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1 Introduction

Many matching environments are inherently dynamic—participants arrive at
the market over time, or interact dynamically before forming matches. For
example, in the child-adoption process, children become available progressively
and often wait for a match while being cared for by social services, incurring
wait costs in terms of well-being and long-term outcomes. Similarly, potential
families pay attorney and agency fees while waiting to be matched to a child. In
kidney donation, the U.S. Department of Health and Human Services reports
that a new patient is added to the kidney transplant list every 14 minutes and
about 3000 patients are added each month. Since health conditions of potential
recipients can potentially deteriorate as time passes, the timing of matches is
crucial for minimizing lost lives: in 2014, 4761 patients died while waiting for
a kidney transplant, and another 3668 people became too sick to receive one.
In the realm of public housing, families are often placed on waitlists before
obtaining housing units, which become available stochastically. And so on and
so forth.

To set the stage for our analysis, consider a simple setting in which squares
S and rounds R arrive over time. For simplicity, suppose any square and round
are compatible, or agreeable, to one another with some probability p.1 Consider
then a bi-partite graph connecting k squares with k rounds, where a link appears
only when the corresponding pair is compatible, see Figure 1. This is a random
graph, with each link occurring with probability p.

A bi-partite graph as such induces a perfect matching if there exists a match-
ing µ : S −→ R that is injective and surjective, where µ(s) = r implies that s
and r are linked in the graph (but not necessarily the converse: only some links
get implemented when constructing the induced matching). The following is a
well-known result.

Proposition 1 (Erdős and Rényi, 1964) As long as the graph is connected
enough, namely as long as p approaches 0 slower than log k

k , there is a
perfect matching with probability approaching 1 as k grows large.

1In principle, we could allow for hetergeneity among squares and rounds and have the
compatibility probability depend on agents’ types. Indeed, in the organ-donation context,
some blood types are more common than others. The probability p we consider here could be
thought of as the minimal compatibility probability across types.
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Figure 1: Compatability-based Random Preferences

Thus, even if compatibility rates are incredibly low, a large enough popula-
tion of market participants would allow us to nearly guarantee a perfect match
for everyone. Similar results hold when agents are heterogeneous and some
matches generate greater surplus than others: in a very large population, it is
almost always possible to create the maximal number of efficient matches, and
minimize the loss due to less desirable ones.

In reality, when a market populates over time or when interactions between
agents occur dynamically, waiting for a match is costly. Thus, in general, we
cannot rely on the desirable asymptotic features of such markets. At the heart
of the work on optimal design of clearinghouses in such settings is then the
trade-off between market thickness, which allows for high-quality matches, and
costly waiting.

In this chapter, we illustrate how this trade-off affects the optimal design of
matching mechanisms in different settings, from one-sided matching or alloca-
tion environments in which one side of the market has preferences over items
constituting the other market side, to two-sided markets, in which both sides of
the market have preferences over matched partners.

2 Dynamic One-Sided Allocations

We start with a description of one-sided allocation problems in which scarce
items—public housing, daycare spots, organs from deceased donors, etc.—arrive
over time and are allocated to waiting agents. Importantly, there is heterogene-
ity in agents’ valuations of items. In the following analysis, we consider two
potential impediments to the socially optimal allocation: first, the social plan-
ner may be unable to impose item assignments on unwilling agents, who would
rather wait for more preferable options; second, agents’ preferences over items
may not be transparent to the social planner.

2.1 Priority Protocols in Discretionary Settings

In this section we compare alternative priority protocols that a planner can im-
plement when agents maintain discretion over the acceptance of an item offered
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to them. We study this problem in a setting in which the number of agents
allowed to wait in line is fixed, and a new participant can join the line as soon
as an agent waiting is assigned an item and leaves the market.

Consider a waitlist that, for simplicity, consists of only two agents, who are
ranked according to their order of arrival: ρ = 1, 2. At every period, one item
becomes available and is offered to the agents according to an independently-
determined priority order. Specifically, the item is offered to the agents accord-
ing to their order of arrival ρ with probability r ∈ [ 1

2 , 1], and according to the
reverse order with probability 1−r. Hence, r = 1 represents the first-in-first-out
(FIFO) protocol, while r = 1

2 represents an equal-weight lottery. If the first
agent the item is offered to declines it, the item is offered to the other agent. If
the second agent also passes, the item goes to waste. If the ρ = 1 agent accepts
the item, she leaves the market and the other agent gets her slot, namely is
labeled with ρ = 1, while a new agent joins the waitlist with a ρ = 2 label. If
the second, ρ = 2 agent is assigned the item, he leaves the market and a new
agent replaces him with ρ = 2. Each period, agents incur a waiting cost c > 0.
Assume that the reservation utility is sufficiently low so that agents entering
the waitlist never leave without being assigned an item.

We start with the private value case in which each agent’s valuation for each
item is independent, equals 1 with probability p ∈ (0, 1), and 0 otherwise. Any
agent i always accepts an item that she values at 1. Let q(i) denote agent i’s
probability of acceptance of an item she values at 0. For i = 1, 2, agent i’s
continuation value, the difference between her expected value and her expected
cost, is:

V (i) =
A(i)

B(i)
− ic

B(i)
,

where

A(1) = p [r + (1− r)(1− p)(1− q(2))] ,
A(2) = p [2− p− (1− p)(rq(1) + (1− r)q(2))] ,
B(1) = [p+ (1− p)q(1)] [r + (1− r)(1− q(2))(1− p)] ,
B(2) = [p+ (1− p)q(1)] [r + (1− r)(1− p)(1− q(2))]

+ [p+ (1− p)q(2)] [1− r + r(1− p)(1− q(1))] .

For example, A(1) represents the expected value of the item picked by agent 1.
The item is valued at 1 for agent 1 with probability p, in which case agent 1
accepts it whenever offered. The agent is offered the item first with probability
r. The item is offered to agent 1 after being rejected by agent 2 with probability
(1− r)(1− p)(1− q(2)).

