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1 Introduction

1.1 Overview

First introduced by Gale (1953) and Raiffa and Luce (1957), dominance solvability of a

game relies on a straightforward prescription. If a player has an action that generates

worse payoffs than another regardless of what other players select—a strictly dominated

action—she should never use it. When the structure of the game is commonly known,

other players can infer their opponents’ strictly dominated actions and assume they will

not be played. With those strictly dominated actions eliminated, the resulting, reduced

game may have further strictly dominated actions that can then be eliminated, and so on

and so forth. This iterative procedure allows players to restrict the set of relevant actions

they consider. If it converges to a unique action profile, that profile constitutes a Nash

equilibrium, and the game is dominance solvable.

dominance solvable games are appealing on both simplicity and robustness grounds.

Players do not need to hold precise beliefs about opponents or even accurately assess the

payoffs resulting from each action profile: whether or not a game is dominance solvable,

and the resulting predictions, depend only on ordinal comparisons of players’ payoffs.

These features have suggested suitability to a range of applications, and much effort has

gone into identifying naturally-occurring dominant-solvable games and implementing de-

sirable outcomes through protocols inducing dominance solvability.

This paper provides a general analysis of the procedure in normal-form games. Our

results highlight its potential limitations in simplifying games meaningfully. First, domi-

nance solvable games are rare. Second, dominance solvable games are generally complex

in terms of the number of iterations required to reach equilibrium. Last, whether or not

the iterative elimination procedure is effective in simplifying a game depends on the rela-

tive sizes of players’ action sets—an important fraction of actions is eliminated only when

players have sufficiently imbalanced action sets.

Despite the attention dominance solvable games have received, the implications of the

iterated-elimination procedure have not yet been fully integrated into our body of knowl-

edge. We suspect that one reason is the specialized tools needed to derive our insights.

Studying dominance solvability is challenging since, whatever distribution over payoff
rankings of action profiles is assumed, after each iteration, the remaining actions players

consider are selected and resulting payoff rankings are no longer distributed in the same

way. Our analysis requires fairly recent results in combinatorics that, to our knowledge,

have not been used in the economics literature before. We believe the techniques we de-

velop could prove valuable for related problems.
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Random Games We use a random games framework, where constellations of players’

payoff rankings are determined at random. We employ this framework as a methodologi-

cal tool to estimate the likelihood that various dominance features hold across the class of

all normal-form games. We present our main results assuming players’ payoff rankings are

determined uniformly at random, as in Dresher (1970), Powers (1990), McLennan (2005),

and the literature that followed. Certainly, various games the literature focuses on have

specific payoff structures. In a later section, we show that our results on random games

translate to a variety of other distributions corresponding to payoff structures commonly

assumed in the literature, allowing for strategic complementarities, symmetry, common

interests, or pure conflict. We also show that our results are echoed in a collection of

games studied in the experimental lab, as compiled by Wright and Leyton-Brown (2014).

In fact, by and large, random games offer the most optimistic outlook on dominance solv-

ability, whereby common restrictions on payoffs yield fewer dominance solvable games,

which require a larger number of elimination iterations.1

Our random games approach resembles that taken in various other economic settings.

A prominent example is matching theory, where random markets are often employed

to examine the properties of stable outcomes; for example, see Immorlica and Mahdian

(2005) and Ashlagi, Kanoria, and Leshno (2017).2 Similarly, random preference profiles

are commonly used to estimate the likelihood of voting paradoxes and to evaluate voting

rules and decision mechanisms; see Diss and Merlin (2021) and references therein.

Scarcity of Dominance Solvability We first show that the probability a game is domi-

nance solvable vanishes quickly as any player’s action set grows, perhaps reinforcing the

belief that increased game complexity may significantly reduce the likelihood of solvabil-

ity. Notably, even in 2 × n games, this probability is strictly decreasing in n and propor-

tional to n−1/2.3 Our derivation of this probability is based on a link we uncover between

the number of players’ undominated actions and Stirling numbers of the first kind, a promi-

nent sequence in combinatorics, enumerating various constructs since at least the 18th

century.4 The asymptotics of these numbers’ distributions, which we employ, have been

discovered only over the last couple of decades.

1We present all of our results for two-player games. We show in the Online Appendix that results become
even starker for more than two players.

2The relevance of this approach is recognized by the 2023 SIGecom Test of Time Award shared by Immor-
lica and Mahdian (2005) and Ashlagi, Kanoria, and Leshno (2017).

3Such games correspond to settings in which one player has a coarser action set—a seller deciding whether
to sell an item or not to buyers who pick payment levels, a firm that chooses whether to hire an employee or
not, where the employee selects an effort level, etc.

4The k-th Stirling number of the first kind captures the number of permutations of n items with precisely
k cycles. For a rich discussion of applications of these numbers, see Stanley (2011).
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As we increase the action sets of both players, for m × n games with m ≤ n, the prob-

ability that a game is dominance solvable is n−Θ(m) and vanishes more rapidly.5 Our last

section illustrates that this probability serves as a good approximation for the probabil-

ity of mixed-strategy solvability, suggesting similar features of pure- and mixed-strategy

dominance for games with various payoff distributions.

These results highlight how special many of the dominance solvable games studied in

the literature are. They also make the classic virtual implementation results à la Abreu

and Matsushima (1992a) appear even more remarkable than before: approximation of a

large class of implementation problems can be done utilizing only dominance solvable

games, despite their rarity.

Number of Iterations Required Conditional on a game being dominance solvable, we

look at the number of iterations required to complete the elimination process. Given that

remaining actions are “selected” after each iteration and those surviving an iteration are

more likely to survive, one might expect dominance solvable games to resolve quickly, by

eliminating many actions at once within a few iterations. As we illustrate, this is rarely

the case. We show that the number of iterations required is large, increasing rapidly as

the number of actions of at least one of the players grows. As action sets expand, “simple”

games become rare—they are unlikely to be dominance solvable and, even when they are,

they likely require tremendous sophistication of players to reach an equilibrium outcome.

The experimental literature on level-k thinking and cognitive hierarchies (see, e.g.,

Costa-Gomes, Crawford, and Broseta, 2001; Camerer, Ho, and Chong, 2004) suggests lim-

ited ability of individuals to go through more than two iterations. Fudenberg and Liang

(2019) conduct Amazon Mechanical Turk (MTurk) experiments using 200 two-player 3×3

games with payoffs determined uniformly at random. An analysis of their data, as de-

picted in Figure 1, demonstrates that compliance with equilibrium decisions for the row

player (or simply, Row) is high in solvable games in which Row needs one or two rounds to

find her equilibrium action, but significantly lower in solvable games in which Row needs

to perform at least three iterations, or non-solvable games with exactly one Nash equilib-

rium that is pure.6 Thus, dominance solvability alone may not guarantee the “simplicity”

of a game and our results indicate that achieving equilibrium may be challenging even in

dominance solvable games.

Our results also open the door to questions regarding the features of dominance solv-

able games required to approximate various allocation objectives. Indeed, Katok, Sefton,

5We write f (n) = Θ(g(n)) if both g(n) = O(f (n)) and f (n) = O(g(n)). Informally, it means that f is bounded
both above and below by g asymptotically.

6We are grateful to Drew Fudenberg and Annie Liang for sharing their data with us. We employ the lrsnash
algorithm of Avis, Rosenberg, Savani, and Von Stengel (2010) to identify all Nash equilibria.
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Figure 1: Frequency of Row’s undominated decisions in games with at least one Row’s
dominated action, iteratively undominated decisions in solvable games with 1 or 2 (3 or 4,

respectively) rounds that Row needs to identify her equilibrium decision, equilibrium
decisions in non-solvable games with one Nash equilibrium that is also pure

and Yavas (2002) illustrate the limitations of virtual implementation in the lab due to the

limited number of dominance iterations participants can successfully perform.

General Effectiveness of Iterated Elimination Even without dominance solvability, iter-

ated elimination of strictly dominated actions may still be effective in simplifying a game

if the set of actions surviving it is relatively small. We show that whether this is the case

depends on the relative number of actions each player has in the underlying game. For

2 × n games, the number of surviving actions for the second, column player (or simply,

Column) has a mean of approximately lnn and is asymptotically normally distributed.

Furthermore, for m × n games with relatively small m = o(lnn), the fraction of surviving

actions for the column player converges to zero asymptotically. This provides a silver

lining to our previous results—m× n games with relatively small m are dramatically sim-

plified after the elimination process. Results are more discouraging when the first, row

player has more actions. We show that in m × n games with m = log2n +ω(1), almost all
actions survive the iterative deletion process as n grows.7

Implications for Rationalizability Throughout, we consider domination only via pure

actions. Our notion of strict-dominance solvability closely relates to the rationalizability

7We write f (n) = ω(g(n)) if g(n) = o(f (n)). Informally, it means that f dominates g asymptotically.
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notion proposed by Börgers (1993). Experimental evidence suggests that, indeed, iden-

tifying actions dominated by mixed strategies is far more challenging. Nonetheless, our

results shed light on game complexity as viewed through the lens of the traditional ratio-

nalizability notion (Bernheim, 1984; Pearce, 1984). We show that our main insights carry

over: rationalizability rarely yields a unique outcome and requires many iterations even

when it does. Furthermore, the corresponding iterative procedure is frequently ineffective

in limiting the actions agents need to consider.

1.2 Literature Review

Dominance solvability was first introduced by Gale (1953) and Raiffa and Luce (1957),

with Moulin (1979) offering one of its first uses as a weakening of strategy proofness in the

voting context. Dominance solvability has since been studied in a variety of applications,

including auctions (see Azrieli and Levin, 2011, and references therein), oligopolistic com-

petition (Börgers and Janssen, 1995), and global games (Carlsson and van Damme, 1993).8

Market designers use dominance solvable games when implementing various alloca-

tion problems, in part because these games appear simple. In addition to Abreu and

Matsushima (1992a)’s important work mentioned above, recent research has addressed

problems of robust implementation using dominance solvable games, see e.g., Bergemann

and Morris (2009). This literature rarely considers the number of iterations required to

reach an equilibrium in dominance solvable games, although several recent papers have

also identified strategically simple mechanisms; for example, Börgers and Li (2019) and

Li (2017).9 The experimental literature suggests that multiple iterations may not generate

rationalizable outcomes, see Sefton and Yavas (1996) and Katok, Sefton, and Yavas (2002).

Abreu and Matsushima (1992b) suggest one solution in a lively discussion with Glazer and

Rosenthal (1992): “[A]gents can simply be educated about how the mechanism is solved!”

Our results imply that such education may be useful more often than not.

Some experimentalists advocate selecting games at random to test predictive theories

about game play, see Erev, Roth, Slonim, and Barron (2007). Our analysis provides several

fundamental features of these games. While such experiments are rare, for illustration, in

Section 5, we use data collected by Fudenberg and Liang (2019), who conducted experi-

ments on two-player 3 × 3 games with payoffs determined uniformly at random. We also

8Our study also closely relates to notions of rationalizability (Bernheim, 1984; Pearce, 1984), see Section 6
for further links to that literature.

