤ects of real-world net-

works on fully controlled strategic interactions, and are being increasingly utilized. As an

example, Leider, Mobius, Rosenblat, and Do (2009) elicited the friendship network among

undergraduates at a U.S. college and illustrated how altruism varies as a function of social

proximity. In a similar setup, Goeree, McConnell, Mitchell, Tromp, and Yariv (2010) elicited

the friendship network in an all-girls school in Pasadena, CA, together with girls�charac-

teristics and later ran dictator games with recipients who varied in social distance. They

identi�ed a �1/d Law of Giving,�in that the percentage given to a friend was inversely re-

2In fact, Aral and Walker (2010) use di¤erent advertising methods on random samples of Facebook users
and illustrate that the similarity in attributes may be an important component in observed patterns of
network e¤ects in di¤usion. This is discussed at more length in Jackson (Chapter ?, this volume).
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lated to her social distance in the network.3 Various �eld experiments, such as those by Du�o

and Saez (2003), Karlan, Mobius, Rosenblat, and Szeidl (2009), Dupas (2010), Beaman and

Magruder (2010), and Feigenberg, Field, and Pande (2010), also provide some control over

the process, while working with real-world network structures to examine network in�uences

on behavior.4

Another approach that can be taken to infer causal relationships is via structural mod-

eling. As an example, one can examine the implications of a particular di¤usion model for

the patterns of adoption that should be observed. One can then infer characteristics of the

process by �tting the process parameters to best match the observed outcomes in terms of

behavior. For instance, Banerjee, Chandrasekhar, Du�o, and Jackson (2010) use such an

approach in a study of the di¤usion of micro�nance participation in rural Indian villages.

Using a model of di¤usion that incorporates both information and peer e¤ects, they then �t

the model to infer the relative importance of information di¤usion versus peer in�uences in

accounting for di¤erences in micro�nance participation rates across villages. Of course, in

such an approach one is only as con�dent in the causal inference as one is con�dent that the

model is capturing the essential underpinnings of the di¤usion process.

The types of conclusions that have been reached from these cross sectional studies can

be roughly summarized as follows. First, in a wide variety of settings, associated individuals

tend to have correlated actions and opinions. This does not necessarily embody di¤usion or

causation, but as discussed in the longitudinal section below, there is signi�cant evidence

of social in�uence in di¤usion patterns as well. Second, individuals tend to associate with

others who are similar to themselves, in terms of beliefs and opinions. This has an impact on

the structure of social interactions, and can a¤ect di¤usion. It also represents an empirical

quandary of the extent to which social structure in�uences opinions and behavior as opposed

to the reverse (that can partly be sorted out with careful analysis of longitudinal data).

3For a look at a few network experiments that are not based on a real-world social structure, see Kosfeld
(2004).

4Baccara, Imrohoroglu, Wilson, and Yariv (2009) use �eld data to illustrate how di¤erent layers of
networks (social and professional) can a¤ect outcomes di¤erentially.
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Third, individuals �ll di¤erent roles in a society, with some acting as �opinion leaders,�and

being key conduits of information and potential catalysts for di¤usion.

2.2 The E¤ects of Networks over Time

Longitudinal data can be especially important in di¤usion studies, as they provide infor-

mation on how opinions and behaviors move through a society over time. They also help

sort out issues of causation as well as supply speci�c information about the extent to which

behaviors and opinions are adopted dynamically, and by whom. Such data can be especially

important in going beyond the documentation of correlation between social connections and

behaviors, and illustrating that social links are truly the conduits for information and dif-

fusion if one is careful to track what is observed by whom at what point in time, and can

measure the resulting changes in behavior. For example, Conley and Udry (2008) show that

pineapple growers in Ghana tend to follow those farmers who succeed in changing their levels

of use of fertilizers. Through careful examination of local ties, and the timing of di¤erent

actions, they trace the in�uence of the outcome of one farmer�s crop on subsequent behavior

of other farmers.

More generally, di¤usion of new technologies is extremely important when looking at

transitions in agriculture. Seminal studies by Ryan and Gross (1943) and Griliches (1957)

examined the e¤ects of social connections on the adoption of a new behavior, speci�cally

the adoption of hybrid corn in the U.S. Looking at aggregate adoption rates in di¤erent

states, these authors illustrated that the di¤usion of hybrid corn followed an S-shape curve

over time: starting out slowly and accelerating, and then ultimately decelerating.5 Foster

and Rosenzweig (1995) collected household-level panel data from a representative sample

of rural Indian households having to do with the adoption and pro�tability of high-yielding

seed varieties (associated with the Green Revolution). They identi�ed signi�cant learning-by-

doing, where some of the learning was through neighbors�experience. In fact, the observation

that adoption rates of new technologies, products, or behaviors exhibit S-shaped curves can

5See Young (2010) for a complementary analysis to that of Griliches (1957).
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be traced to very early studies, such as Tarde (1903), who discussed the importance of

imitation in adoption. Such patterns are found across many applications (see Mahajan and

Peterson, 1985 and Rogers, 1995).

Understanding di¤usion is particularly important for epidemiology and medicine for sev-

eral reasons. For one, it is important to understand how di¤erent types of diseases spread

in a population. In addition, it is crucial to examine how new treatments get adopted. Col-

izza, Barrat, Barthelemy, and Vespignani (2006, 2007) tracked the spread of severe acute

respiratory syndrome (SARS) across the world combining census data with data on almost

all air transit during the years 2002-2003. They illustrated the importance of structures

of long-range transit networks for the spread of an epidemic. Coleman, Katz, and Menzel

(1966) is one of the �rst studies to document the role of social networks in di¤usion processes.

The study looked at the adoption of a new drug (tetracycline) by doctors and highlighted

two observations. First, as with hybrid corn, adoption rates followed an S-shape curve over

time. Second, adoption rates depended on the density of social interactions. Doctors with

more contacts (measured according to the trust placed in them by other doctors) adopted

at higher rates and earlier in time.6

Di¤usion can occur in many di¤erent arenas of human behavior. For example Christakis

and Fowler (2007) document in�uences of social contacts on obesity levels. They studied

the social network of 12,067 individuals in the U.S. assessed repeatedly from 1971 to 2003

as part of the Framingham Heart Study. Concentrating on body-mass index, Christakis and

Fowler found that a person�s chances of becoming obese increased by 57% if he or she had a

friend who became obese, by 40% if he or she had a sibling who became obese, and by 37%

if they had a spouse who became obese in a previous period. The study controls for various

selection e¤ects, and takes advantage of the direction of friendship nominations to help sort

out causation. For example, Christakis and Fowler �nd a signi�cantly higher increase of

6As a caveat, Van den Bulte and Lilien (2001) add controls having to do with marketing exposure of
the doctors in the study and show that the social e¤ects may be mitigated. Nonetheless, further studies
such as Nair, Manchanda, and Bhatia (2006) have again found evidence of such e¤ects after more carefully
controlling for the marketing and other characteristics in a much larger data set.
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an individual�s body mass index in reaction to the obesity of someone that the individual

named as a friend compared to someone who had named the individual as a friend. This

is one method of sorting out causation, since if unobserved in�uences that were common to

the agents were at work, then the direction of who mentioned the other as a friend would

not matter, whereas direction would matter if it indicated which individual�s react to which

others. Based on this analysis, Christakis and Fowler conclude that obesity spreads very

much like an epidemic with the underlying social structure appearing to play an important

role.