The probabilities of misallocation and waste are

µ = p(1− p) [rq(1) + (1− r)q(2)] and

v = (1− p)2(1− q(1))(1− q(2)),

respectively. Unsurprisingly, the probability of waste v is independent of the
queuing protocol r. It is easy to check that there are three equilibria comprised
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of pure-strategy Markov strategies, {qj(1), qj(2)}3j=1, where q1(1) = q1(2) = 0,

q2(1) = 0, q2(2) = 1, and q3(1) = q3(2) = 1.
In all three equilibria, an increase in r leads to an increase in V (1). We

now focus on the effect of an increase in r on V (2). Intuitively, there are two
effects at work. An increase in r decreases the probability with which agent 2
is offered the item first, and therefore decreases agent 2’s continuation value.
However, an increase in r also increases the continuation value of agent 1, and
therefore makes agent 1 more selective. This latter effect benefits agent 2, since
every item rejected by agent 1 is offered to agent 2 next, potentially generating a
strictly positive value for him. As it turns out, the two effects cancel one another
and, in all three equilibria, any increase in r leaves V (2) unchanged. We can
conclude that an increase in r weakly increases the equilibrium values of both
agents, and leaves the probability of waste unchanged. Finally, the probability
of misallocation is negatively correlated with agents’ equilibrium values, and it
is weakly decreasing in r.

Next, consider the common value case in which the values of the two agents
are perfectly correlated. We can express the continuation value as in the private
value case, where now

A(1) = rp,
A(2) = p,
B(1) = r [p+ (1− p)q(1)] + (1− r) (1− p) q(1)(1− q(2)),
B(2) = 1− (1− p) (1− q(1))(1− q(2)).

For example, as before, A(1) represents the expected value of the item picked
by agent 1. Since values are correlated, the only case in which agent 1 is offered
an item of value 1 is when she is first in line. The expected value is then rp.

Since the two agents value all items in the same way, there is never misallo-
cation. The probability of waste is

v = (1− p)(1− q(1))(1− q(2)),

which is again independent of r. As in the private value case, it is easy to
check that there are three pure-strategy Markov equilibria {q̃j(1), q̃j(2)}, where
q̃1(1) = q̃1(2) = 0, q̃2(1) = 0, q̃2(2) = 1, and q̃3(1) = q̃3(2) = 1. An increase
in r always increases V (1) and does not affect V (2). The reasoning behind the
effect on V (2) is slightly different from that pertaining to the private value case.
Specifically, in the common value case, the only scenario in which an agent can
make a positive payoff is by being offered the item first. An increase in r lowers
the probability with which agent 2 is approached first. However, it also increases
the rate at which agent 1 accepts an item and leaves the market, freeing her
spot on the waitlist for agent 2. Again, the two effects balance one another,
leaving V (2) unaffected by changes in r.

To summarize, this example illustrates two settings in which the FIFO queu-
ing protocol dominates a lottery from both participants’ and the social planner’s
perspectives.
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2.2 Buffer-Queues Mechanism with Private Preferences

Consider now a setting in which a large set of agents is present at time t = 0, and
at each period, a new item arrives at the market. The items can be of two sorts:
an A-item with probability pA, and a B-item with probability pB ≡ 1 − pA.
Agents can also be of two types. Agents of type α prefer A-items, while agents
of type β prefer B-items. Each agent is of type α with probability pα and of
type β with probability pβ ≡ 1 − pα. For simplicity, assume that the system
is balanced ; that is, pA = pα ≡ p. Each agent gets utility v > 0 from being
assigned her preferred item, and 0 from being assigned a different item. As
before, the wait costs agents incur before being matched are linear, and the
per-period cost is c > 0. For example, this setup fits the allocation process
of public housing units to families that vary in their preferences over housing
units’ attributes: location, floor, etc.

Without observing agents’ types, the social planner needs to select a mech-
anism µ to allocate each arriving item to an agent, and we allow the social
planner to impose assignments on agents if needed. Since the system is as-
sumed to be overloaded, an item is assigned at every period—i.e., there is no
waste. Therefore, the total wait cost is constant across allocations, and the
social planner’s goal is to minimize the welfare loss due to items’ misallocation.
Given an assignment µ, if ξt is an indicator equal to 1 if the arriving item at
t is misallocated, the long-run misallocation rate is ξ = lim supT→∞

∑T
t=0 ξt.

Therefore, the welfare loss from misallocation is

WFL = vξ.

As a convenient benchmark, consider a sequential assignment mechanism
that assigns the arriving item to an arbitrary agent, without agents having
discretion on whether to accept or decline any item. It is easy to see that such a
mechanism generates a misallocation rate of ξSA = 2p(1− p). Can we do better
than this mechanism by inducing agents to report their preferences?

It is possible to induce agents to reveal their type by allowing them discretion
over whether to accept an item offered immediately and a different item at some
future time. Such a mechanism yields an endogenous separation of the agents
into two sets: ones that have not yet been approached, and ones that have been
approached in the past and have decided to wait for their preferred item. Those
agents who are waiting after having been approached form the buffer queue
(or BQ). Agents in the buffer queue are divided into ones that are waiting for
an A-item, in the A-buffer queue (or the A − BQ), and ones that are waiting
for a B-item, in the B-buffer queue (or the B − BQ). Since items’ arrival is
stochastic, agents in the buffer queue face uncertainty regarding the time at
which they will receive their desired item. As buffered agents accumulate, the
mechanism needs to take their presence into consideration as new offers are
made to subsequent agents. For x = A,B, a buffer-queue policy for x-items
governs the maximal number of agents that are allowed in the x−BQ and how
each new x-item is allocated to the agents waiting in the x−BQ.
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Definition 1 (Buffer-Queue Policy) For x = A,B, a
〈
k
x
, ϕx

〉
buffer-queue

policy for x consists of a threshold k
x

of the number of agents in the x−BQ
and, for any length k ≤ kx of the x−BQ, a probability ϕxk(i) with which
an agent in position 1 ≤ i ≤ k of the x − BQ is assigned the item x.
Therefore, ϕxk(i) ≥ 0 for any 1 ≤ i ≤ k ≤ kx, and

∑k
i=1 ϕk(i) = 1 for any

1 ≤ k ≤ kx.