9Matsushima (2007) and Matsushima (2008) consider incomplete-information settings with implementa-
tion in few rounds of iterated elimination of strictly-dominated strategies. Similarly, Kartik, Tercieux, and
Holden (2014) consider agents with a taste for honesty and characterize social-choice functions that can be
implemented using two rounds of iterated deletion. Li and Dworczak (2020) study the tradeoff between
mechanisms’ simplicity and optimality.

5



use data from a collection of 3× 3 lab game experiments compiled by Wright and Leyton-

Brown (2014). In addition, we draw on experimental literature that suggests most individ-

uals cannot perform many iterations, not without substantial experience (see, for instance,

Nagel, 1995; Costa-Gomes, Crawford, and Broseta, 2001; Camerer, Ho, and Chong, 2004).

Dresher (1970) studies the likelihood of a pure Nash equilibrium in random games.

Powers (1990) and McLennan (2005) analyze the number of Nash equilibria, pure and

mixed, while Pei and Takahashi (2019) study the distribution of the number of point-

rationalizable actions in such games. Our paper is related in spirit to these predecessors,

although we address different questions and use different methodologies.

We rely on recent results in combinatorics by Hammett and Pittel (2008) and Hwang

(1995, 1998). Alon and Spencer (2016) and Stanley (2011) provide a general overview of

these methods.

2 The Model

2.1 Random Games

Consider a non-cooperative, simultaneous-move, one-shot game of complete informa-

tion with two players, Row and Column. We consider only two players for presenta-

tion simplicity—in the Online Appendix, we show our main results extend to games with

more than two players. Row has m actions [m] = {1,2, . . . ,m} and Column has n actions

[n] = {1,2, . . . ,n}, where m,n are positive integers. Let R = (rij ) ∈ Rm×n and C = (cij ) ∈ Rm×n

denote the m × n Row’s and Column’s payoff matrices respectively. We can represent this

normal-form game by a bimatrix of the form

(R,C) =


r11, c11 r12, c12 . . . r1n, c1n

r21, c21 r22, c22 . . . r2n, c2n
...

...
. . .

...

rm1, cm1 rm2, cm2 . . . rmn, cmn


.

In order to study the general properties of this class of games, we assume all payoffs are

randomly generated. Since dominance solvability hinges on ordinal comparisons alone, we

can focus on the randomness of payoff rankings, abstracting from the underlying cardinal

payoff distributions.10 In that sense, our analysis is “distribution-free.” Let Sm denote the

symmetric group of permutations of [m]. We maintain the following ordinal randomness
assumption throughout our analysis:

10We ignore indifferences, which would arise with measure 0 for any continuous distribution of payoffs. In
Section 6, we also consider dominance via mixed strategies and rationalizability.
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1. for each j ∈ [n], Row’s payoffs r·j are uniform on Sm;

2. for each i ∈ [m], Column’s payoffs ci· are uniform on Sn;

3. random permutations {r·j , ci·}, i ∈ [m] and j ∈ [n], are mutually independent.

In other words, for each fixed action of Row or Column, Column’s or Row’s ordinal

rankings over its actions are uniform, and all ordinal rankings are mutually independent.

In Section 5, we consider alternative distributions that correspond to a variety of com-

monly studied classes of games; they yield qualitatively identical results.

Let G(m,n) denote the corresponding random game.

2.2 Three Dimensions of Pure-Strategy Strict Dominance

We examine the general properties of random games related to pure-strategy strict domi-

nance. An action is pure-strategy strictly dominated if it always yields a worse outcome than

some other action, regardless of other players’ actions. If an action is not pure-strategy

strictly dominated, it is called pure-strategy strictly undominated. An action is strictly dom-
inant if all alternative actions are strictly dominated.

The elimination procedure that iteratively discards of all pure-strategy strictly dom-

inated actions until there is no pure-strategy strictly dominated action is called iterated
elimination of pure-strategy strictly dominated actions. We also call rounds of this elimina-

tion procedure iterations.11 If by iterated elimination of pure-strategy strictly dominated

actions there is only one action left for each player, the game is called a pure-strategy strict-
dominance solvable game. To simplify the terminology in this paper, we will often omit the

“pure-strategy” preamble.

Our analysis focuses on the following three dimensions of strict dominance for any ran-

dom game G(m,n). First, we ask how common strict-dominance solvable games are. We

address this question by studying the probability of strict-dominance solvability, denoted

by π(m,n). Second, we ask how “complex” strict-dominance solvable games are. We use

the number of iterations required conditional on strict-dominance solvability as our com-

plexity measure for strict-dominance solvable games. We call that measure the conditional
number of iterations and denote it by I(m,n). Last, we inspect the complexity of games sur-

viving iterated elimination of pure-strategy strictly dominated actions. As a complexity

measure for surviving games, we analyze the number of surviving actions after the iterated

procedure, which we denote by SR(m,n) for Row and SC(m,n) for Column.

11For finite games, the order in which pure-strategy strictly dominated actions are eliminated does not
matter. To define the number of iterations, we suppose that, at each iteration (or round) of the elimination
procedure, all players delete all pure-strategy strictly dominated actions.
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As a by-product, we also examine the number of strictly undominated actions denoted

by UR(m,n) for Row and UC(m,n) for Column. It provides insights on the likelihood of

games with a dominant-strategy equilibrium, where UR(m,n) and UC(m,n) are singletons.

3 Motivating Example: Two Actions for One Player

In this section, we fix the number of Row’s actions to m = 2 and vary the number of Col-

umn’s actions n.12 Ifm = 1, all realized games are dominance solvable within one iteration.

Therefore, the minimal non-trivial case corresponds to m = 2.

3.1 Undominated Actions

Since there are only two actions for Row, the distribution of her number of strictly undom-

inated actions is straightforward. One action is strictly dominated by another action with

probability
(

1
2

)n
, where n is the number of Column’s actions. In addition, there are two,

mutually exclusive, ways to choose a strictly dominated action. Thus, Row has one strictly

undominated action with probability
(

1
2

)n−1
.

Unfortunately, we cannot follow the same argument for Column with n actions and the

payoff matrix

C =

c11 c12 . . . c1j . . . c1n

c21 c22 . . . c2j . . . c2n

 ,
where rows {c1·, c2·} are i.i.d. uniform on Sn. One action is strictly dominated by another

with probability 1
4 in isolation. However, there are many ways by which one action can be

dominated by various others, and they are not mutually exclusive.

Instead, we employ combinatorial techniques. Because we care only about the num-

ber of undominated actions and not their labels, we can set either of {c1·, c2·} to any fixed

permutation. Without loss of generality, we fix c1· = en ≡ (1,2, . . . ,n) and focus on

C =

 1 2 . . . j . . . n

c21 c22 . . . c2j . . . c2n

 ,
where c2· is uniform on Sn. Formally, our notation above with two rows that are i.i.d.
uniform on Sn is equivalent to the two-row notation with one fixed row and another drawn

uniformly from Sn.

Several conclusions follow immediately. First, the n-th action is always strictly undom-

inated. Furthermore, for any 1 ≤ j ≤ n − 1, the j-th action is strictly undominated if and

12Due to symmetry, if we instead fix the number of Column’s actions, the analysis is identical.
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only if c2j > c2i for all i > j, which occurs with probability 1
n−j+1 . Thus, because of linear-

ity of expectations, the expected number of Column’s undominated actions is Hn, where

Hn ≡ 1+ 1
2 +. . .+ 1

n is the n-th harmonic number. SinceHn ∼ lnn, asymptotically, the fraction

of Column’s undominated actions is negligible.

To establish the distribution of the number of undominated actions, we rely on an un-

derlying recursive structure. There are n! combinations in total for c2·. Let s(n,k) denote

the number of combinations corresponding to exactly k of Column’s actions being strictly

undominated, k ∈ [n]. There are two relevant cases. If c21 ∈ [n − 1], then Column’s first

action is strictly dominated and we need to have k undominated actions among the re-

maining (n − 1) actions. If c21 = n, Column’s first action is strictly undominated and we

need to have k − 1 undominated actions among the remaining (n− 1) actions. Thus,

s(n,k) = (n− 1)s(n− 1, k) + s(n− 1, k − 1).

This expression corresponds to the recurrence relation of the unsigned (or signless)
Stirling numbers of the first kind, commonly denoted by s(n,k), with the initial conditions

s(n,k) = 0 if n < k or k = 0, except for s(0,0) = 1. Therefore,

Lemma 1. Consider a random game G(2,n). Then, for any n ≥ 1,

1. Pr
(
UR(2,n) = 1

)
=

1
2n−1 ;

2. for any k ∈ [n], Pr
(
UC(2,n) = k

)
=
s(n,k)
n!

.

The combinatorics literature offers various interpretations for the unsigned Stirling

numbers of the first kind. The original definition of s(n,k) is algebraic. Namely, they are

the coefficients in the expansion of the rising factorial:

x(n) ≡ x(x+ 1) . . . (x+n− 1) =
n∑
k=0

s(n,k)xk .

We use this definition to find the probability of dominance solvability in Proposition 1

below. There are various other interpretations. For instance, s(n,k) corresponds to the

number of permutations σ ∈ Sn with exactly k cycles.13

3.2 Dominance Solvability

In order to express the probability of dominance solvability, let n!! denote the double fac-
torial of a positive integer n, defined as the product of all the integers from 1 up to n with

13For other enumerative interpretations see Stanley (2011).
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the same parity (odd or even) as n.14 In addition, let W (n) denote the so-called Wallis ratio
(Qi and Mortici, 2015) defined as

W (n) ≡ (2n− 1)!!
(2n)!!

=
Γ (n+ 1/2)

Γ (1/2)Γ (n+ 1)
,

where Γ (x) is the gamma function with Γ (1/2) =
√
π.

Proposition 1 provides analytical formulas for the probability of dominance solvability.

Proposition 1. Consider a random game G(2,n). Then,

1. for any n ≥ 1, π(2,n) = 2W (n) =
(2n− 1)!!
2n−1 ·n!

;

2. π(2,n) is strictly decreasing in n;

3. lim
n→∞

n1/2 ·π(2,n) =
2
√
π

.

Intuitively, we derive the exact formula for π(2,n) as follows. Recall that the order

in which strictly-dominated actions are eliminated does not matter. There are n possible

mutually exclusive events corresponding to the number k of strictly undominated actions

for Column, k ∈ [n], each occurring with probability s(n,k)
n! respectively. The induced 2× k

game, derived from eliminating all of Column’s dominated actions, is strict-dominance

solvable if and only if Row has exactly one strictly undominated action. This occurs with

probability
(

1
2

)k−1
since Row’s and Column’s payoffs are independent. By summing over

all possible cases k ∈ [n], and using the algebraic definition of s(n,k) together with various

well-known identities, we get the desired expression. The monotonicity of π(2,n) follows

from the identity Γ (x + 1) = xΓ (x). The asymptotic characterization follows from Stirling’s

formula applied to the gamma function.

It is interesting to note that dominance solvability is rare even conditional on there

being a unique pure-strategy Nash equilibrium. Indeed, from Powers (1990), the asymp-

totic number of pure-strategy Nash equilibiria in G(2,n) follows a binomial distribution

B(2,1/2). In particular, a 2 × n game has exactly one pure equilibrium with probability

close to 1/2 for large n. dominance solvable games then account for a vanishing fraction

of those.