It is worth emphasizing that even with longitudinal studies, one still has to be cautious in

drawing causal inferences. The problem of homophily still looms, as linked individuals tend

to have common characteristics and so may be in�uenced by common unobserved factors,

for example, both being exposed to some external stimulus (such as advertising) at the same

time. This then makes it appear as if one agent�s behavior closely followed another�s, even

when it may simply be due to both having experienced some external event that prompted

their behaviors. Aral, Muchnik, and Sundararajan (2009) provide an idea of how large this

e¤ect can be, by carefully tracking individual characteristics and then using propensity scores

(likelihoods of having neighbors with certain behaviors) to illustrate the extent to which one

can over-estimate di¤usion e¤ects by not accounting for common backgrounds of connected

individuals.

Homophily not only suggests that linked individuals might be exposed to common in�u-

ences, it also makes it hard to disentangle which of following two processes is at the root of

observed similarities in behavior between connected agents. It could be that similar behavior

in fact comes from a process of selection (assortative pairing), in which similarity precedes

association. Alternatively, it could be a consequence of a process of socialization, in which

association leads to similarity. In that respect, tracking connections and behaviors over time

is particularly useful. Kandel (1978) concentrated on adolescent friendship pairs and exam-

ined the levels of homophily on four attributes (frequency of current marijuana use, level

of educational aspirations, political orientation, and participation in minor delinquency) at
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various stages of friendship formation and dissolution. She noted that observed homophily

in friendship dyads resulted from a signi�cant combination of both types of processes, so

that individuals emulated their friends, but also tended to drop friendships with those more

di¤erent from themselves and add new friendships to those more similar to themselves.7

In summary, let us mention a few of the important conclusions obtained from studies of

di¤usion. First, not only are behaviors across socially connected individuals correlated, but

individuals do in�uence each other. While this may sound straightforward, it takes careful

control to ensure that it is not unobserved correlated traits or in�uences that lead to similar

actions by connected individuals, as well as an analysis of similarities between friends that can

lead to correlations in their preferences and the things that in�uence them. Second, in various

settings, more socially connected individuals adopt new behaviors and products earlier and

at higher rates. Third, di¤usion exhibits speci�c patterns over time, and speci�cally there

are many settings where an �S�-shaped pattern emerges, with adoption starting slowly, then

accelerating, and eventually asymptoting. Fourth, many di¤usion processes are a¤ected by

the speci�cs of the patterns of the interaction.

3 Models of Di¤usion and Strategic Interaction Absent
Network Structure

We now turn to discussing various models of di¤usion. As should be clear from our descrip-

tion of the empirical work on di¤usion and behavior, models can help greatly in clarifying the

tensions at play. Given the issues associated with the endogeneity of social relationships, and

the substantial homophily that may lead to correlated behaviors among social neighbors, it

is critical to have models that help predict how behavior should evolve and how it interacts

with the social structure in place.

We start with some of the early models that do not account for the underlying network

7Of course there is also homophily based on non-malleable attributes, in which case homophily can only
be due to the connection process. For example, Goeree, McConnell, Mitchell, Tromp, and Yariv (2010)
observe homophily on height, and there is a rich literature on homophily based on ethnicity, gender, and
other non-malleable attributes (see Jackson, Chapter ? in this volume, for references).
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architecture per-se. These models incorporate the empirical observations regarding social

in�uence through the particular dynamics assumed, or preferences posited, and generate

predictions matching the aggregate empirical observations regarding di¤usion over time of

products, diseases, or behavior. For example, the so-called S-shaped adoption curves. After

describing these models, we return to explicitly capturing the role of social networks.

3.1 Marketing Models

One of the earliest and still widely used models of di¤usion is the Bass (1969) Model. This

is a parsimonious model, which can be thought of as a �macro�model: it makes predictions

about aggregate behavior in terms of the percentage of potential adopters of a product or

behavior who will have adopted by a given time. The current rate of change of adoption

depends on the current level and two critical parameters. These two parameters are linked

to the rate at which people innovate or adopt on their own, and the rate at which they

imitate or adopt because others have, thereby putting into (theoretical) force the empirical

observation regarding peers�in�uence.

If we let G(t) be the percentage of agents who have adopted by time t, and m be the

fraction of agents in the population who are potential adopters, a discrete time version of

the Bass model is characterized by the di¤erence equation

G(t) = G(t� 1) + p (m�G(t� 1)) + q (m�G(t� 1)) G(t� 1)
m

;

where p is a rate of innovation and q is a rate of imitation. To glean some intuition, note that

the expression p (m�G(t� 1)) represents the fraction of people who have not yet adopted

and might potentially do so times the rate of spontaneous adoption. In the expression

q (m�G(t� 1)) G(t�1)
m

, the rate of imitation is multiplied by two factors. The �rst factor,

(m�G(t� 1)), is the fraction of people who have not yet adopted and may still do so. The

second expression, G(t�1)
m

, is the relative fraction of potential adopters who are around to

imitate. If we set m equal to 1, and look at a continuous time version of the above di¤erence
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equation, we get

g(t) = (p+ qG(t)) (1�G(t)) ; (1)

where g is the rate of di¤usion (times the rate of change of G). Solving this when p > 0 and

setting the initial set of adopters at 0; G(0) = 0, leads to the following expression:

G(t) =
1� e�(p+q)t
1 + q

p
e�(p+q)t

:

This is a fairly �exible formula that works well at �tting time series data of innovations.

By estimating p and q from existing data, one can also make forecasts of future di¤usion. It

has been used extensively in marketing and for the general analysis of di¤usion (e.g., Rogers,

1995), and has spawned many extensions and variations.8

If q is large enough,9 then there is a su¢ cient imitation/social e¤ect, which means that the

rate of adoption accelerates after it begins, and so G(t) is S-shaped (see Figure 1), matching

one of the main insights of the longitudinal empirical studies on di¤usion discussed above.

The Bass model provides a clear intuition for why adoption curves would be S-shaped. In-

deed, when the adoption process begins, imitation plays a minor role (relative to innovation)

since not many agents have adopted yet and so the volume of adopters grows slowly. As the

number of adopters increases, the process starts to accelerate as now innovators are joined

by imitators. The process eventually starts to slow down, in part simply because there are

fewer agents left to adopt (the term 1�G(t) in (1) eventually becomes small). Thus, we see

a process that starts out slowly, then accelerates, and then eventually slows and asymptotes.

3.2 Collective Action, Fashion, and Fads

The Bass model described above is mechanical in that adopters and imitators are randomly

determined; they do not choose actions strategically. The empirical observation that individ-

uals in�uence each other through social contact can be derived through agents�preferences,

rather than through some exogenously speci�ed dynamics.

8For some recent models, see Leskovec, Adamic, and Huberman (2007) and Young (2010).
9See Jackson (2008) for a more detailed discussion.
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Di¤usion in a strategic context was �rst studied without a speci�c structure for interac-

tions. Broadly speaking, there were two approaches taken in this early literature. In the �rst,

all agents are connected to one another (that is, they form a complete network). E¤ectively,

this corresponds to a standard multi-agent game in which payo¤s to each player depend on

the entire pro�le of actions played in the population. The second approach has been to look

at interactions in which agents are matched to partners in a random fashion.