Definition 2 (Buffer-Queue Mechanism) A buffer-queue mechanism M =〈
k
A
, ϕA, k

B
, ϕB

〉
specifies a buffer-queue policy for each item and, for

x = A,B, if an x-item arrives, it implements the following steps:

(1) If the x−BQ is not empty, the x-item is assigned to an agent in the
x−BQ according to ϕx.

(2) If the x − BQ is empty, the mechanism sequentially approaches new
agents until the x-item is assigned. For each approached agent:

(a) Let y 6= x. If the y − BQ currently has k − 1 < k
y
, the mechanism

offers the agent the choice of (i) taking the x-item immediately, or
(ii) declining the x-item and joining the y−BQ in the k-th position to
receive a y-item in the future according to ϕy. If the agent chooses
(i), the period ends, and if the agent chooses (ii), the mechanism
approaches another new agent.

(b) If the y−BQ currently has k
y

agents, then the new agent is assigned
the x-item and the period ends.

A buffer-queue mechanism is incentive compatible if, whenever a buffer queue
is not full, any agent chooses to join that buffer queue rather than accept a less
desirable item; that is, agents are truthful. For example, consider an unap-
proached agent of type α who is offered a B-item. The agent has the choice of
either taking that item or revealing that she is mismatched and being placed in
the A− BQ in position k. In this case, suppose wAk is the expected number of
periods the agent will have to wait until receiving an A-item. Given wAk , the
agent prefers to join the A− BQ if v − cwAk ≥ 0, or wAk ≤ v

c ≡ w. If the agent
believes that other agents are truthful, the expected wait wAk depends only on〈
k
A
, ϕA

〉
. Therefore,M is referred to as incentive compatible if wxk ≤ w for

all k ≤ kx and x = A,B; put differently, if it is an equilibrium for all agents to
be truthful.

The dynamics of a buffer-queue mechanism when agents are truthful are

captured by an ergodic Markov chain with state space {−kB , .., kA}, where the
state k ≥ 0 indicates k agents waiting in the A − BQ, and k ≤ 0 indicates |k|
agents waiting in the B − BQ. Note that at most one of the queues can be
non-empty at any given time.
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Buffer queues can be used to study the performance of a single waiting list
governed by a FIFO priority order. All agents wait in an ordered line and know
their position. Each arriving item is offered to the first agent in the queue. If
that agent declines, the item is offered to the second agent in line, and so on.
All agents who decline an item keep their positions in the queue. The following
result allows us to quantify the equilibrium welfare loss associated with this
protocol.

Proposition 2 (Equilibrium of a FIFO Waitlist) The single FIFO wait-
list has a unique equilibrium in which the outcome is identical to a buffer-

queue mechanism M =
〈
k
A
, ϕA, k

B
, ϕB

〉
when agents are truthful, ϕA

and ϕB follow a FIFO order, and k
A

= k
B

= bpwc . The welfare loss is
given by:

WFLFIFO =
2vp(1− p)

(1− p) bpwc+ p b(1− p)wc+ 1
.

The intuition behind Proposition 2 is simple. Consider an agent of type α
in position k of a single waitlist. If the agent is offered an A-item, she will
accept. If she is offered a B-item, it must be the case that k − 1 agents before
her declined the same item, since they are waiting for A. Therefore, the agent
is expected to wait k/p periods before being offered an A−item. This implies
that the agent prefers to wait if and only if v − kc/p ≥ 0, or k ≤ pw. The
Markov-chain structure of the buffer queues allows an easy computation of the
welfare loss. As the wait cost approaches zero, the welfare loss of the single
FIFO waitlist in the balanced case vanishes.

Finally, we can characterize the welfare-maximizing incentive-compatible
buffer-queue mechanism. To do so, we first define a Load Independent Ex-
pected Wait (LIEW ) policy for item x = A,B. This is a buffer-queue policy〈
k
x
, ϕx

〉
in which, when agents are truthful, the expected wait w for agents in

the queue does not depend on their position in the queue, or on the number

of other agents in the queue. A mechanism M =
〈
k
A
, ϕA, k

B
, ϕB

〉
is a LIEW

mechanism if
〈
k
x
, ϕx

〉
is LIEW for x = A,B. We have

Proposition 3 (Optimal Buffer Queue) Let M∗ =
〈
k
A
, ϕA, k

B
, ϕB

〉
be a

LIEW mechanism such that k
A

= k
B

= k
LIEW

, where

k
LIEW

= b2pwc − 1.

Then M∗ is incentive compatible and achieves weakly higher welfare when
agents are truthful than any other incentive-compatible buffer-queue mech-
anism.

7



To understand the ideas underlying Proposition 3, observe that, since misal-

locations decrease in k
A

and k
B

, welfare maximization requires the maximiza-

tion of k
A

and k
B

subject to the incentive-compatibility constraint. Now, we

can establish that any buffer-queue policy with k > k
LIEW

is not incentive
compatible. To see this, notice that for a policy to be incentive compatible, it
must be that for any k ≤ k, any agent that joins the buffer queue at position
k must expect a wait wk such that wk ≤ w, so that E[w] ≤ w. In the balanced
case, the average number of people in the buffer queue is L = K+1

2 . Little’s law

implies that E[w] = L
p = k+1

2p ≤ w, or k ≤ b2pwc − 1. Therefore, if k > k
LIEW

,

there must be at least one position k′ such that wk′ > w, thereby violating
incentive compatibility.