3.3 Conditional Iterations

There is exactly one iteration conditional on G(2,n) being strict-dominance solvable if and

only if both Row and Column have strictly-dominant actions. Thus, using the identity

14By definition, (2n− 1)!! = 1 · 3 · . . . · (2n− 1) and (2n)!! = 2 · 4 · . . . · (2n) = n! · 2n.
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Γ (n+ 1) = nΓ (n), we have:

Pr(I(2,n) = 1) =
( 1

2n−1 ·
1
n

)
· 1
π(2,n)

=
√
π

2n
· Γ (n)
Γ (n+ 1/2)

∼
√
π · 1

2n ·n1/2
.

Next, there are exactly two iterations conditional on G(2,n) being strict-dominance

solvable if and only if either Row or Column have a dominant action, not both. That is,

Pr(I(2,n) = 2) =
( 1

2n−1 +
1
n
− 1

2n−2 ·
1
n

)
· 1
π(2,n)

=
n+ 2n−1 − 2

2n
·
√
π · Γ (n)

Γ (n+ 1/2)
∼
√
π

2
· 1
n1/2

.

Finally, there are three conditional iterations in all remaining cases:

Pr(I(2,n) = 3) = 1− n+ 2n−1 − 1
2n

·
√
π · Γ (n)

Γ (n+ 1/2)
∼ 1−

√
π

2
· 1
n1/2

.

In the Online Appendix, we show that Pr(I(2,n) = 1) is monotonically, and exponen-

tially, decreasing to zero as the number of Column’s actions n goes to infinity. In particular,

it is unlikely for games to be solvable in strictly-dominant actions. In fact, as the deriva-

tion above suggests, it is rare to have a strictly dominant action even for only one of the

players. Formally, Pr(I(2,n) = 2) is also monotonically decreasing, albeit not exponentially,

to zero. Therefore, asymptotically, the more pervasive manner by which dominance solv-

ability is achieved involves the maximum of three elimination iterations, where Column is

the first to eliminate actions. Proposition 2 summarizes this discussion by focusing on the

expected number of conditional iterations.

Proposition 2. Consider a random game G(2,n). Then,

1. E [I(2,n)] = 3− n+ 2n−1

2n
·
√
π · Γ (n)

Γ (n+ 1/2)
;

2. E [I(2,n)] is strictly increasing in n;

3. lim
n→∞

n1/2 · (3−E [I(2,n)]) =
√
π

2
.

As mentioned in the introduction, experimental evidence suggests individuals’ limited

ability to go beyond two iterations. Proposition 2 then implies that most 2× n games that

are dominance solvable may be de-facto challenging to reason through. As we soon show,

this point becomes even starker when both players have a substantial number of actions.

3.4 Surviving Actions

Row has exactly one action surviving iterated elimination of strictly dominated actions if

and only if the game is strict-dominance solvable. Therefore,

Pr
(
SR(2,n) = 1

)
= π(2,n), Pr

(
SR(2,n) = 2

)
= 1−π(2,n), and E

[
SR(2,n)

]
= 2−π(2,n),
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and both comparative statics and asymptotic features follow directly from Proposition 1.

As for Column, by similar arguments we obtain

Pr
(
SC(2,n) = 1

)
= π(2,n).

For any k , 1, k ∈ [n], Column has exactly k surviving actions if and only if he has exactly

k undominated actions and the considered game is not strict-dominance solvable, so that

Pr
(
SC(2,n) = k

)
= Pr

(
UC(2,n) = k

)
·Pr

(
SR(2,n) , 1 |UC(2,n) = k

)
= Pr

(
UC(2,n) = k

)
·Pr

(
UR(2, k) , 1

)
=
s(n,k)
n!
·
(
1− 1

2k−1

)
,

where the second equality follows from independence of Row’s and Column’s payoffs.

It follows from Proposition 1 that, asymptotically, Row has nothing to eliminate, so

that Column can eliminate actions only in his first iteration. Intuitively, then, the differ-

ence between the number of Column’s strictly-undominated actions and the number of

Column’s surviving actions vanishes asymptotically.

Formally, the distribution of the number of Column’s surviving actions is similar to

that pertaining to strictly-undominated actions with two exceptions. First, for any k , 1,

k ∈ [n], the corresponding probabilities are discounted by
(
1− 1

2k−1

)
with smaller discounts

for larger k. Second, there is a spike at k = 1 in the distribution of the number of Col-

umn’s surviving actions that corresponds to the probability of strict-dominance solvabil-

ity. Indeed, for any n ≥ 2, because Pr
(
UR(2,2) = 1

)
= 1/2, we have Pr

(
SC(2,n) = 1

)
>

Pr
(
SC(2,n) = 2

)
.

For any n ≥ 1, the sequence of numbers s(n,k), k = 0,1, . . . ,n, is log-concave15 and,

hence, unimodal (Stanley, 2011). In addition, the signless Stirling numbers s(n,k) are max-

imized at k(n) that is either bHnc or dHne. That is, k(n) ∼ lnn asymptotically. Results by

Hwang (1995) suggest that, although for any fixed k , 1, k ∈ [n], the corresponding proba-

bility Pr
(
SC(2,n) = k

)
converges to zero faster than Pr

(
SC(2,n) = 1

)
= π(2,n), the probabil-

ity of the distibution mode—corresponding to k(n) ∼ lnn—converges to zero slower than

π(2,n). We formalize this claim in the Online Appendix. In fact, results from probabilistic

combinatorics also suggest that the distribution induced by s(n,k)
n! is asymptotically normal

(Gontcharoff, 1944; Hwang, 1998). This implies that the number of surviving Column’s

actions is asymptotically normal. Proposition 3 formalizes this intuition.

Proposition 3. Consider a random game G(2,n). Then,

Pr
(
SC(2,n)−E

[
SC(2,n)

]
≤ x ·

√
Var

[
SC(2,n)

])
= Φ(x) +O

(
1
√

lnn

)
,

15A sequence a = (a0, a1, · · · , an) of nonnegative real numbers is log-concave if a2
k ≥ ak−1ak+1 for any k ∈

[n− 1].
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(a) Probability of strict dominance (b) Conditional number of iterations

(c) Surviving actions

Figure 2: Three dimensions of dominance solvability

where Φ(·) is the distribution function of the standard normal distribution,

E

[
SC(2,n)

]
= lnn+γ + o(1), and

√
Var

[
SC(2,n)

]
=
√

lnn−
π2 − 6γ

12
√

lnn
+ o

(
1
√

lnn

)
.

The formal proof follows similar lines to those appearing in the analysis of Hwang

(1998).16 It uses the Berry-Esseen inequality (Petrov, 1975) stated in terms of character-

istic functions to find convergence rates. Namely, using the algebraic definition of s(n,k),

we compute the characteristic function of the number of surviving Column’s actions and

compare it to the characteristic function of the standard normal distribution.

Figure 2 summarizes our discussion in this subsection, when focusing on the m = 2

curves. The panels of the figure depict the different objects we analyze for random games

16Since we have a spike and discounted probabilities, the problem does not belong to the exp-log class that
Hwang (1998) studies. Therefore, we cannot use his results directly.
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varying in size, n = 1, ...,50: the probability of dominance solvability in panel (a), the ex-

pected number of conditional iterations in panel (b), and the expectation and distribution

of the number of surviving Column actions in panel (c). In addition to their exact values,

we also depict the asymptotic behavior analytically described in our results. As can be

seen, our asymptotic characterizations provide remarkably close approximations for 2×n
games in which n > 5.

4 Arbitrary Action Sets: General Analysis

We now turn to general m × n games. Without loss of generality, we fix the number of

Column’s actions to n and vary the number of Row’s actions m ≤ n, as a function of n.

Our general analysis suggests several main insights. First, dominance solvability is

rare—for 2 < m ≤ n, π(m,n) = n−Θ(m) and it converges to zero as n → ∞ at convergence

rates that increase in m. Second, the conditional number of iterations is large even for

relatively small games. Third, the iterated-elimination procedure is effective in allowing

players to eliminate a significant fraction of their actions only in sufficiently imbalanced

games, where one player has substantially fewer actions than the other.

In contrast to the m = 2 case, the analysis here involves various novel enumerative

issues that have not yet been studied in the combinatorics literature. We employ mostly

probabilistic methods to obtain closed-form expressions for our variables of interest and

study their asymptotic patterns.

4.1 Undominated Actions

In general, an action can be dominated by multiple other actions. When calculating the

number of undominated actions, one needs to consider the various interdependent possi-

bilities of domination of any set of actions. For general m×n games, the exact distribution

of the number of undominated actions of either player is challenging to characterize. In-

deed, in the Online Appendix, we show that even for the case of m = 3, the basic problem

of finding the probability that Column has no strictly dominated actions turns out to be

mathematically equivalent to a specific problem from the so-called “permutation avoid-

ance” literature (e.g., see Gunby and Pálvölgyi, 2019) and cannot be calculated explicitly

(Hammett and Pittel, 2008).17 Nonetheless, we now illustrate a recursive structure of the

expected number of each player’s undominated actions, which generalizes some of our ob-

servations from the m = 2 case.
17The Online Appendix offers a general description of the connection between the set of problems we con-

sider and permutation patterns.
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We focus on Column, as results for Row are symmetric. Consider the expected number

of Column’s undominated actions. By symmetry, the probability that a given Column’s

action is undominated in G(m,n) is independent of its label. Therefore, by linearity of

expectations, the expected proportion of Column’s undominated actions
E[UC (m,n)]

n is also

the probability that the first of Column’s actions is undominated. To glean intuition for

the recurrence relation governing this probability, and hence for E

[
UC(m,n)

]
, consider n

mutually exclusive events, each corresponding to cm1 = k for some k ∈ [n]. That is, consider

every possible payoff of Column from his first action and Row’s m-th action. Any such

event occurs with probability 1
n . If cm1 = k, the first action is undominated if and only if it is

undominated in the reduced (m−1)×(n−k+1) game formed by removing all columns j with

cmj < k and the last row. This event occurs with probability
E[UC (m−1,n−k+1)]

n−k+1 . Summing

over all possible k ∈ [n], we achieve a recurrence relation, which is useful for bounding the

expected number of players’ undominated actions, as described in the following lemma.

Lemma 2. Consider a random game G(m,n). Then, for any m,n ≥ 2,

1. UC (m,n) first-order stochastically dominates UC (m− 1,n);

2. E

[
UC(m,n)

]
=

n∑
k=1

E

[
UC(m− 1, k)

]
k

and it is component-wise strictly increasing;

3.
(lnn)m−1

(m− 1)!
≤ E

[
UC(m,n)

]
≤
m−1∑
k=0

(lnn)k

k!
.

Intuitively, it is harder for Column to eliminate his actions as the number of Row’s

actions m becomes larger, which is at the heart of the lemma. This lemma can be seen

as a generalization of Lemma 1. The recurrence relation extends our observations from

Section 3.1. By employing the recurrence relation for m = 2, we immediately verify that

E
[
UC(2,n)

]
=

∑n
k=1

1
k = Hn. For m = 3, it gives E

[
UC(3,n)

]
=

∑n
k=1

Hk
k = H2

n+H (2)
n

2 , where

H
(m)
n ≡ 1 + 1

2m + . . . + 1
nm is the n-th generalized harmonic number of order m and the last

identity follows, say, from Alzer, Karayannakis, and Srivastava (2006). Nonetheless, deriv-

ing closed-form solutions for n ≥ 4 becomes challenging. Indeed, to our knowledge, this

recurrence has not been studied before and has no known explicit solution.