Di¤usion on Complete Networks. Granovetter (1978) considered a model in which N

agents are all connected to one another and each agent chooses one of two actions: 0 or 1:

Associated with each agent i is a number ni. This is a threshold such that if at least ni other

agents take action 1 then i prefers action 1 to action 0, and if fewer than ni other agents take

action 1 then agent i prefers to take action 0. The game has what are known as strategic

complementarities. For instance, suppose that the utility of agent i faced with a pro�le of

actions (x1; :::; xN) 2 f0; 1gN is described by:

ui (x1; :::; xN) =

�P
j 6=i xj

N � 1 � ci
�
xi; (2)

where ci is randomly drawn from a distribution F over [0; 1]. ci can be thought of as a cost

that agent i experiences upon choosing action 1 (e.g., a one time switching cost from one

technology to the other, or potential time costs of joining a political revolt, etc.). The utility

of agent i is normalized to 0 when choosing the action 0:When choosing the action 1, agent

i experiences a bene�t proportional to the fraction of other agents choosing the action 1 and

a cost of ci.

Granovetter considered a dynamic model in which at each stage agents best respond to

the previous period�s distribution of actions. If in period t there was a fraction xt of agents

choosing the action 1; then in period t+1 an agent i chooses action 1 if and only if his or her

cost is lower than Nxt�xti
N�1 , the fraction of other agents taking action 1 in the last period. For a

large population, Nx
t�xti

N�1 ' xt and xt+1 ' F (xt): A �xed point x� = F (x�) then corresponds

to an (approximate) equilibrium of a large population.

The shape of the distribution F determines which equilibria are tipping points: equilibria
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such that only a slight addition to the fraction of agents choosing the action 1 shifts the

population, under the best response dynamics, to the next higher equilibrium level of adop-

tion (we return to a discussion of tipping and stable points when we consider a more general

model of strategic interactions on networks below).

Note that while in the Bass model the di¤usion path was determined by G(t); the fraction

of adopters as a function of time, here it is easier to work with F (x); corresponding to the

fraction of adopters as a function of the previous period�s fraction x:

Although Granovetter (1978) does not examine conditions under which the time series

will exhibit attributes like the S-shape that we discussed above, by using techniques from

Jackson and Yariv (2007) we can derive such results, as we now discuss. Keeping track of

time in discrete periods (a continuous time analog is straightforward), the level of change of

adoption in the society is given by

�(xt) = F (xt)� xt:

Thus, to derive an S-shape, we need this quantity to initially be increasing, and then eventu-

ally to decrease. Assuming di¤erentiability of F; this corresponds to the derivative of �(xt)

being positive up to some x and then negative. The derivative of F (x)� x is F 0(x)� 1 and

having an S-shape corresponds to F 0 being greater than 1 up to some point and then less

than 1 beyond that point. For instance, if F is concave with an initial slope greater than 1

and an eventual slope less than 1, this is satis�ed. Note that the S-shape of adoption over

time does not translate into an S-shape of F - but rather a sort of concavity.10 The idea is

that we initially need a rapid level of change, which corresponds to an initially high slope of

F , and then a slowing down, which corresponds to a lower slope of F .

Fashions and Random Matching. A di¤erent approach than that of the Bass model

is taken by Pesendorfer (1995), who considers a model in which individuals are randomly

matched and new fashions serve as signaling instruments for the creation of matches. He

10Concavity, plus having a slope that is 1 at some point, is su¢ cient, but not necessary to have the positive
and then negative property of F 0(x)� 1.
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identi�es particular matching technologies that generate fashion cycles. Pesendorfer de-

scribes the spread of a new fashion as well as its decay over time. In Pesendorfer�s model,

the price of the design falls as it spreads across the population. Once su¢ ciently many

consumers own the design, it is pro�table to create a new design and thereby render the old

design obsolete. In particular, demand for any new innovation eventually levels o¤ as in the

above two models.

Information Cascades and Learning. Another in�uence on collective behavior derives

from social learning. This can happen without any direct complementarities in actions, but

due to information �ow about the potential payo¤s from di¤erent behaviors. If people discuss

which products are worth buying, or which technologies are worth adopting, books worth

reading, and so forth, even without any complementarities in behaviors, one can end up with

cascades in behavior, as people infer information from others�behaviors and can (rationally)

imitate them. As e¤ects along these lines are discussed at some length in Chamley (Chapter

?, this volume), Jackson (Chapter ?, this volume), and Goyal (Chapter ?, this volume), we

will not detail them here. We only stress that pure information transmission can lead to

di¤usion of behaviors.

4 Models of Di¤usion and Strategic Interaction in Net-
work Settings

We now turn to models that explicitly incorporate social structure in examining di¤usion

patterns. We start with models that stem mostly from the epidemiology literature and

account for the underlying social network, but are mechanical in terms of the way that

disease spreads from one individual to another (much like the Bass model described above).

We then proceed to models in which players make choices that depend on their neighbors�

actions as embedded in a social network; for instance, only adopting an action if a certain

proportion of neighbors adopt as well (as in Granovetter�s setup), or possibly not adopting

an action if enough neighbors do so.
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4.1 A Uni�ed Setting

Many models of di¤usion and strategic interaction on networks have the following common

elements.

There is a �nite set of agents N = f1; : : : ; ng.

Agents are connected by a (possibly directed) network g 2 f0; 1gn�n. We let Ni(g) �

fj : gij = 1g be the neighbors of i. The degree of a node i is the number of her neighbors,

di � jNi(g)j :

When links are determined through some random process, it is often useful to summarize

the process by the resulting distribution of degrees P; where P (d) denotes the probability a

random individual has a degree of d:11 ; 12

Each agent i 2 N takes an action xi: In order to unify and simplify the description of

various models, we focus on binary actions, so that xi 2 f0; 1g. Actions can be metaphors

for becoming �infected�or not, buying a new product or not, choosing one of two activities,

and so forth.

4.2 Epidemiology Models

4.2.1 Random Graph Models

Some basic insights about the extent to which behavior or an infection can spread in a society

can be derived from random graph theory. Random graph theory provides a tractable base

for understanding characteristics important for di¤usion, such as the structure and size of

the components of a network, maximally connected subnetworks.13

11Such a description is not complete, in that it does not specify the potential correlations between degrees
of di¤erent individuals on the network. See Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv (2010) for
more details.
12In principle, one would want to calibrate degree distributions with actual data. The literature on network

formation, see Bloch and Dutta (Chapter ?, this volume) and Jackson (Chapter ?, this volume), suggests
some insights on plausible degree distributions P (d).
13Formally, these are the subnetworks projected induced by maximal sets C � N of nodes such any two

distinct nodes in C are path connected within C: That is, for any i; j 2 C; there exist i1; :::; ik 2 C such that
gii1 = gi1i2 = ::: = gik�1ik = gikj = 1:
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Before presenting some results, let us talk through some of the ideas in the context of what

is known as the Reed-Frost model.14 Consider, for example, the spread of a disease. Initially,

some individuals in the society get infected through mutations of a germ or other exogenous

sources. Consequently, some of these individuals�neighbors are infected through contact,

while others are not. This depends on how virulent the disease is, among other things. In this

application, it makes sense (at least as a starting point) to assume that becoming infected or

avoiding infection is not a choice; i.e., contagion here is non-strategic. In the simplest model,

there is a probability � � 0 that a given individual is immune (e.g., through vaccination or

natural defenses). If an individual is not immune, it is assumed that he or she is sure to

catch the disease if one of his or her neighbors ends up with the disease. In this case, in

order to estimate the volume of those ultimately infected, we proceed in two steps, depicted

in Figure 2. First, we delete a fraction � of the nodes that will never be infected (these

correspond to the dotted nodes in the Figure). Then, we note that the components of the

remaining network that contain the originally infected individuals comprise the full extent of

the infection. In particular, if we can characterize what the components of the network look

like after removing some portion of the nodes, we have an idea of the extent of the infection.