It is possible to show that M∗ reduces the welfare loss to almost half that
of the FIFO mechanism. Intuitively, any buffer-queue mechanism compensates
agents that reject a mismatch by promising them a better match in the future,
albeit at the cost of additional wait time. In a FIFO mechanism, agents who
join the buffer queue when it is relatively short obtain larger net payoffs than
those joining the buffer queue later on, for whom the incentive-compatibility
constraint binds. A LIEW mechanism induces the same expected wait time for
all agents. It is then able to accommodate more agents in the buffer queue while
maintaining incentive compatibility.

3 Dynamic Two-Sided Matching

3.1 Dynamic Matching with Fixed Participants

Many real markets have a fixed set of participants interacting in a dynamic
fashion. For instance, every year, new economics graduate students enter the
job market for academic positions. The set of candidates and the available
positions are, by and large, set at the start of each year and interactions between
market participants occur dynamically: universities often invite candidates to
interviews sequentially and the generation of offers often spans several months.
Many other markets share those features: the market for new law clerks, freshly-
minted rabbis, etc. Even the medical match, while famously governed by a
centralized clearinghouse, is preceded by interactions—namely, interviews—that
occur over time and are by and large decentralized. How do such decentralized
markets work? What matches can they achieve? Will they be stable?

One natural way to answer these questions is to describe precisely a two-
sided decentralized matching market game in which participants interact
over time. The main ingredients of such a game are naturally the underlying
preference distribution of participants, and the information available to them.

Consider the following simple setup. A market corresponds to a triplet
(S,R, U), where S = {1, ..., S} is a finite set of squares—say, hiring firms—and
R = {1, ..., R} is a finite set of rounds—say, potential employees. Match utilities
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can then be described as follows:

U =


{
usij︸︷︷︸

}
,

square i′s utility from matching with j

{
urij︸︷︷︸

}
round j′s utility from matching with i

 .

For simplicity, we can assume that remaining unmatched generates a utility of
0 for any participant and that all match utilities are strictly positive.

Certainly, if a market has multiple stable matchings, any dynamic interac-
tion would conceivably suffer from coordination problems: even if participants
aimed at establishing a stable outcome, they would need to agree on which one.
Consider then the simple case in which utilities are such that there is a unique
stable matching, which we denote by µM .

One way to model market interactions is via a dynamic version of the De-
ferred Acceptance (DA) algorithm. At every period t = 1, 2, ... there are two
stages. First, squares simultaneously decide whether and to whom to make an
offer, where an unmatched square can have at most one offer out. Then, each
round j who has received an offer from square i can accept, reject, or hold the
offer. If such an offer is accepted at period t, square i is matched to round j
irreversibly. Square i then receives a payoff of δturij and round j receives a payoff
of δtuwij , where δ ≤ 1 is the market discount factor. Unmatched agents receive 0
throughout the game. Importantly, in contrast with the way a direct-revelation
version of DA operates, squares need not make offers in order of their preference
lists and rounds need not hold only offers that are their favorites. In particu-
lar, squares can approach rounds multiple times, much like in labor-market
applications, where some individuals may receive repeat offers from particular
employers.

As for market monitoring, assume that squares and rounds observe receipt,
rejection, and deferral only of offers they are involved in. However, whenever an
offer is accepted, the whole market is informed of the union. Similarly, whenever
there is market exit, all participants are informed. We make these assumptions
for their realism. While individuals or firms are privy to details of offers they
engage with, they are unlikely to know the ins and outs of all offers made in
the market. Nonetheless, theoretically, one could consider various alternatives
to this monitoring structure.

We now consider the Nash equilibria of such a market game. As it turns out,
we can always implement the unique stable outcome µM through equilibrium:

Proposition 4 (Equilibrium with Fixed Participants) There exists a Nash
equilibrium in strategies that are not weakly dominated that generates the
unique stable matching.

The intuition of this proposition is straightforward. Indeed, consider the
following profile. At t = 1, each square i makes an offer to round µM (i). Each
round j accepts the highest-ranked square that is at least as good as µM (j),
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breaking any ties in favor of µM (j). The round leaves immediately if she receives
no offers and all squares are matched or exited. Otherwise, off the equilibrium
path, squares and workers revert to strategies that emulate the DA algorithm.

Nonetheless, there can be other (unstable) equilibrium outcomes, as the
following example illustrates.

Example 1 (Multiplicity) Suppose S = {s1, s2, s3}, R = {r1, r2, r3}, and
that utilities induce the following ordinal preferences:

s1 : r2 � r1 � r3

s2 : r1 � r2 � r3

s3 : r1 � r2 � r3

r1 : s1 � s3 � s2

r2 : s2 � s1 � s3

r3 : s1 � s3 � s2.

We continue assuming that all participants are acceptable.
These preferences induce a unique stable matching µM such that µM (si) = ri

for all i.
As it turns out, we can induce another matching µ, where s1 and s2 swap

their partners and match with their favorite rounds, as long as the discount
factor δ is high enough. Namely, we can implement in equilibrium µ(s1) = r2,
µ(s2) = r1, and µ(s3) = r3.

How can that be done in equilibrium? Consider the following profile of
strategies. In period 1, s3 makes an offer to r3, who accepts any offer from a
square ranked at least as high as r3. Squares s1 and s2 make no offers, while
rounds r1 and r2 accept offers only from their favorite squares. In round 2, each
square si, with i = 1, 2, makes an offer to µ(si). Rounds r1 and r2 accept any
offer. Upon any observable deviation, all remaining agents revert to emulating
(square-proposing) DA strategies.

Why is this profile an equilibrium? Notice that s3 and r3 are bound to match
with one another. They therefore best respond by doing so in the first period. In
fact, they have a strict preference for doing so with any discount factor smaller
than 1. With s3 and r3 out of the way, the resulting “sub-market” exhibits the
following restricted preferences:

s1: r2 � r1

s2: r1 � r2
,

r1 : s1 � s2

r2 : s2 � s1
.