The bounds in part 3 of the lemma can be rewritten as

n ·Pr
(
Poisson(lnn) =m− 1

)
≤ E

[
UC(m,n)

]
≤ n ·Pr

(
Poisson(lnn) ≤m− 1)

)
,

where Poisson(λ) is a Poisson random variable with parameter λ > 0. These bounds are

derived recursively. For example, consider the upper bound. For m = 2, the upper bound

holds since E
[
UC(2,n)

]
= Hn ≤ lnn + 1 for any n ≥ 1. Now, let f (x) = 1

x (lnx+ 1), which is
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strictly decreasing for x ≥ 1. We can then write:

E
[
UC(3,n)

]
=

n∑
k=1

E
[
UC(2, k)

]
k

≤
n∑
k=1

f (k) ≤ f (1) +
∫ n

1
f (x) = 1 + lnn+

(lnn)2

2
,

as desired. At each subsequent step, as we increase m, we can redefine the function f (x)

accordingly and show it is strictly decreasing for x ≥ 1. Similar, albeit somewhat more

intricate, arguments are needed to illustrate the lower bound stated in the lemma.

We conclude this subsection with the asymptotic analysis of undominated actions for

both players. Consider Row, who has m(n) ≤ n actions. It is immediate to see that Row

cannot eliminate any of her actions as n goes to infinity, irrespective of the dependence of

m(n) on n. Indeed,

Pr
(
UR(m,n) < m

)
≤m(m− 1)× 2−n→ 0 as n→∞, m =m(n) ≤ n,

where the inequality follows from the fact that for Row, there arem(m−1) pairs of strategies

and each strategy can dominate another with probability (1
2 )n.18

The asymptotic analysis for Column, who has a greater number of actions, is more

delicate. Whether Column can significantly alter a game by eliminating his actions in

the first iteration depends on the relative sizes of the players’ action sets. First, when

Row has relatively few actions, m(n) = o(lnn), the proportion of Column’s undominated

actions converges to zero asymptotically. In other words, such m(n)× n games are greatly

simplified. We show this by first illustrating that the bounds in part 3 of the lemma are

asymptotically equivalent when m(n) = o(lnn), and then noticing that the lower bound
(lnn)m−1

(m−1)!n = Pr
(
Poisson(lnn) = m − 1

)
for the proportion of Column’s undominated actions

converges to zero for any m = m(n)—intuitively, the probability that Poisson(lnn) equals

the specific value (m(n)− 1) becomes negligible.

A different picture emerges when Row’s action set is large, namely whenm(n) = log2n+

ω(1). In this case, asymptotically, almost all of Column’s actions are undominated. When

m grows, as discussed above, the lower bound for the proportion of Column’s undominated

actions converges to zero and is, hence, less useful. However, we can construct a different,

more useful bound. For any given Column’s action, there are n− 1 other actions that may

strictly dominate it, each with probability 1
2m . Using a union bound,

E[UC (m,n)]
n ≥ 1 − n−1

2m .

When m(n) = log2n+ω(1),

lim
n→∞

E

[
UC(m,n)

]
n

= 1.19

Figure 3 summarizes these asymptotic observations by depicting the proportion of Col-

18A variant of this observation for m = n is also stated as Proposition 5 in Pei and Takahashi (2019).
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Figure 3: Expected proportion of Column’s undominated actions E
[
UC(m,109)

]
/109

with bounds (in orange)

umn’s undominated actions for large n = 109 as a function ofm (the solid black line) along

with its bounds (encompassing the region shaded in orange). As can be seen, our bounds

are accurate for m = o(lnn) and m = log2n +ω(1) and provide a narrow band for the ma-

jority of relevant cases of m =m(n) ≤ n.20

4.2 Dominance Solvability

When analyzing the probability of dominance solvability, an additional enumerative issue

emerges in general m × n games. In 2 × n games, there are at most 3 iterations. When,

say, Column eliminates his actions first, the Row’s payoffs in the induced, restricted game

are still independent. And the third iteration, when it exists, corresponds to a simple

maximization. In contrast, in general games, there can be many iterations.21 These in-

troduce non-trivial correlations: the fact that, say, a Column’s action is not eliminated in

the first iteration provides information on the payoffs it can generate. This information

cannot be ignored when considering the third iteration. In particular, we cannot generally

emulate the construction underlying the calculation of π(m,n) obtained for m = 2, which

effectively considered each player’s eliminated actions in isolation. In this subsection, we

analyze π(m,n) by taking into direct account the iterative nature of deletion.

Our analysis in Section 4.1 suggests that for m(n)×n games, when the number m(n) of

20We conjecture that for the small subset of intermediate m(n) not covered formally by our analysis, the
proportion of Column’s undominated actions is very close to its upper bound Pr

(
Poisson(lnn) ≤m− 1)

)
. This

conjecture is confirmed by our numerical exercises. It suggests that, for almost all intermediate m(n), the
proportion of Column’s undorminated actions is large and close to one.

21The maximum number of iterations for an m by n game is 2m− 1 when m < n, and 2m− 2 if m = n.
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Row’s actions is relatively large, namely when m(n) = log2n+ω(1), Row cannot eliminate

any of her actions and almost all of Column’s actions survive in his first iteration with high

probability. As a result, the probability a game is dominance solvable is vanishingly small

when both action sets grow at these rates. In particular, perhaps confirming common

wisdom, n×n games are rarely simplified for large n.

What is possibly less transparent is that the probability a game is dominance solvable

vanishes quickly as long as any action set grows, irrespective of their relative sizes. In-

deed, in the previous section we showed that even seemingly simple 2×n games are rarely

dominance solvable. Theorem 1 below generalizes this statement to any m(n) × n games

with m(n) ≤ n. That is, even though particular games can be greatly simplified in just one

iteration as we showed in Section 4.1, such games are not solvable with high probability.

Theorem 1. There exist C1,C2 > 0 such that, for any m ≤ n,

n−(m−1) ≤ π(m,n) ≤ C1 ·n−C2m.

In particular, π(n,n) ≤ n−(
1
3−o(1))n.

Despite the complex iterative nature of elimination, we can characterize an asymptot-

ically tight bound for the convergence rate of the probability of dominance solvability.22

For games with action sets of comparable sizes, and particularly for balanced n×n games,

this estimate is significantly more accurate than the crude union bound from Section 4.1:

π(n,n) ≤ Pr
(
UR(n,n) < n

)
+ Pr

(
UC(n,n) < n

)
≤ 2n(n− 1)× 2−n = O

(
n2

2n

)
.

We discuss the ideas guiding the proof in Section 4.5. Intuitively, the lower bound cor-

responds to the probability that Column has a strictly dominant action, in which case the

game is strict-dominance solvable. The upper bound is derived from the consideration of

two cases. If an m×n game is sufficiently imbalanced, we bound π(m,n) by the probability

Pr
(
SR(m,n) < m

)
that Row deletes at least one action in the iterative procedure. Otherwise,

if a game is roughly balanced, Row needs to eliminate many actions, not just one, when the

game is dominance solvable. We account for the iterative elimination procedure to derive

a bound in that case.

As compared with games exhibiting a unique pure equilibrium, dominance solvable

games are still vanishingly rare. Indeed, Powers (1990) implies that the distribution of the

number of pure-strategy Nash equilibria approaches the Poisson distribution Poisson(1)

with mean 1 as both players’ action sets expand. In addition, if one lets the number n of

Column’s actions go to infinity while keeping the number m of Row’s actions finite, the

22Formally, this theorem can be restated as π(m,n) = n−Θ(m), where Θ(m) denotes functions of m that are
asymptotically bounded both above and below by a linear function in m.
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limiting distribution of the number of pure-strategy Nash equilibria is a binomial random

variable B(m,1/m). In either case, asymptotically, a random game has exactly one pure-

strategy Nash equilibrium with a positive probability. Hence, the probability of strict-

dominance solvability conditional on there being a unique pure-strategy Nash equilibrium

converges to zero.

4.3 Conditional Iterations

As discussed in the introduction, solvable games are used for the implementation of desir-

able outcomes in a variety of applications due to their perceived simplicity and robustness.

Nonetheless, empirically, people seem to have difficulty applying more than two or three

iterations. We therefore ask what is the number of iterations players need to go through in

generic games, conditional on dominance solvability.

Ex ante, it is unclear how the number of actions of each player affects the number of

deletion rounds solvable games entail on average. Indeed, if a game is dominance solvable,

the number of actions eliminated at each iteration could affect the number of iterations

needed. Our question here regards the identification of the most pervasive way by which

dominance solvability is obtained. As discussed in Section 4.2, the analysis of the general

case is challenging since remaining games after each round of deletion exhibit non-trivial

correlations between the conditional payoff distributions corresponding to different ac-

tions. Consequently, when examining m × n games with m ≥ 3, we rely on simulations to

compute the conditional number of iterations.

Specifically, we simulate 106 games for each game dimension. Panel (b) of Figure 2

illustrates the resulting number of conditional iterations for variousm×n games. As can be

seen, the number of iterations required grows with the number of actions both players can

use. In particular, for n×n games, this growth appears rapid and nearly linear, suggesting a

large number of iterations, even for relatively small games. For instance, for 10×10 games,

on average, more than 7 iterations are required conditional on dominance solvability.

4.4 Surviving Actions

Even though dominance solvability is scarce, iterated deletion of dominated actions might

still be effective in simplifying a game as long as the set of actions surviving the elimination

procedure is relatively small. In Section 4.1, we showed that the effectiveness of the first

iteration depends on the relative size of players’ action sets. Form×n games with relatively

small m = o(lnn), the proportion of undominated actions for Column converges to zero

asymptotically. This provides a silver lining to Theorem 1—m × n games with relatively

smallm are significantly simplified even after the first iteration. Can subsequent iterations
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simplify games even further?

It turns out that subsequent iterations are not effective asymptotically. In other words,

one iteration is asymptotically sufficient. We prove this by showing that Row eliminates at

least one of her actions with vanishing probability. Therefore, as for 2 × n games, asymp-

totically, there is no difference between the number of Column’s undominated actions and

the number of Column’s surviving actions.

In contrast, form×n games with largerm = log2n+ω(1), almost all actions are undom-

inated, as n grows. Asymptotically, such games cannot be simplified at all.

Theorem 2 summarizes our results pertaining to the effectiveness of the iterated elim-

ination procedure in simplifying general games.