In Figure 2 we start with one large connected component (circumvented by a dotted line)

and two small connected components. After removing the immune agents, there is still a

large connected component (though smaller than before), and four small components.

Thus, the estimation of the extent of infection of the society is reduced to the estimation

of the component structure of the network. A starting point for the formal analysis of this

sort of model uses the canonical random network model, where links are formed indepen-

dently, each with an identical probability p > 0 of being present. This is sometimes referred

to as a �Poisson random network�as its degree distribution is approximated by a Poisson dis-

tribution if p is not excessively large; and has various other aliases such as an �Erdös-Renyi

random graph,� a �Bernoulli random graph,� or a �G(n; p)� random graph (see Jackson,

Chapter ? in this volume, for more background). Ultimately, the analysis boils down to

14See Jackson (2008) for a more detailed discussion of this and related models.
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Removing
immune agents

Figure 2: Network Components and Immune Agents
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considering a network on (1��)n nodes with an independent link probability of p, and then

measuring the size of the component containing a randomly chosen initially infected node.

Clearly, with a �xed set of nodes, and a positive probability p that lies strictly between

0 and 1, every conceivable network on the given set of nodes could arise. Thus, in order

to say something speci�c about the properties of the networks that are �most likely� to

arise, one generally works with large n where reasoning based on laws of large numbers can

be employed. For example, if we think of letting n grow, we can ask for which p�s (that

are now dependent on n) a non-vanishing fraction of nodes will become infected with a

probability bounded away from 0. So, let us consider a sequence of societies indexed by n

and corresponding probabilities of links p(n).

Erdös and Renyi (1959, 1960) proved a series of results that characterize some basic

properties of such random graphs. In particular,15

� The threshold for the existence of a �giant component,� a component that contains

a nontrivial fraction of the population is 1=n, corresponding to an average degree of

1. That is, if p(n) over 1=n tends to in�nity, then the probability of having a giant

component tends to 1, while if p(n) over 1=n tends to 0, then the probability of having

a giant component tends to 0.

� The threshold for the network to be connected (so that every two nodes have a path

between them) is log(n)=n, corresponding to an average degree that is proportional to

log(n).

The logic for the �rst threshold is easy to explain, though the proof is rather involved. To

heuristically derive the threshold for the emergence of a giant component, consider following

a link out of a given node. We ask whether or not one would expect to be able to �nd a link

to another node from that one. If the expected degree is much smaller than 1, then following

the few (if any) links from any given node is likely to lead to dead-ends. In contrast, when

15See Chapter 4 in Jackson (2008) for a fuller discussion and proofs of these results.
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the expected degree is much higher than 1, then from any given node, one expects to be able

to reach more nodes, and then even more nodes, and so forth, and so the component should

expand outward.

Note that adjusting for the factor � of the number of immune nodes does not a¤ect the

above thresholds as they apply as limiting results, although the factor will be important for

any �xed n.

Between these two thresholds, there is only one giant component, so that the next largest

component is of a size that is a vanishing fraction of the giant component. This is intuitively

clear, as to have two large components requires many links within each component but no

links between the two components, which is an unlikely event. In that sense, the image that

emerges from Figure 2 of one large connected component is reasonably typical for a range of

parameter values.

These results then tell us that in a random network, if average degree is quite low (smaller

than 1), then any initial infection is likely to die out. In contrast, if average degree is quite

high (larger than log(n)), then any initial infection is likely to spread to all of the susceptible

individuals, i.e., a fraction of 1 � � of the population. In the intermediate range, there

is a probability that the infection will die out and also a probability that it will infect a

nontrivial, but limited, portion of the susceptible population. There, it can be shown that

for such random networks and large n, the fraction of nodes in the giant component of

susceptible nodes is roughly approximated by the nonzero q that solves

q = 1� e�q(1��)np: (3)

Here, q is an approximation of the probability of the infection spreading to a non-trivial

fraction of nodes, and also of the percentage of susceptible nodes that would be infected.16

This provides a rough idea of the type of results that can be derived from random graph

theory. There is much more that is known, as one can work with other models of random

graphs (other than ones where each link has an identical probability), richer models of

16Again, see Chapter 4 in Jackson (2008) for more details.
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probabilistic infection between nodes, as well as derive more information about the potential

distribution of infected individuals.

It should also be emphasized that while the discussion here is in terms of �infection,�the

applications clearly extend to many of the other contexts we have been mentioning, such as

the transmission of ideas and information. Fuller treatment of behaviors, where individual

decisions depend in more complicated ways on neighbors�decisions, are treated in Section

4.3.

4.2.2 Di¤usion with Recovery

The above analysis of di¤usion presumes that once infected, a node eventually infects all

of its susceptible neighbors. This misses important aspects of many applications. In terms

of diseases, infected nodes can either recover and stop transmitting a disease, or die and

completely disappear from the network. Transmission will also generally be probabilistic,

depending on the type of interaction and its extent.17 Similarly, if we think of behaviors, it

might be that the likelihood that a node is still actively transmitting a bit of information to

its neighbors decreases over time.

Ultimately, we will discuss models that allow for rather general strategic impact of peer

behavior (a generalization of the approach taken by Granovetter). But �rst we discuss some

aspects of the epidemiology literature that takes steps forward in that direction by consid-

ering two alternative models that keep track of the state of nodes and are more explicitly

dynamic. The common terminology for the possible states that a node can be in are: sus-

ceptible, where a node is not currently infected or transmitting a disease but can catch it;

infected, where a node has a disease and can transmit it to its neighbors; and removed (or

recovered) where a node has been infected but is no longer able to transmit the disease and

cannot be re-infected.

The �rst of the leading models is the �SIR�model (dating to Kermack and McKendrick,

17Probabistic transmission is easily handled in the above model by simply adjusting the link probability
to re�ect the fact that some links might not transmit the disease.
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1927), where nodes are initially susceptible but can catch the disease from infected neighbors.

Once infected, a node continues to infect neighbors until it is randomly removed from the

system. This �ts well the biology of some childhood diseases, such as the chicken pox, where

one can only be infected once.

The other model is the �SIS�model (see Bailey, 1975), where once infected, nodes can

randomly recover, but then they are susceptible again. This corresponds well with an assort-

ment of bacterial infections, viruses, and �us, where one transitions back and forth between

health and illness.

The analysis of the SIR model is a variant of the component-size analysis discussed above.

The idea is that there is a random chance that an �infected�node infects a given �susceptible�

neighbor before becoming �removed.�Roughly, one examines component structures where

instead of removing nodes randomly, one removes links randomly from the network. This

results in variations on the above sorts of calculations, where there are adjusted thresholds

for infection depending on the relative rates of how quickly infected nodes can infect their

neighbors compared to how quickly they are removed.