In particular, this sub-market entails two stable matchings: one matching si
with ri for i = 1, 2 and one matching si with r3−i for i = 1, 2. What transpires
from period 2 and on is essentially the profile we used to prove Proposition
1: each square makes an offer to their most-preferred stable partner. Notice
that the rounds are not using weakly dominated strategies in this example. In
particular, if square si makes an offer to ri in period 1, for i = 1, 2, that offer
would be accepted immediately. Nonetheless, for high enough discount factors,
these squares would prefer to wait for one period to get their most preferred
partner.

This example hinges on the dynamic nature of interactions. Agents are mak-
ing contingent offers: conditional on s3 and r3 leaving the market, s1 and s2
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target their most favored stable partners. For example, in the job-market con-
text, this suggests that certain participants could be placed in a “waitlist” and
approached with an offer only after other participants are matched. Clearly,
what allows for this example to occur is the fact that, despite the overall mar-
ket having a unique stable matching, one of the sub-markets has multiple stable
matchings. Ruling out the possibility that sub-markets exhibit multiple stable
matchings eliminates such examples when combined with appropriate refine-
ments.2

3.2 Dynamic Matching with Evolving Participants

In many two-sided matching processes, such as child adoption and kidney ex-
changes, participants arrive over time. Likewise, many labor markets entail
unemployed workers and job openings that become available at different peri-
ods. Such settings open the door for new questions regarding the operations of
both decentralized and centralized interactions.

3.2.1 Dynamic Stability

When market participants arrive over time, certain matches might be created
along the way—patients get transplants, parents adopt children, individuals get
public housing, etc. In such settings, attempts to block a market matching are
constrained by the fact that only a subset of individuals is available at any point
in time. We start by modifying the standard notion of stability for such settings.

For illustration purposes, we consider a particularly simple setting. Suppose
there are only two periods, t = 1, 2. A finite set of squares S all arrive at t = 1.
A finite set of rounds R arrive in two installments. A subset of rounds R1 ⊂ R
arrives at t = 1 and a subset R2 ⊂ R arrives at t = 2, where

R1 ∩R2 = ∅ and R1 ∪R2 = R.

Thus, only one side of the market appears in increments. Furthermore, there is
certainty on future arrivals.

We assume that squares are discounted-utility maximizers. That is, for each
s ∈ S, there is a utility u(s, ·) : R →R and a discount factor δs ∈ [0, 1], such that
s’s utility from matching with round r at time t is given by δtsu(s, r). We also
assume that remaining unmatched generates 0 utility: u(s, s) = 0. We make
similar assumptions when it comes to rounds, but distinguish between rounds
arriving at period 1 and rounds arriving at period 2. Namely, each round r ∈ R
is associated with a utility v(·, r) : S →R, where we assume that v(r, r) = 0.
Furthermore, each round r in R1 uses a discount factor δr ∈ [0, 1]. Agents in R2

experience no discounting as they exist for only one period in the market. At any

2One can show that, with aligned preferences, where there is no “preference cycle” in
the matrix of match surpluses, iterated elimination of weakly dominated strategies generates
a unique equilibrium prediction, which is stable. As a note about refinements, due to our
assumptions on the structure of monitoring, subgame perfection has little bite. The only
public monitoring occurs through market exits, which limits the set of proper subgames.
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time t, only available agents can match with one another. Consequently, we can

define a period-t matching as an injective map mt : S ∪
t⋃

τ=1
Rτ → S ∪

t⋃
τ=1
Rτ

such that (i) for all s ∈ S, mt(s) ∈ {s}∪
t⋃

τ=1
Rτ , and (ii) for all r ∈

t⋃
τ=1
Rτ ,

mt(r) ∈ S ∪ {r}. Let Mt denote the set of all period-t matchings.
Naturally, period-1 matchings imposes constraints on period-2 matchings.

Namely, if an agent is matched in period 1, she cannot be rematched in period
2. Formally, a pair (m1,m2) ∈M1×M2 is feasible if for all s ∈ S, if m1(s) 6= s
then m2(s) = m1(s) (and since m2 is injective, m2(m1(s)) = s). Let M denote
the set of all feasible matchings.

Even when the set of participants is fixed, we already saw that dynamics
allow for matchings to be contingent on prior market interactions. The same
occurs when market participation evolves: period-2 matchings can depend on
the matchings implemented in period 1. Our object of analysis is therefore
a contingent matching. Such a matching specifies the selection of a period-
1 matching and, for each matching in period 1, the selection of a period-2
matching. Formally, a contingent matching µ is a map

µ : {∅} ∪M1 →M1 ∪M2

such that µ(∅) ∈ M1 and, for all m1 ∈ M1, µ(m1) ∈ M2 and (m1, µ(m1)) is
feasible.

We are now ready to define dynamic stability of a contingent matching.
It entails two conditions. First, once a matching is formed in period 1, the
matching in period 2 must be stable among the remaining agents and the new
entrants, for much the same reasons as those described in the introductory
chapter for static markets. The period-2 matching should then be individually
rational and entail no blocking pairs. Second, taking the outcomes of period
2 as given, no group of agents in period 1 can beneficially deviate from the
prescribed matching.

Definition 3 (Dynamic Stability) A contingent matching µ is dynamically
stable if:

1. For each m1 ∈ M1, the resulting period-2 matching µ(m1) is stable, en-
tailing no blocking individuals or pairs;

2. There is no set A ⊆ S ∪ R1 that can implement m1 such that all agents
in A prefer (m1, µ(m1)) to (µ(∅), µ(µ(∅)). Namely, there is no group of
agents in t = 1 that can improve their outcomes by changing who they are
matched with at t = 1, waiting to match at t = 2, or both.

Suppose a contingent matching µ is individually rational but not dynami-
cally stable. Then either there exists a pair of contemporary agents that prefer
matching to one another over their prescribed partners under µ, or there exists
a group of t = 1 agents who want to block by waiting to be matched.