Theorem 2. Consider a random game G(m,n). Then, for any n ≥m =m(n) ≥ 2,

1. lim
n→∞

Pr
(
SR(m,n) < m

)
= 0, and Column can asymptotically proceed with at most one it-

eration;

2. form = o(lnn), we have lim
n→∞

(m− 1)!
(lnn)m−1 ×E

[
SC(m,n)

]
= 1 and thus lim

n→∞

E

[
SC(m,n)

]
n

= 0;

3. for m = log2n+ω(1), we have lim
n→∞

E

[
SC(m,n)

]
n

= 1.23

In Section 4.5, we provide more detailed bounds on Pr
(
SR(m,n) < m

)
and discuss their

use for the proof of this theorem. Intuitively, the first part holds for fixed m = 2 from

our analysis in Section 3. As m(n) grows, there are two competing forces. On the one

hand, Row has more actions, so it is easier to eliminate at least one of them. On the

other hand, it is harder to eliminate any particular action of Row since, by Lemma 2,

Column deletes fewer actions in his first iteration as the number of Row’s actions grows.

The proof illustrates that the latter force asymptotically dominates the first, irrespective of

the dependence of m(n) on n. The last two parts of the theorem follow immediately from

our analysis in Section 4.1 and the theorem’s first part.

Despite the iterative nature of the deletion procedure, our analysis suggests that play-

ers cannot go far beyond their first iteration unconditionally. This is comforting news for

m(n)×n games with relatively small m(n). These games can be greatly simplified in only a

few iterations. Thus, even taking into account experimental evidence suggesting the lim-

ited ability of individuals to go through an extensive number of deletion iterations, when

games are highly imbalanced, the iteration procedure can be quite useful in simplifying

games. This insight reverses when players’ action sets are of comparable sizes. For larger

23By our analysis in Section 4.1, form = 2log2n+ω(1), all Column’s actions survive the iterated elimination,
or formally E

[
SC (m,n)

]
= n− o(1).
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games, regardless of the number of iterations one contemplates as plausible, the iterative

elimination procedure does not alter substantially the game players need to consider.

Figure 2 uses simulations to depict the objects of our analysis for m×n games, m = 3,4

and n ∈ [50], as well as n×n games, n ∈ [10].24

For m × n games with m ≥ 3, all qualitative conclusions resemble those derived for

the m = 2 case. In particular, the probability of strict-dominance solvability converges to

zero, albeit more rapidly. We already described the pattern that emerges for the number

of conditional iterations: they grow with m, and more rapidly so when players’ action sets

are of the same size. Last, the number of surviving Column actions grow with m.25

Figure 2 also highlights the contrast between games in which both players’ action sets

expand and those in which one of the players has a fixed action set. The likelihood of

dominance solvability π(n,n) vanishes quickly, standing at less than 5% when n ≥ 7, the

number of conditional iterations I(n,n) increases indefinitely and exceeds 3 starting from

n = 4. The expected number of surviving actions coincides with the full action set even for

small n, namely any n ≥ 5.

4.5 Structure of Proofs

In this section, we sketch for the interested reader the arguments underlying our main

results. Detailed proofs appear in the Appendix. We first discuss Proposition 4 that, to-

gether with our analysis in Section 4.1, implies Theorem 2. We then use the proposition to

illustrate the ideas generating the proof of Theorem 1.

Proposition 4. For any m ≤ n,

Pr
(
SR(m,n) < m

)
≤m(m− 1) ·

(m
n

)m−1
4
.

The intuition for this proposition is the following. The number of strategy pairs for

Row is m(m− 1). We can then use symmetry to bound Pr
(
SR(m,n) < m

)
by m(m− 1) times

the probability that Row’s second action strictly dominates her first after the first round

24As already described, we use 106 simulations for each game size, in addition to exact values corresponding
to the m = 2 case discussed in the previous section. For n× n games, we restrict n to be no larger than 10 for
computational reasons.

25Furthermore, the distribution of the number of surviving actions appears approximately normal even
when fixing n at 50. Intuitively, since Row cannot eliminate any of her actions asymptotically, we expect
this distribution to be close to the one of undominated actions. The number of undominated actions can be
represented as the sum of many rare “almost independent” indicator random variables, each corresponding to
whether a particular action is undominated or not. The so-called “Poisson Paradigm”, see Alon and Spencer
(2016), would suggest that the distribution of the number of undominated actions approximate a Poisson
distribution, which in turn approaches a normal distribution as the Poisson mean goes to infinity.
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of Column’s elimination. Namely, we restrict the problem to a collection of particular

“subgames” in which Row considers only two actions.

To complete the heuristic argument underlying this proposition, notice that for any

pair of Row’s actions, Row’s second action does not dominate her first after Column’s

first elimination round only if, for some j ∈ [n], j-th Column’s action is undominated and

r1j > r2j—denote by Rj ≡ {r1j > r2j} the corresponding event. Without loss of generality,

we can fix c1· = (n,n−1, . . . ,1). For Column’s j-th action to be undominated, it suffices for it

to deliver the largest payoff among the first j of Column’s actions for at least one of Row’s

action. Formally, it corresponds to the event Cj ≡
⋃
i≥2{cij = maxk≤j cik}. In the proof,

we show that these events {Ej ≡ Cj
⋂
Rj}j∈[n] are mutually independent. This observation

allows us to bound the probability that Row’s second action strictly dominates her first

one after the first Column’s iteration by

Pr

⋂
j∈[n]

Ej

 =
∏
j∈[n]

(
1−Pr

(
Ej

))
≤ exp(−

∑
j∈[n]

Pr
(
Ej

)
).

Since each event Ej , j ∈ [n], itself represents a finite union of events, we apply Bonferroni’s

inequality to find the lower bound on Pr
(
Ej

)
and use it with other well-known inequalities

to obtain the proposition’s claim. In most cases, the proposition’s bound is sharper than

the crude union boundm(m−1)·2−n+n(n−1)·2−m for the probability of deleting any action

in the first iteration.26

The proposition, together with the union bound above, allows us to immediately con-

clude that in m(n)×n games with an arbitrary specification of m(n) ≤ n, Row cannot elimi-

nate any of her actions asymptotically. Formally, lim
n→∞

Pr
(
SR(m,n) < m

)
= 0, as desired. The

last two parts of Theorem 2 follow from our results in Section 4.1.

As concerns the proof of Theorem 1, we obtain the lower bound by noting that anm×n
game is strict-dominance solvable when Column has a strictly dominant action. This event

occurs with probability n−(m−1).

The derivation of the upper bound is more intricate and divided into two separate

cases. First, we focus on sufficiently imbalanced m × n games, for which m is relatively

small compared to n. In that case, we bound π(m,n) by the probability that Row eliminates

at least one action: π(m,n) = Pr
(
SR(m,n) = 1

)
≤ Pr

(
SR(m,n) < m

)
. We use Proposition 4 to

get the desired bound.

Second, we consider relatively balanced m × n games, for which Row has almost as

many actions as Column. Then, the iterative elimination procedure needs to remove many

26In fact, it is possible to use the inclusion–exclusion principle to obtain an exact expression for Pr(Ej ). In

the Appendix, we use it to prove that for any finite m, we have
∑
j∈[n] Pr

(
Ej

)
= O ((m− 1)/2 · lnn), and thus

Pr
(
SR(m,n) < m

)
= O

(
n−(m−1)/2

)
, which is tight when m = 2.
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of Row’s actions, not just one. Because the corresponding bound for Pr
(
SR(m,n) < m

)
be-

comes less relevant when dealing with games that feature many Row actions and specifi-

cally n×n games, we use an alternative argument.

Specifically, we first show that for perfectly balanced n × n games, π(n,n) ≤ n−Θ(n).

An n × n game is solvable if and only if exactly (n − 1) actions for Row or Column are

eliminated in the iterative procedure. We obtain the stated upper bound by considering a

relaxed problem of finding the probability of eliminating at least an α-fraction of Row’s

or Column’s actions, α ∈ (0,1 − 1/n]. Intuitively, we expect the latter probability to be

sufficiently small for large enough α > 0.

For the relaxed problem, we iteratively (if needed) eliminate strictly dominated actions

in an arbitrary order and stop exactly when an α-fraction of Row’s or Column’s actions is

eliminated. By symmetry with respect to players’ labels, it is without loss of generality

to suppose that at the stopping point, Row has eliminated approximately an α-fraction of

her actions, while Column has eliminated a smaller fraction of actions.

These iterations introduce non-trivial correlations between conditional payoffs corre-

sponding to different actions. However, in the next step, we simplify it further to establish

our stated bounds. Consider the final subgame at which our iterative process above stops,

when approximately an α-fraction of Row’s actions have been eliminated. Suppose action

r of Row has been eliminated and let X denote the set of Column’s actions in this subgame,

his surviving actions. In the original game, action r would also be dominated for Row were

Column’s actions restricted to X. Recall that the number of actions r as such accounts for

approximately an α fraction of Row’s actions. Furthermore, the set X accounts for at least

a (1 − α)-fraction of Column’s actions. To derive the desired upper bound for π(n,n), we

therefore assess the probability that at least a fraction of α of Row’s actions is dominated

in a subgame with at least (1 − α) of Column’s actions. This allows us to circumvent the

correlations between payoffs in games selected through the iterative process. Our stated

bound π(n,n) ≤ n−(
1
3−o(1))n is obtained by picking α = 1/3.27

We next connect imbalanced m × n games, m ≤ n, to the already examined perfectly

balanced m ×m games. When considering the likelihood of dominance solvability, it is

important to note that not every subgame of a strict-dominance solvable m × n game is

solvable in itself.28 Nonetheless, we can pick particular subgames of any size that are solv-

able. In particular, any subgame generated by eliminating some of the players’ dominated

actions would be dominance solvable as well. Therefore, we have the following lemma.

27Various values of α could generate our desired bound.
28Furthermore, in general, we cannot partition a non-random strict-dominance solvable game into two non-

intersecting strict-dominance solvable subgames of given dimensions. That is, π(m,n) is not component-wise
sub-multiplicative.
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Lemma 3. Consider a strict-dominance solvable m × n game, where m,n ≥ 1. Then, for any
m′ ∈ [m], n′ ∈ [n], there exists a strict-dominance solvable m′ ×n′ subgame.29

For all remaining cases of the number m of Row’s actions, we use Lemma 3 to bound

π(m,n) ≤
(n
m

)
·π(m,m), and then apply π(m,m) ≤m−(

1
3−o(1))m to obtain our results.

5 Alternative Distributional Assumptions

Our analysis focused on random games. However, strategic interactions that have received

attention in the literature, theoretically and empirically, are inspired by applications, and

could be far from random. One immediate concern could be that real-world interactions

correspond to games that are more amenable to the iterated elimination procedure. To

what extent are our qualitative results driven by our uniform determination of game struc-

tures? In this section, we present data from lab experiments and from simulations indicat-

ing that our results hold for a wide variety of alternative distributional assumptions that

correspond to commonly-studied strategic interactions.

5.1 Comparison of Lab and Random Games

We start by comparing random games with those played in lab experiments. Our analysis

below uses data on initial play within 86 symmetric 3 × 3 games from 6 different experi-

ments collected by Wright and Leyton-Brown (2014) and utilized by Fudenberg and Liang

(2019) (in addition to simulated random games as analyzed in the current paper).

Figure 4 depicts the frequency of pure Nash equilibria on the left panel and the num-

ber of actions surviving elimination of strictly-dominated actions on the right panel, in

both random 3× 3 games that we study, and those collected from the experimental litera-

ture. The figure already suggests that, if anything, randomly-generated games tend to be

“strategically simpler” than experimental games—they feature fewer pure Nash equilib-

ria and greater impact of the elimination procedure in that fewer actions survive.30 As we

soon show, this increased simplicity translates to the three dimensions of complexity we

inspect throughout the paper.