In contrast, the SIS model involves a di¤erent sort of analysis. The canonical version of

that model is best viewed as one with a random matching process rather than a social net-

work. In particular, suppose that a node i in each period will have interactions with di other

individuals from the population. Recall our notation of P (d) describing the proportion of

the population that has degree d (so d interactions per period). The matches are determined

randomly, in such a way that if i is matched with j, then the probability that j has degree

d > 0 is given by

~P (d) =
P (d)d

hdi ; (4)

where h�i represents the expectation with respect to P .18 This re�ects the fact that an

agent is proportionally more likely to be matched with other individuals who have lots of

connections. To justify this formally, one needs an in�nite population. Indeed, with any

18We consider only individuals who have degree d > 0, as others do not participate in the society.
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�nite population of agents with heterogeneous degrees, the emergent networks will generally

exhibit some correlation between neighbors�degrees.19

Individuals who have high degrees will have more interactions per period and will gener-

ally be more likely to be infected at any given time. An important calculation then pertains

to the chance that a given meeting will be with an infected individual. If the infection rate

of degree d individuals is �(d), then the probability that any given meeting will be with an

infected individual is �; where

� =
X
d

~P (d)�(d) =

P
P (d)�(d)d

hdi : (5)

The chance of meeting an infected individual in a given encounter then di¤ers from the

average infection rate in the population, which is just � =
P
P (d)�(d), because � is weighted

by the rate at which individuals meet each other.

A standard version of contagion that is commonly analyzed is one where the probability

of an agent of degree d becoming infected is

��d; (6)

where � 2 (0; 1) is a rate of transmission of infection in a given period, and is small enough

so that this probability is less than one. If � is very small, this is an approximation of

getting infected under d interactions with each having an (independent) probability � of

being infected and then conditionally (and independently) having a probability � of getting

infected through contact with a given infected individual. The last part of the model is

that in any given period, an infected individual recovers and becomes susceptible with a

probability � 2 (0; 1).

If such a system operates on a �nite population, then eventually all agents will become

susceptible and that would end the infection. If there is a small probability of a new mutation

and infection in any given period, the system will be ergodic and always have some probability

of future infection.
19See the appendix of Currarini, Jackson, and Pin (2009) for some details along this line.
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To get a feeling for the long run outcomes in large societies, the literature has examined

a steady state (i.e., a situation in which the system essentially remains constant) of a process

that is idealized as operating on an in�nite (continuous) population. Formally, a steady-state

is de�ned by having �(d) be constant over time for each d. Working with an approximation

at the limit (termed a �mean-�eld�approximation that in this case can be justi�ed with a

continuum of agents, but with quite a bit of technical detail), a steady-state condition can

be derived to be

0 = (1� �(d))��d� �(d)� (7)

for each d. (1��(d))��d is the rate at which agents of degree d who were susceptible become

infected and �(d)� is the rate at which infected individuals of degree d recover. Letting

� = �
�
, it follows that

�(d) =
��d

��d+ 1
: (8)

Solving (5) and (8) simultaneously leads to a characterization of the steady-state �:

� =
X
d

P (d)��d2

hdi (��d+ 1) : (9)

This system always has a solution, and therefore a steady-state, where � = 0 so there is

no infection. It can also have other solutions under which � is positive (but always below

1 if � is �nite). Unless P takes very speci�c forms, it can be di¢ cult to �nd steady states

� > 0 analytically.

Special cases have been analyzed, such as the case of a power distribution, where P (d) =

2d�3 (e.g., see Pastor-Satorras and Vespignani, 2000, 2001). In that case, there is always

a positive steady-state infection rate. More generally, Lopez-Pintado (2008) addresses the

question of when it is that there will be a positive steady-state infection rate. To get some

intuition for her results, let

H(�) =
X P (d)d

hdi

�
�d�

�d� + 1

�
=
X

~P (d)

�
�d�

�d� + 1

�
; (10)

so that the equation � = H(�) corresponds to steady states of the system. We can now extend

the analysis of Granovetter�s (1978) model that we described above, with this richer model

26



in which H(�) accounts for network attributes. While the �xed point equation identifying

Granovetter�s stable points allowed for rather arbitrary di¤usion patterns (depending on the

cost distribution F ), the function H has additional structure to it that we can explore.

In particular, suppose we examine the infection rate that would result if we start at a

rate of � and then run the system on an in�nite population for one period. Noting that

H(0) = 0, it is clear that 0 is always a �xed point and thus a steady-state. Since H(1) < 1,

and H is increasing and strictly concave in � (which is seen by examining its �rst and second

derivatives), there can be at most one �xed point besides 0. For there to be another �xed

point (steady-state) above � = 0, it must be that H 0(0) is above 1, or else given the strict

concavity, we would have H(�) < � for all positive �. Moreover, in cases where H 0(0) > 1,

a small perturbation away from a 0 infection rate will lead to increased infection. In the

terminology we have introduced above, 0 would be a tipping point. Since

H 0(0) = �
hd2i
hdi ; (11)

we have a simple way of checking whether we expect a positive steady-state infection or a 0

steady-state infection. This simply boils down to a comparison of the relative infection rate

� and hdi
hd2i so that there is a positive infection rate if and only if

� >
hdi
hd2i : (12)

Higher infection rates lead to the possibility of positive infection, as do degree distribu-

tions with high variances (relative to mean). The idea behind having a high variance is that

there will be some �hub nodes�with high degree, who can foster contagion.

Going back to our empirical insights, this analysis �ts the observations that highly-

linked individuals are more likely to get infected and experience speedier di¤usion. Whether

the aggregate behavior exhibits the S-shape that is common in many real-world di¤usion

processes will depend on the particulars of H, much in the same way that we discussed

how the S-shape in Granovetter�s model depends on the shape of the distribution of costs

F in that model. Here, things are slightly complicated since H is a function of �, which is
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the probability of infection of a neighbor, and not the overall probability of infection of the

population. Thus, one needs to further translate how various ��s over time translate into

population fractions that are infected.

Beyond the extant empirical studies, this analysis provides some intuitions behind what is

needed for an infection to be possible. It does not, however, provide an idea of how extensive

the infection spread will be and how that depends on network structure. While this does not

boil down to as simple a comparison as (12), there is still much that can be deduced using

(9), as shown by Jackson and Rogers (2007). While one cannot always directly solve

� =
X
d

P (d)��d2

hdi (��d+ 1) ;

notice that ��d2

hdi(��d+1) is an increasing and convex function of d. Therefore, the right hand

side of the above equality can be ordered when comparing di¤erent degree distributions in

the sense of stochastic dominance (we will return to these sorts of comparisons in some of

the models we discuss below). The interesting conclusion regarding steady-state infection

rates is that they depend on network structure in ways that are very di¤erent at low levels

of the infection rate � compared to high levels.

4.3 Graphical Games

While the above models provide some ideas about how social structure impacts di¤usion,

they are limited to settings where, roughly speaking, the probability that a given individual

adopts a behavior is simply proportional to the infection rate of neighbors. Especially when

it comes to situations in which opinions or technologies are adopted, purchasing decisions

are made, etc., an individual�s decision can depend in much more complicated ways on the

behavior of his or her neighbors. Such interaction naturally calls on game theory as a tool

for modeling these richer interactions.