12



We can also define the core analogously to the way it is defined for static
matching markets. Namely, a contingent matching µ is in the core if there is no
agent who would rather remain single than match according to µ, and there is
no pair that would prefer to generate a (feasible) match at some point over the
prescribed match under µ. Formally, no blocking pair means that there is no
s ∈ S and r ∈ Rt such that

δ1(r∈R2)
s u(s, r) > U(s,mµ) and v(s, r) > Vt(r,mµ),

where U is the discounted utility for the squares and Vt is the utility for rounds
arriving at time t.

What is the difference between the core and dynamically stable contingent
matchings? There are two main differences. First, in the core, even if b ∈ R2,
{a, b} can form a blocking coalition at the outset. Essentially, there is no concern
for the timing of arrival of different agents. Second, blocking coalitions in the
core compare the payoffs they obtain by blocking with the payoffs they obtain
from the matching prescribed by µ. In contrast, dynamic stability requires that
a coalition that blocks by waiting in period 1 compares its payoff under µ to
the payoffs generated in the continuation matching originated by the block.

Unfortunately, dynamically stable matchings do not always exist, as the
following example illustrates.

Example 2 Suppose S = {Erdős, Kuhn, Gale},R1 = {Renyi, Tucker}, and
R2 = {Shapley, Nash}.
In what follows, we denote rankings of any square s over elements of the
form (r, t), where if s ranks (r, t) over (r′, t′), then δtsu(s, r) > δt

′

s u(s, r′).
We further assume that all agents prefer to match with specified agents
over remaining unmatched.3

Erdős: (Shapley, 0) (Shapley, 1) (Renyi, 0) (Renyi, 1)
Kuhn: (Shapley, 1) (Nash, 0) (Tucker, 0) (Nash, 1)
Gale: (Tucker, 0) (Tucker, 1) (Shapley, 0) (Shapley, 1)

and
Renyi: Erdős
Tucker: Kuhn Gale
Shapley: Gale Erdős Kuhn
Nash: Kuhn

.

Assume that for all r, δr is sufficiently high so that v(s, r) > v(s′, r) implies
that δrv(s, r) > v(s′, r).

If µ is dynamically stable, then Gale has to be matched under µ. Oth-
erwise, he would be unmatched at t = 2 and could block with Shapley.

3In addition, we assume non-trivial discounting so that (r, 0) is always preferable to (r, 1)
for any r.
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Thus, Gale has to be matched, either with Tucker at t = 1 or with Shapley
at t = 2.

Let m1 = µ(∅). Suppose Gale is matched with Shapley. It has to be that
m1(Kuhn) = Tucker and m1(Erdős) = Renyi. Indeed:

1. Kuhn cannot be unmatched because he would block with Nash at
t = 2, and

2. Kuhn blocks a match with Nash by matching early with Tucker since,
importantly, he does not like to wait for Nash.

However, the unique stable matching at t = 2, when only Erdős is matched
with Renyi at t = 1, matches Kuhn with Shapley, whom Kuhn prefers to
Tucker. Hence, Kuhn blocks any such contingent matching µ by waiting.

Similar reasoning rules out the case in which Gale is matched with Tucker
at t = 1.

What drives non-existence in the example? It is discounting: Kuhn prefers
Nash to Tucker, but does not want to wait for him. That is why Kuhn cannot
be matched to Tucker in period 2.

Consider then a market with trivial discounting so that if u(s, r) > u(s, r′),
then δsu(s, r) > u(s, r′) for any square s and rounds r, r′.

Proposition 5 (Existence) If preferences satisfy trivial discounting, the set
of dynamically stable contingent matchings is nonempty.

The root of the impact of discounting are cycles. In the example above, Kuhn
prefers Shapley at t = 2, Shapley prefers Gale, Gale prefers Tucker immediately,
who prefers Kuhn. So, if Kuhn were matched to Tucker and Gale were matched
to Shapley, both Kuhn and Shapley would want to swap their partners. As
seen, this allows for deviations such as those in which Kuhn beneficially waits
for period 2 to match.

In general, a simultaneous preference cycle is an alternating sequence
of squares and rounds, r1, s1, r2, s2, ..., rN , where r1 = rN , such that, when
considering period-1 preferences,

1. Each square si prefers r(i+1)modN to ri, and both of these rounds are
acceptable to si;

2. Each round ri prefers si to si−1, and both of these squares are acceptable
to ri.

4

We can now summarize the impacts of such cycles on the structure and
existence of dynamically stable matchings.

Proposition 6 (Preference Cycles) If a core matching is not part of a dy-
namically stable contingent matching, then there is a preference cycle. If
there are no preference cycles, the set of dynamically stable contingent
matchings coincides with the core.

4We interpret s0 = sN so that, for r1, this implies that s1 is preferable to sN .
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3.2.2 A Simple Model of Dynamic Centralized Design

The notion of dynamic stability offers a decentralized benchmark for considering
markets in which agents arrive in sequence. It is also natural to consider the
optimal design of clearinghouses in such settings. We now analyze a simple
model in which the optimal centralized clearinghouse can be characterized. As
already seen, one of the hurdles an evolving market presents is that agents may
prefer partners that arrive later than they do. Waiting for them comes at a
cost.

Suppose that, each period, one square and one round arrive at the market.
Assume that each square is of a desirable, or high type H, with probability p
and of a less desirable, or low type L, with probability 1− p. Similarly, suppose
that each round is of a desirable type h with probability p and of a less desirable
type l with probability 1 − p. Let Uxy denote the surplus that any type x of
square and any type y of round generate, x = H,L, y = h, l.5

For simplicity, assume super-modular preferences, so that:

U ≡ UHh + ULl − UHl − ULh > 0.

In particular, the efficient matching entails the maximal number of (H,h) and
(L, l) pairs.