29As an immediate corollary, for any fixed m ≥ 2, π(m,n) ≤ m ·π(m− 1,n), and hence convergence rates are
weakly increasing.

30In fact, our random games are also simpler than random games from Fudenberg and Liang (2019). Intu-
itively, indifferences that they allow for generate larger best-response sets and hinder the deletion of strictly-
dominated strategies.
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Figure 4: Frequency of pure-strategy Nash equilibria (Left Panel) and surviving actions
(Right Panel) in random and lab games

5.2 Alternative Classes of Games

In this subsection, we compare the three dimensions of complexity inspected throughout

the paper across random games exhibiting commonly-studied structures, lab experimental

games, and our uniformly random games. We focus the comparison on balanced games,

which allows us to consider symmetric games as well.31

In addition to standard games G(n,n) with payoff matrices (R,C) studied before, we

also analyze randomly generated games with the following constraints:32

1. symmetric gamesGsym(n), where payoff matrices are transposes of each other, (R,RT );

2. potential or common interest games Potential(n), in which it is possible to capture both

players’ payoff matrices by a single matrix called an ordinal potential, so that payoff
matrices are identical, (R,R);

3. constant-sum games Const-Sum(n): (R,c−R), where c is an arbitrary constant matrix.

Furthermore, we consider random games with strategic complementarities, namely

games having non-decreasing best-response functions. Formally, a game has strategic

complementarities if, given an order on players’ strategies, an increase in one player’s strat-

egy induces other players to increase their strategies, see Topkis (1979), Bulow, Geanako-

plos, and Klemperer (1985), and Vives (1990). Specifically, we consider random games as

follows:
31We see qualitatively similar results for imbalanced games, see details in the Online Appendix.
32The constraints imposed by these classes of games and the ones discussed next are ordinal in nature. In

particular, their analysis is, again, distribution-free. In all our simulations, we randomly generate games as we
do for our baseline games G(n,n), but impose additional constraints corresponding to the various structures
described here. Pei and Takahashi (2019) consider point-rationalizability in similar classes of games, see also
our discussion in Section 6.
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(a) Probability of strict dominance (b) Conditional number of iterations

(c) Surviving actions

Figure 5: Three dimensions of dominance solvability in n×n games for alternative
distribution assumptions

4. games with strategic complementarities Strat-Complements(n) with payoff matrices

(R̄, C̄), where random R̄ is equal to R conditional on it having a non-decreasing best-

response function with respect to natural orderings {1,2, . . . ,n} for both players and

C̄ is defined similarly;33

5. symmetric games with strategic complementarities Strat-Complementssym(n) with pay-

offs (R̄, R̄T ), where R̄ is defined as above.

Figure 5 depicts the three complexity dimensions we study for these simulated classes

of games, and for the 86 symmetric lab games assembled by Wright and Leyton-Brown

(2014) and discussed in the previous subsection.

33The conditional distribution can be stated in terms of the unconditional one. It implies that best-response
functions are chosen uniformly from non-decreasing functions for given natural orderings.
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Panel (a) of the figure indicates that almost all of the above games yield even lower

probability of dominance solvability. In particular, lab games correspond to a substantially

lower probability of dominance solvability than random games of the same size. The one

exception is games with strategic complementarities, which are somewhat more likely to

be solvable. Nonetheless, even for those games, the probability of dominance solvability

converges to zero rapidly, standing at less than 2% for 8× 8 games.

Panel (b) of the figure displays the number of iterations conditional on dominance

solvability. The random games we study are, to some extent, more complex in that respect,

corresponding to a greater number of necessary iterations. Nonetheless, the differences

are not vast. Furthermore, even for the “simplest” games in this respect, symmetric games

with complementarities, the number of conditional iterations exceeds 2 for 8× 8 games.34

Panel (c) of the figure illustrates the number of surviving actions for either player when

the iterated elimination procedure terminates. We see small differences across the differ-

ent game structures. As already mentioned, the elimination procedure is somewhat less

effective in lab games relative to the random games we study. It is also slightly less effec-

tive than in the other classes of games analyzed here. The number of surviving actions

increases with the size of the game. For 8×8 games, in expectation, there is nearly nothing

eliminated through the iterative procedure in either of the game classes we consider.

6 Rationalizability and Mixed Strategies

Throughout, we focus on elimination of strictly-dominated actions and consider domina-

tion only via pure actions. Our notion of strict-dominance solvability is closely related to

the rationalizability notion proposed by Börgers (1993). In contrast to the traditional no-

tion (Bernheim, 1984; Pearce, 1984), he considers only players’ ordinal preferences over

strategy profiles to be common knowledge, but not their cardinal preferences. Börgers

(1993) characterizes this “robust” rationalizability notion in terms of a pure-strategy dom-

inance property that, for generic games with distinct payoffs, coincides with the standard

pure-strategy dominance relation. He also shows that common belief in his notion is out-

come equivalent to the procedure of iterated elimination of dominated strategies.

Furthermore, experimental evidence indicates that mixed strategies are more cogni-

tively demanding (see Erev and Roth, 1998; Shachat, 2002). Our analysis of Fudenberg

and Liang (2019)’s data is consistent with this assertion—their experimental participants

were roughly double as likely to play a dominated action when domination was via mixed

strategies (see details in the Online Appendix). Such “mistakes” may be compounded

34We do not simulate larger games since the probability of dominance solvability is then very low across
all structures we consider, and the number of simulations required to establish reasonable precision becomes
prohibitively large.
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through the iterative elimination procedure, where each step feeds into the next. The sus-

picion that domination by mixed strategies is more challenging to identify is in line with

the focus of much of the robust mechanism design literature on pure-strategy dominance.

Nonetheless, there is a strong link between the set of surviving actions we identify and

the set of rationalizable actions, which account for domination by mixed strateges. Recall

that the iterative elimination of actions strictly dominated by any arbitrary mixed strategy

generates the set of rationalizable actions. Since some actions may be strictly dominated

only by mixed strategies and not by pure strategies, the set of rationalizable actions is, in

general, a subset of the set of actions surviving iterated elimination of actions strictly dom-

inated by pure actions that we study. The literature often considers the iterative elimina-

tion of never best responses against (surviving) pure strategies. This procedure culminates

in a set of actions that are commonly termed point-rationalizable (Bernheim, 1984).35 Nat-

urally, an action might not be a best response against any pure strategy and still be a best

response with some (non-degenerate) belief about the opponent’s strategy. Therefore, the

set of rationalizable actions—and, thus, the set of actions surviving iterated elimination of

actions strictly dominated by pure actions—is a superset of the set of point-rationalizable

actions.

Weinstein (2016) considers deterministic games without indifferences and shows that,

for sufficiently risk-averse players, the set of rationalizable actions coincides with the set

of pure-strategy rationalizable actions that we consider. For sufficiently risk-loving play-

ers, the set of rationalizable actions coincides with the set of point-rationalizable actions.

Pei and Takahashi (2019) translate this result to random games.36 They also obtain the

distribution of the number of point-rationalizable actions. In particular, for m×n random

games, where m ≤ n, there is a unique point-rationalizable action profile with probability
m+n−1
mn = Θ

(
m−1

)
.

Pei and Takahashi (2019)’s analysis focuses mostly on identifying the distribution of

the number of point-rationalizable actions. The object of their study is then best re-

sponses and the techniques utilized, as well as their results, are different than ours. In

particular, they are silent about the iterative nature of point-rationalizability. Nonethe-

less, their bounds combined with ours offer insights on the probability of mixed-strategy

dominance solvability. As mentioned, mixed-strategy dominance solvable games are a

superset of our pure-strategy dominance solvable games and a subset of games with a

unique point-rationalizable action profile. Since we showed that π(m,n) = n−Θ(m), it fol-

lows that the probability of mixed-strategy dominance solvability is within the interval

35Point-rationalizability is an ordinal concept, and hence its analysis is distribution-free.
36They demonstrate existence of payoff distributions for which the set of rationalizable actions coincides

with the set of pure-strategy rationalizable actions with high probability, and payoff distributions for which
the set of rationalizble actions coincides with the set of point-rationalizable actions with high probability.
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(a) Probability of strict dominance (b) Conditional number of iterations

(c) Surviving actions

Figure 6: Three dimensions of mixed-strategy dominance solvability in balanced n×n
games, where αFL = 0.41 for randomly-generated games is estimated in Fudenberg and

Liang (2019)

[n−Θ(m),Θ
(
m−1

)
]. Similarly, we can obtain asymptotic bounds on the number of Column’s

mixed-strategy rationalizable actions for any m(n) ≤ n. For balanced n× n games, Pei and

Takahashi (2019) show that a lower bound on the number of point-rationalizable Column

actions is given by
√
πn/2.37 The resulting range for Column’s mixed-strategy rationaliz-

able actions is then [
√
πn/2,n]. For m × n games with fixed m, the bound on the mixed-

strategy rationalizable Column’s actions can be directly extended and the resulting range

is [
√
πm/2, (lnn)m−1/(m− 1)!].

Figure 6 illustrates these bounds for n × n games and depicts our simulated variables

of interest considering mixed-strategy dominance solvability, or rationalizability, for uni-

37They also show that, for an arbitrary payoff distribution with a finite third moment, the number of ratio-
nalizable actions is close to n with high probability as n grows.
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form and normal distributions. In addition, we consider a transformation of the uniform

distribution using Fudenberg and Liang (2019)’s estimated risk parameter, αFL = 0.41.38

The figure illustrates that, for these payoff distributions, both the probability of mixed-

strategy solvability and the expected number of Column’s rationalizable actions are close

to those obtained for pure-strategy dominance. This suggests that commonly-used distri-

butions imply sufficient risk aversion to yield similar outcomes from mixed-strategy and

pure-strategy dominance. Furthermore, the number of iterations required under the var-

ious solvability notions, and accounting for the three payoffs distributions we consider,

are nearly identical. In particular, mixed-strategy solvable games appear to require many

iterations, reinforcing our results about complexity of solvable games.

7 Conclusions

This paper provides a characterization of several features resulting from iterative elim-

ination of strictly-dominated actions in general random games. We show that “simple”

games, ones that are dominance solvable in fairly few steps, are rare. Iterated elimination

can help players simplify the game only when players’ action sets are sufficiently imbal-

anced. These insights remain even when restricting attention to various classes of games

commonly studied in the literature, or when allowing for domination by mixed strate-

gies. From a technical perspective, we show the usefulness of several new methods from

probabilistic combinatorics.

Appendix – Proofs

Proof of Proposition 1. We prove the proposition’s three statements in turn.