We start with static models of interactions on networks that allow for a rather general

impact of peers�actions on one�s own optimal choices.
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The �rst model that explicitly examines games played on a network is the model of

�graphical games� as introduced by Kearns, Littman, and Singh (2001), and analyzed by

Kakade, Kearns, Langford, and Ortiz (2003), among others. The underlying premise in the

graphical games model is that agents�payo¤s depend on their own actions and the actions

of their direct neighbors, as determined by the network of connections.20

Formally, the payo¤ structure underlying a graphical game is as follows. The payo¤ to

each player i when the pro�le of actions is x = (x1; :::; xn) is

ui(xi; xNi(g));

where xNi(g) is the pro�le of actions taken by the neighbors of i in the network g.

Most of the empirical applications discussed earlier entailed agents responding to neigh-

bors�actions in roughly one of two ways. In some contexts, such as those pertaining to the

adoption of a new product or new agricultural grain, decisions to join the workforce, or to

join a criminal network, agents�conceivably gain more from a particular action the greater

is the volume of peers who choose a similar action. That is, payo¤s exhibit strategic comple-

mentarities. In other contexts, such as experimentation on a new drug, or contribution to

a public good, when an agent�s neighbors choose a particular action, the relative payo¤ the

agent gains from choosing a similar action decreases, and there is strategic substitutability.

The graphical games environment allows for the analysis of both types of setups, as the

following example (taken from Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv, 2010)

illustrates.

Example 1 (Payo¤s Depend on the Sum of Actions) Player i�s payo¤ function when

he or she chooses xi and her k neighbors choose the pro�le (x1; :::; xk) is:

ui (xi; x1; :::; xk) = f

 
xi + �

kX
j=1

xj

!
� c(xi); (13)

20There are also other models of equilibria in social interactions, where players care about the play of
certain other groups of players. See Glaeser and Scheinkman (2000) for an overview.
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where f(�) is non-decreasing and c(�) is a �cost� function associated with own e¤ort

(more general but much in the spirit of (2)). The parameter � 2 R determines the

nature of the externality across players�actions. The shape and sign of �f determine

the e¤ects of neighbors�action choices on one�s own optimal choice. In particular, the

example yields strict strategic substitutes (complements) if, assuming di¤erentiability,

�f 00 is negative (positive).

There are several papers that analyze graphical games for particular choices of f and

�. To mention a few examples, the case where f is concave, � = 1; and c(�) is increas-

ing and linear corresponds to the case of information sharing as a local public good

studied by Bramoullé and Kranton (2007), where actions are strategic substitutes. In

contrast, if � = 1, but f is convex (with c00 > f 00 > 0), we obtain a model with strategic

complements, as proposed by Goyal and Moraga-Gonzalez (2001) to study collabora-

tion among local monopolies. In fact, the formulation in (13) is general enough to

accommodate numerous further examples in the literature such as human capital in-

vestment (Calvó-Armengol and Jackson, 2009), crime and other networks (Ballester,

Calvó-Armengol, and Zenou, 2006), some coordination problems (Ellison, 1993), and

the onset of social unrest (Chwe, 2000).

The computer science literature (e.g., the literature following Kearns, Littman, and Singh,

2001, and analyzed by Kakade, Kearns, Langford, and Ortiz, 2003) has focused predomi-

nantly on the question of when an e¢ cient (polynomial-time) algorithm can be provided

to compute Nash equilibria of graphical games. It has not had much to say about the

properties of equilibria, which is important when thinking about applying such models to

analyze di¤usion in the presence of strategic interaction. In contrast, the economics liter-

ature has concentrated on characterizing equilibrium outcomes for particular applications,

and deriving general comparative statics with respect to agents�positions in a network and

with respect to the network architecture itself.
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Information players hold regarding the underlying network (namely, whether they are

fully informed of the entire set of connections in the population, or only of connections in

some local neighborhood) ends up playing a crucial role in the scope of predictions generated

by network games models. Importantly, graphical games are ones in which agents have

complete information regarding the networks in place. Consequently, such models su¤er

from inherent multiplicity problems, as clearly illustrated in the following example. It is

based on a variation of (13), which is similar to a model analyzed by Bramoullé and Kranton

(2007).

Example 2 (Multiplicity �Complete Information) Suppose that in (13), we set � =

1, choose xi 2 f0; 1g and have

f

 
xi +

kX
j=1

xj

!
� min

"
xi +

kX
j=1

xj; 1

#
;

and c(xi) � cxi; where 0 < c < 1. This game, often labeled the best-shot public goods

game, may be viewed as a game of local public-good provision. Each agent would

choose the action 1 (say, experimenting with a new grain, or buying a product that

can be shared with one�s friends) if they were alone (or no one else experimented),

but would prefer that one of their neighbors incur the cost c that the action 1 entails

(when experimentation is observed publicly). E¤ectively, an agent just needs at least

one agent in his or her neighborhood to take action 1 to enjoy its full bene�ts, but

prefers that it be someone else given that the action is costly and there is no additional

bene�t beyond one person taking the action.

Note that, since c < 1, in any Nash equilibrium, for any player i with k neighbors, it

must be the case that one of the agents in the neighborhood chooses the action 1: That

is, if the chosen pro�le is (x1; :::; xk) ; then xi +
Pk

j=1 xj > 1. In fact, there is a very
rich set of equilibria in this game. To see this, consider a star network and note that

there exist two equilibria, one in which the center chooses 0 and the spokes choose 1,

and a second equilibrium in which the spoke players choose 0 while the center chooses
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Figure 3: Multiplicity of Equilibria with Complete Information

1. Figure 3 illustrates these two equilibria. In the �rst, depicted in the left panel of the

Figure, the center earns more than the spoke players, while in the second equilibrium

(in the right panel) it is the other way round.

Even in the simplest network structures equilibrium multiplicity may arise and the re-

lation between network architecture, equilibrium actions, and systematic patterns can be

di¢ cult to discover.

4.4 Network Games

While complete information regarding the structure of the social network imposed in graph-

ical game models may be very sensible when the relevant network of agents is small, in large

groups of agents (such as a country�s electorate, the entire set of corn growers in the 50�s,

sites in the world-wide web, or academic economists), it is often the case that individuals

have noisy perceptions of their network�s architecture. As the discussion above stressed,
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complete information poses many challenges because of the widespread occurrence of equi-

librium multiplicity that accompanies it. In contrast, when one looks at another benchmark,

where agents know how many neighbors they will have but not whom they will be, then

the equilibrium correspondence is much easier to deal with. Moreover, this benchmark is an

idealized model of settings in which agents make choices like learning a language or adopting

a technology that they will use over a long time. In such contexts, agents have some idea of

how many interactions they are likely to have in the future, but not exactly with whom the

interactions will be.

A network game is a modi�cation of a graphical game in which agents can have private

and incomplete information regarding the realized social network at place. We describe

here the setup corresponding to that analyzed by Galeotti, Goyal, Jackson, Vega-Redondo,

and Yariv (2010) and Jackson and Yariv (2005, 2007), restricting attention to binary action

games.21

Uncertainty is operationalized by assuming the network is determined according to some

random process yielding our distribution over agents�degrees, P (d); which is common knowl-

edge. Each player i has di interactions, but does not know how many interactions each

neighbor has. Thus, each player knows something about his or her local neighborhood (the

number of direct neighbors), but only the distribution of links in the remaining population.