We assume p ∈ (0, 1) so that, conceivably, a social planner might want
market participants to wait in order to generate more efficient matchings. This
assumption guarantees that thicker markets generate greater expected efficiency,
or overall match surplus.

Assume that all agents suffer a cost of c > 0 for each period on the market
without a match. In particular, any pair that is held in the market for a period
generates a loss of 2c to the planner.

Suppose agents depart the market only upon matching. As long as remaining
unmatched generates sufficiently low utilities, this restriction would be consis-
tent with individual rationality.6

Consider general dynamic mechanisms, where the social planner can create
matches between available agents at every period. Formally, at any time t,
before a new square-round pair arrives, a queue is represented by (kH , kh, kL, kl),
where the length of queues of squares are given by kH and kL for H-squares
and L-squares, respectively. Similarly, the length of queues of rounds are given
by kh and kl for h-rounds and l-rounds, respectively.

We focus on stationary and deterministic mechanisms. At time t, after a
new square-round pair enters the market, there is a queue nt = (ntH , n

t
h, n

t
L, n

t
l),

where indices correspond to types as before. A mechanism is characterized

5These surpluses can naturally be generated by individual agents’ utilities from matching
with agents of different types.

6Individual rationality can be defined once individual utilities from matches are specified.
The idea that remaining unmatched yields extremely low payoffs is relevant for many of the
applications such a model speaks to. For instance, parents seeking to adopt a child may suffer
greatly by not finding a match. Similarly, patients seeking an organ donor may suffer dire
consequences from not being matched.
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by a mapping µ : Z4
+ → Z4

+ such that for every n ∈ Z4, µ(n) = m =
(mHh,mHl,mLh,mLl) is a feasible profile of matches, with mxy correspond-
ing to the number of matches generated between any type x of square and any
type y of round.7 Once matches are created, a new queue k = (kA, kB , kα, kβ)
contains the remaining agents:

kx = nx − (mxh +mxl) for x ∈ {H,L},
ky = ny − (mHy +mLy) for y ∈ {h, l}.

The generated surplus by matches m is:

S(m) ≡
∑

(x,y)∈{H,L}×{h,l}

mxyUxy.

Waiting costs incurred by retaining agents k are:

C(n,m) ≡ c

 ∑
x∈{A,B,α,β}

kx

 .

The welfare generated at time t is then:

w(nt,mt) ≡ S(mt)− C(nt,mt).

The social planner assesses the performance of a mechanism using the aver-
age welfare, defined as:

W (µ) ≡ lim
T→∞

1

T
E

[
T∑
t=1

w(nt, µ(nt))

]
.

The average welfare is well-defined in that it can be shown that the limit
exists for every mechanism µ.

An optimal mechanism is a mechanism achieving the maximal average
welfare. An optimal mechanism exists since there is only a finite number of
stationary and deterministic mechanisms leading to a bounded stock of agents
in each period.

Lemma 1 (Congruent Matches) Any optimal mechanism requires (H,h) and
(L, l) pairs to be matched as soon as they become available.

The intuition for this lemma is the following. If the social planner holds on
to an (H,h) pair, it is only for the hope of matching the relevant agents with
a future L-square and an l-round. However, our supermodularity assumption
implies that this would entail an efficiency loss. Hence, the planner may as well

7Naturally, the social planner cannot match more agents than are available, so we must
have that mxh + mxl ≤ nx for x ∈ {H,L} and, similarly, mHy + mLy ≤ ny for y ∈ {h, l}.
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match the (H,h) pair immediately. Symmetric logic follows for any available
(L, l) pair.

Thus, the optimal mechanism potentially holds on to agents only when they
form incongruent pairs. Intuitively, the optimal mechanism cannot hold an
exceedingly large number of agents since waiting costs would be prohibitive. In
fact, the following holds:

Proposition 7 (Optimal Mechanism) An optimal dynamic mechanism is
identified by a pair of thresholds (k̄H , k̄h) ∈ Z+ such that

1. whenever more than k̄H H-squares are present, nH − k̄H pairs of type
(H, l) are matched immediately, and

2. whenever more than k̄h h-rounds are present, nh− k̄h pairs of type (L, h)
are matched immediately.

Since the environment here is fully symmetric, we can assume, without sub-
stantial loss of generality, that k̄H = k̄h = k̄.8

Denote by kHh = kH − kh. The value of kHh captures both the number
of agents the social planner holds on to and their type: when kHh > 0, there
are H-squares and l-rounds waiting, while when kHh < 0, there are L-squares
and h-rounds waiting. It follows a Markov process, where states correspond to
values −k̄ ≤ kHh ≤ k̄.

Notice that for any −k < kHh < k, the stock of agents held by the planner
does not change if an (H,h) or an (L, l) pair arrives, which occurs with prob-
ability p2 + (1 − p)2. The stock changes, up or down, if an (H, l) or an (L, h)
pair arrives, each occurring with a probability of p(1− p).

We can therefore characterize the Markov chain associated with kHh through
the transition formula xt+1 = Tk̄x

t, where xt is a (2k + 1)-dimensional vector
such that its k-th entry equals 1 whenever, at time t, kHh = k, and 0 otherwise.

Tk=


1− p(1− p) p(1− p) 0 0

p(1− p) p2+(1− p)2

0 ..

p2+(1− p)2
p(1− p)

0 p(1− p) 1− p(1− p)

 .
The resulting process is ergodic, implying a unique steady-state distribution,

which is the uniform distribution over states. That is, in the steady state, kHh
takes each of its possible 2k + 1 values with probability 1

2k+1
.

We now use the characterization of the steady-state distribution to identify
costs and benefits for any k̄. In state j, 2 |j| participants are present on the

8For almost all parameters of the environment, there is a unique optimal mechanism with
such identical thresholds. However, for a negligible set of parameters, which will soon become
apparent, additional asymmetric thresholds generate the same level of average welfare.
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market. The expected total waiting costs are therefore:

C(k) =
1

2k + 1

 k∑
j=−k

2 |j|

 c =
k(k + 1)c

2k + 1
.