1. By Lemma 1,

π(2,n) = Pr(SR(2,n) = 1) =
n∑
k=1

Pr
(
UC(2,n) = k

)
·Pr

(
SR(2,n) = 1 |UC(2,n) = k

)
=

n∑
k=1

Pr
(
UC(2,n) = k

)
·Pr

(
UR(2, k) = 1

)
=

2
n!
·

 n∑
k=1

s(n,k) · xk

∣∣∣∣∣∣∣
x=1/2

,

where the third equality follows from the ordinal randomness assumption. By using the

Pochhammer symbol x(n) ≡ x(x+ 1) . . . (x+n− 1), we get

π(2,n) =
2
n!
· x(n)

∣∣∣
x=1/2

=
2

Γ (n+ 1)
· Γ (n+ 1/2)

Γ (1/2)
,

38Due to computational limitations, we use 104 simulations when analyzing mixed strategies. The corre-
sponding figure for imbalanced 3×n games is in the Online Appendix.
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where Γ (·) is the gamma function with Γ (1/2) =
√
π, the first equality follows from the

Proposition 1.3.7 in Stanley (2015), and the second equality is standard (e.g., Srivastava,

2013). By introducing the Wallis ratio

W (n) ≡ (2n− 1)!!
(2n)!!

=
Γ (n+ 1/2)

Γ (1/2)Γ (n+ 1)
,

we finally obtain π(2,n) = 2W (n) =
(2n− 1)!!
2n−1 ·n!

.

2. For any n ≥ 1, by using the identity Γ (x+ 1) = xΓ (x),

π(2,n+ 1) =
n+ 1/2
n+ 1

·π(2,n) < π(2,n).

3. By Stirling’s formula applied to the gamma function,

lim
n→∞

Γ (n+α)
Γ (n) ·nα

= 1,

so that

lim
n→∞

n1/2 ·π(2,n) =
2
√
π
· lim
n→∞

Γ (n+ 1/2) ·n1/2

Γ (n+ 1)
=

2
√
π
.

Proof of Proposition 2. We prove the proposition’s three statements in order.

1. By using probabilities derived in Subsection 3.3,

E [I(2,n)] =
3∑
i=1

i ·Pr(I(2,n) = i) = 1 ·
√
π

2n
· Γ (n)
Γ (n+ 1/2)

+ 2 · n+ 2n−1 − 2
2n

·
√
π · Γ (n)

Γ (n+ 1/2)

+ 3 ·
(
1− n+ 2n−1 − 1

2n
·
√
π · Γ (n)

Γ (n+ 1/2)

)
= 3− n+ 2n−1

2n
·
√
π · Γ (n)

Γ (n+ 1/2)
.

2. Note that for any n ≥ 1,

A(n+ 1) ≡ n+ 1 + 2n

2n+1 ·
√
π · Γ (n+ 1)

Γ (n+ 3/2)
=
n+ 1 + 2n

2n+ 2n
· n
n+ 1/2

·A(n) < A(n),

so that E [I(2,n)] is strictly increasing in n by 1.

3. From Stirling’s formula, we have lim
n→∞

n1/2 · (3−E [I(2,n)]) =
√
π

2
.

Proof of Proposition 3. The proof of this statement is similar to Hwang (1998) and uses

the Berry-Esseen theorem to find the convergence rate in the stated central limit result.

The difference is that the problem does not belong to the exp-log class immediately. For
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simplicity of notation, we let

µn ≡ E

[
SC(2,n)

]
= lnn+γ + o(1),

σn ≡
√

Var
[
SC(2,n)

]
=
√

lnn−
(
π2

12
−
γ

2

)
· 1
√

lnn
+ o

(
1
√

lnn

)
, and

ϕn(t) =
n∑
j=1

Pr
(
SC(2,n) = j

)
· eit(j−µn)/σn ,

where ϕn(t) denotes the characteristic function of the normed variable (SC(2,n) − µn)/σn.

The asymptotic expressions above are derived in the Online Appendix.

Berry–Esseen theorem (Theorem 2 in Petrov, 1975). Let F(x) be a non-decreasing function,
G(x) a differentiable function of bounded variation on the real line, ϕ(t) and γ(t) the corre-
sponding Fourier-Stieltjes transforms:

ϕ(t) =
∫ ∞
−∞
eitxdF(x), γ(t) =

∫ ∞
−∞
eitxdG(x).

Suppose that F(−∞) = G(−∞), F(∞) = G(∞), T is an arbitrary positive number, and |G′(x)| ≤ A.
Then for every b > 1/(2π) we have

sup
−∞<x<∞

|F(x)−G(x)| ≤ b
∫ T

−T

∣∣∣∣∣ϕ(t)−γ(t)
t

∣∣∣∣∣dt + r(b)
A
T
,

where r(b) is a positive constant depending only on b.

We proceed in two steps. In step 1, we reformulate the problem by using the Berry-

Esseen inequality. In step 2, we calculate the characteristic function and establish the

result.

Step 1. Reformulated problem
Take G(x) = Φ(x) (so that A = 1/

√
2π) and T = Tn = cσn, where c > 0 is a sufficiently

small constant. By the Berry-Esseen inequality, it will be sufficient to prove that

Jn =
∫ Tn

−Tn

∣∣∣∣∣∣ϕn(t)− e−
1
2 t

2

t

∣∣∣∣∣∣dt = O
(

1
√

lnn

)
.

Step 2. Characteristic function

ϕn(t) =
n∑
j=1

Pr
(
SC(2,n) = j

)
· eit(j−µn)/σn = An(t) +Bn(t),
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where, following algebraic simplification, we get

An(t) ≡ e−itµn/σn · 1

Γ
(
eit/σn

) · Γ (
n+ eit/σn

)
Γ (n+ 1)

= e
− t22 +O

(
|t|+|t|3√

lnn

)
, and

Bn(t) ≡ 2 · e−itµn/σn ·

 eit/σnΓ (1/2)
· Γ (n+ 1/2)
Γ (n+ 1)

− 1

Γ
(
eit/σn/2

) · Γ (
n+ eit/σn/2

)
Γ (n+ 1)


=

2
√
π
· e
−
(
it·
√

lnn+O
(
|t|√
lnn

))
· e
O
(
|t|√
lnn

)
· e−

1
2 ·lnn+O( 1

n )

− 2 · e
−
(
it·
√

lnn+O
(
|t|√
lnn

))
· e−O(1) · e−

1
2 ·lnn+ 1

2 it·
√

lnn+O(t2).

The Online Appendix provides omitted details behind the above derivations.

Note that Bn(0) = 0 and Bn(s) = O
(
eτ ·
√

lnn

n1/2

)
uniformly for |s| ≤ τ , s ∈ C, for some fixed

τ > 0. By denoting κn ≡ n1/2

eτ ·
√

lnn
for convenience, we can rewrite Bn(s) = O

(
1
κn

)
for |s| ≤ τ .

Furthermore, by taking a small ball around the origin we easily obtain Bn(s) = O
( |s|
κn

)
for

|s| ≤ c < τ , where sufficiently small c > 0 can be taken to be less than τ . Consequently,

ϕn(t) = An(t) +Bn(t) = e
− t22 +O

(
|t|+|t|3√

lnn

)
+O

(
|t|

κn ·
√

lnn

)
,

for |t| ≤ Tn = cσn.

Based on the obtained approximation, we can follow the proof of Theorem 1 in Hwang

(1998). That is, using the inequality |ew − 1| ≤ |w|e|w| for all complex w, we obtain∣∣∣∣∣∣ϕn(t)− e−
1
2 t

2

t

∣∣∣∣∣∣ = O
((

1 + t2
√

lnn

)
exp

(
− t

2

2
+O

(
|t|+ |t|3
√

lnn

))
+

1

κn ·
√

lnn

)
= O

((
1 + t2
√

lnn

)
e−

1
4 t

2
+

1

κn ·
√

lnn

)
(|t| ≤ Tn) ,

for sufficiently small 0 < c < τ .

Thus,

Jn =
∫ Tn

−Tn

∣∣∣∣∣∣ϕn(t)− e−
1
2 t

2

t

∣∣∣∣∣∣dt = O
(

1
√

lnn

∫ Tn

−Tn

(
1 + t2

)
e−

1
4 t

2
dt +

1
κn

)
= O

(
1
√

lnn
+

1
κn

)
= O

(
1
√

lnn

)
,

because lim
n→∞

√
lnn
κn

= lim
n→∞

√
lnn · eτ ·

√
lnn

n1/2
= lim
n→∞

n · eτ ·n

en2/2
= 0.
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Proof of Lemma 2. We prove the lemma’s three statements in turn.

1. For any k ≥ 1, if there are at most k undominated Column’s actions for some g(m +

1,n), then there are at most k undominated Column’s actions for the corresponding g(m,n)

constructed from g(m+ 1,n) by removing the (m+ 1)-th action of Row. Therefore,

Pr(UC(m+ 1,n) ≤ k) ≤ Pr(UC(m,n) ≤ k) for any k = 1,2, . . . ,n.

To conclude the proof, Pr(UC(m+ 1,n) ≤ 1) = n−m < n−(m−1) = Pr(UC(m,n) ≤ 1).

2. For any m ≥ 2, consider Column’s payoff matrix C, where rows {c1·, c2·, . . . , cm·} are i.i.d.
uniform on Sn. Let pC(m,n) be the probability that any particular column is undominated.

Without loss of generality, focus on the first column c·1. There are n possible values

for cm1. Suppose that cm1 = k for some k ∈ [n]. This happens with probability 1
n . Then,

the first action is undominated if and only if it is undominated in the (m − 1) × (n − k + 1)

game formed by removing all columns j with cmj < k and the last row. It happens with

probability pC(m− 1,n− k + 1). By summing over all possible k, k ∈ [n], we easily get

pC(m,n) =

∑n
k=1p

C(m− 1,n− k + 1)
n

=

∑n
k=1p

C(m− 1, k)
n

.

To conclude, by linearity of the expectation, E
[
UC(m,n)

]
= n · pC(m,n).

Component-wise monotonicity follows immediately from the first part of this lemma

and the recurrence relation itself.

3. We show, using induction on m ≥ 2, that for any n ≥ 1,

E

[
UC(m,n)

]
≤ (lnn)m−1

(m− 1)!
+

(lnn)m−2

(m− 2)!
+ . . .+

(lnn)2

2
+ lnn+ 1.

For m = 2, E
[
UC(2,n)

]
= Hn = 1 + 1

2 + . . . + 1
n ≤ lnn + 1 for any n ≥ 1. Assume that this

statement holds for m ≥ 2. We prove it for m+ 1.

For any x > 0, define

f (x) ≡ (lnx)m−1

(m− 1)!x
+

(lnx)m−2

(m− 2)!x
+ . . .+

(lnn)2

2x
+

lnx
x

+
1
x
.
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The function f (x) is strictly decreasing in x > 1. By the recurrence relation,

E

[
UC(m+ 1,n)

]
=
E

[
UC(m,1)

]
1

+
E

[
UC(m,2)

]
2

+ . . .+
E

[
UC(m,n)

]
n

≤ f (1) + f (2) + . . .+ f (n) ≤ f (1) +
∫ n

1
f (x)dx = 1 +

(
(lnx)m

m!
+

(lnx)m−1

(m− 1)!
+ . . .+ lnx

) ∣∣∣∣∣n
1

=
(lnn)m

m!
+

(lnn)m−1

(m− 1)!
+ . . .+

(lnn)2

2
+ lnn+ 1,

as desired, where the the first inequality follows from the induction hypothesis and the

second holds since f (x) is strictly decreasing in x > 1.

We now use induction on m ≥ 2 to show that, for any n ≥ 1,

E

[
UC(m,n)

]
≥ (lnn)m−1

(m− 1)!
.