Consider now the following utility speci�cation, a generalization of (2). Agent i has a

cost of choosing 1, denoted ci. Costs are randomly and independently distributed across the

society, according to a distribution F c. Normalize the utility from the action 0 to 0 and let

the bene�t of agent i from action 1 be denoted by v(di; x); where di is i0s degree and she

expects each of her neighbors to independently choose the action 1 with probability x. Agent

i�s added payo¤ from adopting behavior 1 over sticking to the action 0 is then v(di; x)� ci:

This captures how the number of neighbors that i has, as well as their propensity to

choose the action 1; a¤ects the bene�ts from adopting 1. In particular, i prefers to choose

21There are also other variations, such as Galeotti and Vega-Redondo (2006) and Sundararajan (2007),
who study speci�c contexts, compatible with particular utility speci�cations.

33



the action 1 if

ci 6 v(di; x): (14)

This is a simple cost-bene�t analysis generalizing Granovetter (1978)�s setup in that

bene�ts can now depend on one�s own degree (so that the underlying network is accounted

for). Let F (d; x) � F c(v(d; x)). In words, F (d; x) is the probability that a random agent of

degree d chooses the action 1 when anticipating that each neighbor will choose 1 with an

independent probability x.

Note that v(d; x) can encompass all sorts of social interactions. In particular, it allows for

a simple generalization of Granovetter�s (1978) model to situations in which agents�payo¤s

depend on the expected number of neighbors adopting, dx:

Existence of symmetric Bayesian equilibria follows standard arguments. In cases where v

is non-decreasing in x for each d; it is a direct consequence of Tarski�s Fixed Point Theorem.

In fact, in this case, there exists an equilibrium in pure strategies. In other cases, provided

v is continuous in x for each d; a �xed point can still be found by appealing to standard

theorems (e.g., Kakutani) and admitting mixed strategies.22

Homogeneous Costs. Suppose �rst that all individuals experience the same cost c > 0

of choosing the action 1 (much like in Example 2 above). In that case, as long as v(d; x) is

monotonic in d (non-increasing or non-decreasing), equilibria are characterized by a thresh-

old. Indeed, suppose v(d; x) is increasing in d; then any equilibrium is characterized by a

threshold d� such that all agents of degree d < d� choose the action 0 and all agents of

degree d > d� choose the action 1 (and agents of degree d� may mix between the actions). In

particular, notice that the type of multiplicity that appeared in Example 2 no longer occurs

(provided degree distributions are not trivial). It is now possible to look at comparative

statics of equilibrium behavior and outcomes using stochastic dominance arguments on the

network itself. For ease of exposition, we illustrate this in the case of non-atomic costs (see

22In such a case, the best response correspondence (allowing mixed strategies) for any (di; ci) as dependent
on x is upper hemi-continuous and convex-valued. Taking expectations with respect to di and ci, we also
have a set of population best responses as dependent on x that is upper hemi-continuous and convex valued.
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Galeotti, Goyal, Jackson, Vega-Redondo, and Yariv, 2010, for the general analysis).

Heterogeneous Costs. Consider the case in which F c is a continuous function, with

no atoms. In this case, a simple equation is su¢ cient to characterize equilibria. Let x be

the probability that a randomly chosen neighbor chooses the action 1. Then F (d; x) is the

probability that a random (best responding) neighbor of degree d chooses the action 1. We

can now proceed in a way reminiscent of the analysis of the SIS model. Recall that eP (d)
denoted the probability that a random neighbor is of degree d (see equation (4)). It must

be that

x = �(x) �
X
d

eP (d)F (d; x): (15)

Again, a �xed point equation captures much of what occurs in the game. In fact, equation

(15) characterizes equilibria in the sense that any symmetric23 equilibrium results in an x that

satis�es the equation, and any x that satis�es the equation corresponds to an equilibrium

where type (di; ci) chooses 1 if and only if inequality (14) holds. Given that equilibria

can be described by their corresponding x, we often refer to some value of x as being an

�equilibrium.�

Consider a symmetric equilibrium and a corresponding probability of x for a random

neighbor to choose action 1. If the payo¤ function v is increasing in degree d, then the

expected payo¤ of an agent with degree d+1 is v(d+1; x) > v(d; x) and so F c(v(d+1; x)) >
F c(v(d; x)) and agents with higher degrees choose 1 with weakly higher probabilities. Indeed,

an agent of degree d+1 can imitate the decisions of an agent of degree d and gain at least as

high a payo¤. Thus, if v is increasing (or, in much the same way, decreasing) in d for each

x, then any symmetric equilibrium entails agents with higher degrees choosing action 1 with

weakly higher (lower) probability. Furthermore, agents of higher degree have higher (lower)

expected payo¤s.

Much as in the analysis of the epidemiological models, the multiplicity of equilibria is

determined by the properties of �, which, in turn, correspond to properties of eP and F . For
23Symmetry indicates that agents with the same degree and costs follow similar actions.
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instance,

� if F (d; 0) > 0 for some d in the support of P , and F is concave in x for each d, then

there exists at most one �xed point, and

� if F (d; 0) = 0 for all d and F is strictly concave or strictly convex in x for each d, then

there are at most two equilibria - one at 0, and possibly an additional one, depending

on the slope of �(x) at x = 0.24

In general, as long as the graph of �(x) crosses the 45 degree line only once, there is a

unique equilibrium (see Figure 4 below).25

The set of equilibria generated in such network games is divided into stable and unstable

ones (those we have already termed in Section 3.2 as tipping points). The simple character-

ization given by (15) allows for a variety of comparative statics on fundamentals pertaining

to either type of equilibrium. In what follows, we show how these comparative statics tie

directly to a simple strategic di¤usion process. Indeed, it turns out there is a very useful

technical link between the static and dynamic analysis of strategic interactions on networks.

4.5 Adding Dynamics �Di¤usion and Equilibria of Network Games

An early contribution to the study of di¤usion of strategic behavior allowing for general

network architectures was by Morris (2000).26 Morris (2000) considered coordination games

played on networks. His analysis pertained to identifying social structures conducive to

24As before, the slope needs to be greater than 1 for there to be an additional equilibrium in the case of
strict concavity, while the case of strict convexity depends on the various values of F (d; 1) across d.
25Morris and Shin (2003, 2005) consider uncertainty on payo¤s rather than on an underlying network. In

coordination games, they identify a class of payo¤ shocks that lead to a unique equilibrium. Heterogeneity
in degrees combined with uncertainty plays a similar role in restricting the set of equilibria. In a sense,
the analysis described here is a generalization in that it allows studying the impact of changes in a variety
of fundamentals on the set of stable and unstable equilibria, regardless of multiplicity, in a rather rich
environment. Moreover, the equilibrium structure can be tied to the network of underlying social interactions.
26One can �nd predecessors with regards to speci�c architectures, usually lattices or complete mixings,

such as Conway�s (1970) �game of life,� and various agent-based models that followed such as the �voter
model�(e.g., see Cli¤ord and Sudbury (1973) and Holley and Liggett (1975)), as well as models of stochastic
stability (e.g., Kandori, Mailath, Robb (1993), Young (1993), Ellison (1995)).
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contagion, where a small fraction of the population choosing one action leads to that action

spreading across the entire population. The main insight from Morris (2000) is that maximal

contagion occurs when the society has certain sorts of cohesion properties, where there are

no groups (among those not initially infected) that are too inward looking in terms of their

connections.

In order to identify the full set of stable of equilibria using the above formalization,

consider a di¤usion process governed by best responses in discrete time (following Jackson

and Yariv, 2005, 2007). At time t = 0; a fraction x0 of the population is exogenously and

randomly assigned the action 1, and the rest of the population is assigned the action 0. At

each time t > 0; each agent, including the agents assigned to action 1 at the outset, best

responds to the distribution of agents choosing the action 1 in period t � 1, accounting for

the number of neighbors they have and presuming that their neighbors will be a random

draw from the population.

Let xtd denote the fraction of those agents with degree d who have adopted behavior 1 at

time t, and let xt denote the link-weighted fraction of agents who have adopted the behavior

at time t. That is, using the distribution of neighbors�degrees ~P (d);

xt =
X
d

eP (d)xtd:
Then, as deduced before from equation (14), at each date t;

xtd = F (d; x
t�1):

and therefore

xt =
X
d

eP (d)F (d; xt�1) = �(xt�1):
As we have discussed, any rest point of the system corresponds to a static (Bayesian)

equilibrium of the system.

If payo¤s exhibit complementarities, then convergence of behavior from any starting point

is monotone, either upwards or downwards. In particular, once an agent switches behaviors,
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the agent will not want to switch back at a later date.27 Thus, although these best responses

are myopic, any eventual changes in behavior are equivalently forward-looking.

Figure 4 depicts a mapping � governing the dynamics. Equilibria, and resting points of

the di¤usion process, correspond to intersections of � with the 45 degree line.

The �gure allows an immediate distinction between two classes of equilibria that we

discussed informally up to now. Formally, an equilibrium x is stable if there exists "0 > 0

such that �(x�") > x�" and �(x+") < x+" for all "0 > " > 0. An equilibrium x is unstable

or a tipping point if there exists "0 > 0 such that �(x�") < x�" and �(x+") > x+" for all

"0 > " > 0. In the �gure, the equilibrium to the left is a tipping point, while the equilibrium

to the right is stable.

27If actions are strategic substitutes, convergence may not be guaranteed for all starting points. However,
whenever convergence is achieved, the rest point is an equilibrium, and the analysis can therefore be useful
for such games as well.
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The composition of the equilibrium set hinges on the shape of the function �: Further-

more, note that a point-wise shift of � (as in the �gure, to a new function ~�) shifts tipping

points to the left and stable points to the right, loosely speaking (as su¢ cient shifts may elim-

inate some equilibria altogether), making adoption more likely. This simple insight allows

for a variety of comparative statics.

For instance, consider an increase in the cost of adoption, manifested as a First Order

Stochastic Dominance (FOSD) shift of the cost distribution F c to �F c. It follows immediately

that:

�(x) =
X
d

eP (d)F c(v(d; x)) 6X
d

eP (d)F c(v(d; x)) = �(x)
and the increase in costs corresponds to an increase of the tipping points and decrease of

the stable equilibria (one by one). Intuitively, increasing the barrier to choosing the action

1 leads to a higher fraction of existing adopters necessary to get the action 1 to spread even

more.

This formulation also allows for an analysis that goes beyond graphical games regard-

ing the social network itself, using stochastic dominance arguments (following Jackson and

Rogers, 2007, and Jackson and Yariv, 2005, 2007). For instance, consider an increase in the

expected degree of each random neighbor that an agent has. That is, suppose eP 0 FOSDeP and, for illustration, assume that F (d; x) is non-decreasing in d for all x. Then, by the

de�nition of FOSD,

�0(x) =
X
d

eP 0(d)F (d; x) >X
d

eP (d)F (d; x) = �(x);
and, under P 0; tipping points are lower and stable equilibria are higher.

Similar analysis allows for comparative statics regarding the distribution of links, by

simply looking at Mean Preserving Spreads (MPS) of the underlying degree distribution.28

28In fact, Jackson and Yariv (2007) illustrate that if F (d; x) is non-decreasing and convex, then power, Pois-
son, and regular degree distributions with identical means generate corresponding values of �power; �Poisson;
and �regular such that

�power(x) > �Poisson(x) > �regular(x)
for all x; thereby implying a clear ranking of the tipping points and stable equilibria corresponding to each
type of network.
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Going back to the dynamic path of adoption, we can generalize the insights that we

derived regarding the Granovetter (1978) model. Namely, whether adoption paths track an

S-shaped curve now depends on the shape of �; and thereby on the shape of both the cost

distribution F and agents�utilities.

5 Closing Notes

There is now a substantial and growing body of research studying the impacts of interactions

that occur on a network of connections. This work builds on the empirical observations of

peer in�uence and generates a rich set of individual and aggregate predictions. Insights

that have been shown consistently in real-world data pertain to the higher propensities of

contagion (of a disease, an action, or behavior) in more highly connected individuals, the

role of �opinion leaders� in di¤usion, as well as an aggregate S-shape of many di¤usion

curves. The theoretical analyses open the door to many other results, e.g., those regarding

comparative statics across networks, payo¤s, and cost distributions (when di¤erent actions

vary in costs). Future experimental and �eld data will hopefully complement these theoretical

insights.

A shortcoming of some of the theoretical analyses described in this chapter is that the

foundation for modeling the underlying network is rooted in simple forms of random graphs

in which there is little heterogeneity among nodes other than their connectivity. This misses

a central observation from the empirical literature that illustrates again and again the pres-

ence of homophily, people�s tendency to associate with other individuals who are similar

to themselves. Moreover, there are empirical studies that are suggestive of how homophily

might impact di¤usion, providing for increased local connectivity but decreased di¤usion

on a more global scale (see Rogers (1995) for some discussion). Beyond the implications

that homophily has for the connectivity structure of the network, it also has implications

for the propensity of individuals to be a¤ected by neighbors�behavior: for instance, people

who are more likely to, say, be immune may be more likely to be connected to one another,
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and, similarly, people who are more likely to be susceptible to infection may be more likely

to be connected to one another.29 Furthermore, background factors linked to homophily

can also a¤ect the payo¤s individuals receive when making decisions in their social network.

Enriching the interaction structure in that direction is crucial for deriving more accurate

di¤usion predictions. This is an active area of current study (e.g., see Baccara and Yariv,

2009, Bramoullé and Rogers, 2010, Currarini, Jackson, and Pin, 2009, 2010ab, and Peski,

2008).

Ultimately, the formation of a network and the strategic interactions that occur amongst

individuals is a two-way street. Developing richer models of the endogenous formation of

networks, together with endogenous interactions on those networks, is an interesting direction

for future work, both empirical and theoretical.30

29The mechanism through which this occurs can be rooted in background characteristics such as wealth,
or more fundamental personal attributes such as risk aversion. Risk averse individuals may connect to one
another and be more prone to protect themselves against diseases by, e.g., getting immunized; similarly for
wealth.
30As discussed above, there are some studies, such as that of Kandel (1978), that provide evidence for the

back and forth interaction between behavior and network formation. There are also some models that study
co-evolving social relationships and play in games with neighbors, such as Ely (2001), Mailath, Samuelson,
and Shaked (2001), Jackson and Watts (2002, 2005), Droste, Gilles, and Johnson (2003), Corbae and Du¤y
(2003), and Goyal and Vega-Redondo (2005). These articles only begin to provide insight into such interplay.
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