For any fixed m ≥ 2, pC(m,n) = E

[
UC(m,n)

]
/n—the probability that the first Column’s

action is undominated—is decreasing in n ≥ 1 by its definition.

Form = 2, E
[
UC(2,n)

]
=Hn = 1+ 1

2 + . . .+ 1
n > lnn for any n ≥ 1. Assume that the desired

statement holds for m ≥ 2. We prove it for m+ 1.

For any x > 0, define

f (x) ≡ (lnx)m−1

(m− 1)!x
, so that f ′(x) = − (lnx)m−1

(m− 1)!x2 +
(m− 1)(lnx)m−2

(m− 1)!x2

is negative for x > em−1 and positive for x < em−1. Therefore, f (x) has a unique (global)

maximum at xmax = em−1, so that

max
x>0

f (x) = f (xmax) = f (em−1) =
(m− 1)m−1

(m− 1)!em−1 ≤
1
e
≤ 1

2
,

where the first inequality holds since, for anym ≥ 2, by denoting g(m) ≡ (m−1)m−1

(m−1)!em−1 , we have

g(m+ 1) =
(
1 + 1

m−1

)m−1
· g(m)

e ≤ g(m) ≤ g(2) = 1
e .

By our observations above, for any i ≤ bem−1c − 1, we have

E

[
UC(m,i)

]
i

= pC(m,i) ≥ p
(
m,bem−1c

)
≥ f

(
bem−1c

)
≥ f (x) for any x ≤ bem−1c,

where the first inequality follows since pC(m,n) decreases in n, the second follows from

the induction hypothesis, and the third follows because f (x) is increasing for x < em−1.
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Therefore, for any i ≤ bem−1c − 1,

E

[
UC(m,i)

]
i

≥
∫ i+1

i
f (x)dx.

In addition, for i = 1, we can, in fact, show that

E

[
UC(m,1)

]
1

−
∫ 2

1
f (x)dx = 1−

∫ 2

1
f (x)dx ≥ 1−max

x>0
f (x) ≥ 1

2
.

Similarly, for any i ≥ dem−1e, we have

E

[
UC(m,i)

]
i

= pC(m,i) ≥ f (i) ≥ f (x) for any x ≥ i,

where the first inequality follows from the induction hypothesis and the second holds

because f (x) is decreasing for x > em−1. Therefore, for any i ≥ dem−1e,

E

[
UC(m,i)

]
i

≥
∫ i+1

i
f (x)dx.

Finally, for i = bem−1c, as long as m ≥ 2,∫ dem−1e

bem−1c
f (x)dx ≤max

x>0
f (x) ≤ 1

2
.

To sum up,

E

[
UC(m,1)

]
1

≥
∫ 2

1
f (x)dx+

1
2
≥

∫ 2

1
f (x)dx+

∫ dem−1e

bem−1c
f (x)dx,

E

[
UC(m,i)

]
i

≥
∫ i+1

i
f (x)dx for i , bem−1c.

Therefore, by the recurrence relation and the set of inequalities above,

E

[
UC(m+ 1,n)

]
=
E

[
UC(m,1)

]
1

+
E

[
UC(m,2)

]
2

+ . . .+
E

[
UC(m,n)

]
n

≥
∫ n+1

1
f (x)dx >

∫ n

1
f (x)dx =

(
(lnx)m

m!

) ∣∣∣∣∣n
1

=
(lnn)m

m!
.

Proposition 4∗. Consider a random game G(m,n). Then, for any m ≤ n,

Pr
(
SR(m,n) < m

)
≤m(m− 1) ·

(m
n

)m−1
4
.

For any fixed m, an asymptotic bound can be improved to Pr
(
SR(m,n) < m

)
= O

(
n−

m−1
2

)
.
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Proof. Let p(m,n) denote the probability that the second Row’s action strictly dominates

her first after the first round of Column’s elimination. By symmetry and Boole’s inequality,

Pr
(
SR(m,n) < m

)
≤m(m− 1) · p(m,n).

Without loss of generality, set c1· = (n,n− 1, . . . ,1). Define events Ej , j ∈ [n], as follows:

Ej ≡ Cj
⋂
Rj , where

Cj ≡
⋃
i≥2

{
C : cij >max(ci,j−1, ci,j−2, . . . , ci,1)

}
and Rj ≡ {R : r1j > r2j}.

Note that if Ej happens for some j ∈ [n], then the second Row’s action cannot strictly

dominate her first one after the first round of Column’s elimination. Indeed, if both Cj and

Rj occur, then the column j stays and r1j > r2j .

Assume that events {Ej}j∈[n] are mutually independent. Then,

p(m,n) ≤ Pr

⋂
j∈[n]

Ej

 =
∏
j∈[n]

(
1−Pr

(
Ej

))
, where

Pr
(
Ej

)
=

1
2
· m− 1

j
+

1
2
·
m−1∑
k=2

(−1)k−1
(
m− 1
k

)
·
(

1
j

)k
.

By using the inequality 1− x ≤ e−x that holds for any x ≥ 0, we get∏
j∈[n]

(
1−Pr

(
Ej

))
≤ e−

∑
j∈[n] Pr(Ej).

Next, we verify that events {Ej}j∈[n] are mutually independent. Since rows and columns

are mutually independent, it suffices to prove that {Cj}j∈[n] are mutually independent.

Note that for any matrix C with c1· = (n,n − 1, . . . ,1), we can map it to the matrix

{mij}i∈[m−1], j∈[n] defined as mij =
∣∣∣{k < j : ci+1,k > ci+1,j}

∣∣∣ ∈ {0,1, . . . , j − 1}. This mapping is

a bijection. Furthermore, Cj occurs if and only if mij = 0 for some i ∈ [m− 1] (correspond-

ing events are mutually independent).

We can now show the statement, considering two possibilities:

1. If m = O (1), then

Pr
(
SR(m,n) < m

)
≤m(m− 1) · p(m,n) ≤m(m− 1) · e−

∑
j∈[n] Pr(Ej)

= O (1) · e−
m−1

2 lnn+O(1) = O (1) ·n−
m−1

2 = O
(
n−

m−1
2
)
.

2. The main statement is trivial for m = 1. Consider m ≥ 2. By applying Bonferroni’s
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inequality up to k = 2, we have

Pr
(
Ej

)
≥ m− 1

2
· 1
j
− (m− 1)(m− 2)

4
· 1
j2 =

m− 1
2

(
1
j
− m− 2

2
· 1
j2

)
.

As m ≤ n, because m−2
2j < 1

2 for any j ≥m− 1,

∑
j∈[n]

Pr
(
Ej

)
≥

∑
j≥m−1

Pr
(
Ej

)
=

∑
j≥m−1

m− 1
2

(
1
j
− m− 2

2j
· 1
j

)

>
∑
j≥m−1

m− 1
2

(
1
j
− 1

2
· 1
j

)
=
m− 1

4
·

∑
j≥m−1

1
j
>
m− 1

4
·
∫ n

m

dx
x

=
m− 1

4
· ln n

m
,

so that

Pr
(
SR(m,n) < m

)
≤m(m− 1) · e−

m−1
4 ·ln

n
m =m(m− 1) ·

(m
n

)m−1
4
.

Proof of Lemma 3. If either m = 1 or n = 1, the proof is trivial. Consider, then, m,n ≥ 2.

We show that there exists an (m − 1) × n subgame that is strict-dominance solvable.

Indeed, if there is a strictly dominated action for Row in the original game, then the (m−1)×
n subgame formed by the exclusion of this action is strict-dominance solvable. Otherwise,

there is a strictly dominated action for Column such that, in the induced game after the

first iteration, Row has a strictly dominated action. The (m − 1) × n subgame, formed by

the exclusion of this action from the original game, is strict-dominance solvable. By a

symmetric argument, there exists an m× (n−1) subgame that is strict-dominance solvable.

We can repeat these steps to prove the desired result by induction.

Proof of Theorem 1. We first show that π(n,n) ≤ n−(
1
3−o(1))n. The idea behind the proof is

to estimate the probability to eliminate at least n3 rows (actions of Row) or columns (actions

of Column). This probability will provide the desired upper bound for the probability of

strict-dominance solvability.

Start the standard iterative elimination procedure and stop exactly when at least n
3

rows or at least n
3 columns are deleted. To simplify the presentation, we omit all floor and

ceiling signs whenever these are not crucial. Without loss of generality, suppose that we

deleted n
3 rows and at most n

3 columns.

Let X be the set of columns that are not yet eliminated. Similarly, Y is defined as the set

of rows that are not yet deleted. Their complements X ′ ≡ [n]\X and Y ′ ≡ [n]\Y correspond

to eliminated columns and rows, respectively. By the previous paragraph, |X | ≥ 2n
3 and

|Y | = 2n
3 . Also, for any row ri eliminated, i ∈ Y ′, there must exist a row rj not eliminated

yet, j ∈ Y , so that rjx > rix for any x ∈ X, namely rj strictly dominates ri when restricted to
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columns X.

For any row ri eliminated, i ∈ Y ′, choose some row rj(i) not eliminated yet, j(i) ∈ Y , so

that rj(i)x > rix for any x ∈ X, and draw a directed edge from j(i) to i. We get a collection of r

stars of sizes k1, k2, . . . , kr with centers in Y (not eliminated rows) and leaves Y ′ (eliminated

rows), so that k1 + k2 + . . .+ kr = |Y ′ | = n
3 .

First, the total number of ways to choose such X, Y , and stars, is bounded above by

(
n
|X |

)
·
(
n
|Y |

)
· |Y ||Y

′ | ≤ 2n · 2n · |Y |n−|Y | ≤ 4n ·
(2n

3

) n
3
.

Second, for any such fixed X, Y , and r stars of sizes k1 + k2 + . . . + kr = |Y ′ | = n
3 , the

probability that for each star, its center dominates all corresponding leaves when restricted

to X, is exactly(
1

k1 + 1
· 1
k2 + 1

· . . . · 1
kr + 1

)|X |
≤

( 1
|Y ′ |+ 1

)|X |
≤

( 1
|Y ′ |

)|X |
≤

( 1
n/3

) 2n
3
.

Based on two previous inequalities, the probability to eliminate at least n
3 rows or

columns is bounded above by

4n ·
(2n

3

) n
3
·
( 1
n/3

) 2n
3

= n−(
1
3−o(1))n, as desired.

In order to prove the main statement of this theorem, we consider two relevant cases.

If m ≥ n0.9, then by Lemma 3 and the inequality for balanced games proved above,

π(m,n) ≤
(
n
m

)
·π(m,m) ≤

(
n
m

)
· 1
m0.3m ≤

(
n
m

)
· 1
n0.27m .

By using the standard upper bound for the binomial coefficient, we get(
n
m

)
· 1
n0.27m ≤

(en
m

)m
· 1
n0.27m = em · 1

n0.17m .

Otherwise, if m ≤ n0.9, then by Proposition 4,

π(m,n) ≤m2 ·
( 1
n0.1

)m−1
4
≤m2 · 1

n0.025m .

To sum up, by taking C2 = 0.01 and sufficiently large C1 > 0, for any m ≤ n, we obtain the

desired bound π(m,n) ≤ C1n
−C2m.
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