To calculate the expected benefits, suppose an (H, l) pair (similarly for an
(L, h) pair) arrives at the market when the state is j. If −k ≤ j < 0, the
optimal mechanism creates one (H,h) match and one (L, l) match, generating
a surplus of UHh + ULl. If 0 ≤ j < k, the mechanism creates no matches,
generating no match surplus. If j = k, the mechanism creates an (H, l) match,
generating a surplus of UHl. Any congruent pair arriving at the market is
matched immediately and generates its corresponding match surplus. Thus,
after algebraic manipulations, the expected per-period total match surplus is:

B(k) = pUHh + (1− p)ULl −
p(1− p)U

2k + 1
.

The optimal k maximizes B(k)− C(k). We can therefore fully characterize
the optimal mechanism in this setting.

Proposition 8 (Optimal Threshold) The threshold

k̄∗ =

⌊√
p(1− p)U

2c

⌋

identifies an optimal dynamic mechanism, and it is generically unique.

The optimal threshold k
∗

balances market thickness and waiting costs. It
decreases in c and is positive only when costs are sufficiently low, namely when

c ≤ p(1−p)U
2 . The optimal threshold increases as p(1− p), the probability of an

incongruent pair’s arrival, increases and maximized at p = 1/2.9

When the optimal threshold is implemented, the resulting welfare can then
be calculated as follows:

W ∗(c) = pUHh + (1− p)ULl −
p(1− p)U
2k
∗

+ 1
− k

∗
(k
∗

+ 1)c

2k
∗

+ 1
.

From super-modularity, the maximal conceivable welfare, were there no wait-
ing costs and an infinitely thick market, is given by:

S∞ = pUHh + (1− p)ULl.

Naturally, W ∗(c) ≤ S∞. In fact, this inequality is strict for any c > 0. We
can now consider the comparative statics of W ∗(c) with respect to costs. First,

9Uniqueness of the optimal threshold breaks down only when
√

p(1−p)U
2c

is an integer,

which occurs for a zero-measure set of parameters.
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the optimal welfare decreases in c. Indeed, for c1 > c2, the social planner can
emulate the mechanism designed for c1 when waiting cost c2 is in place. That
would generate the same matching surplus under both costs, but a lower average
waiting cost under c2. Second, the welfare loss is concave in c. To see this, we
utilize the fact that the optimal threshold k

∗
decreases in c. Therefore, as c

increases, fewer individuals wait and the effect of a marginal cost increase is
smaller. We therefore have the following:

Corollary 1 (Optimal Welfare) The welfare under the optimal mechanism
is given by W ∗(c) = S∞−Θ(c), where Θ(c) is continuous, increasing, and

concave in c, lim
c→0

Θ(c) = 0, and Θ(c) = p(1− p)U for all c ≥ p(1−p)U
2 .

As a direct consequence, for vanishingly small waiting costs, the optimal
mechanism achieves approximately the maximal conceivable welfare.

3.2.3 Other Considerations

Organ donation is a natural environment in which participants—patients seek-
ing an organ and donors willing to give an organ—arrive over time and need
to be paired. Furthermore, waiting for a transplant is costly for patients. A
substantial fraction of organ donation is from cadavers. The allocation then
is in many ways simpler. Preferences of patients are by and large observable:
their blood and tissue type, their urgency, demographics, etc. The system can
then generate (Pareto) efficient allocations without much concern for incentive-
compatibility constraints.10

In kidney exchange, patients arrive with a live donor—a family member, a
friend, etc.—who is not necessarily a compatible match. Can there be beneficial
swaps between patients and their donors that would induce agents to enter the
system to begin with? The timing of such swaps is also important. Matching all
compatible pairs reduces waiting costs. However, keeping some desirable donors
in the pool—say, those with O blood type, who are blood-type compatible with
any patient—can have future benefits, in terms of facilitating other exchanges,
or finding immediate matches for future patients in particularly critical health
conditions.

In the first analysis of this issue, Ünver (2010) showed that if only two-way
exchanges are allowed, every optimal mechanism matches all compatible pairs
immediately. Nonetheless, when multi-way exchanges are allowed, the efficient
mechanism may require holding some available matches to keep relatively scarce
donors available for future use.

Along similar lines, one can consider environments in which agents can at
some point become critical, and drop out of the system if not matched immedi-
ately. Consider random compatibility between pairs, which can be formulated in
graph-theoretic terms.11 Participating (incompatible) patient-donor pairs con-

10See Section 7 of Chapter 30 for a related discussion.
11Two patient-donor pairs are compatible if a swap of donors and patients yields compati-

bility in terms of blood type, tissue type, etc.
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stitute the graph’s nodes and arrive at a Poisson rate of m ≥ 1 in an interval
of time [0, T ]. Any two such pairs are compatible with probability p = d

m , with
d > 0. Moreover, pairs become critical at a Poisson rate normalized to 1. If
they are not matched immediately, critical pairs perish. Otherwise, there is no
waiting cost. Given a matching policy, the resulting expected number of pairs
that perish can be thought of as the loss of the policy. A planner, observing the
set of pairs that become critical, seeks to minimize loss. While characterizing
the optimal matching algorithm of this model is computationally difficult, it is
easy to see that it has to satisfy the following two conditions: (i) since there are
no waiting costs, two connected pairs are matched only if at least one is criti-
cal, and (ii) if a critical pair is connected to someone else, it is always matched
immediately.

Furthermore, it is possible to obtain quantitative insights on the performance
of the optimal algorithm by considering the following two simple algorithms:

Definition 4 (Greedy Algorithm) If any new pair enters the market at time
t, match them randomly with any existing compatible pair, if it exists.

Definition 5 (Patient Algorithm) If a pair becomes critical, match them
randomly with any compatible pair. Otherwise, hold on to pairs.

Both these algorithms are obviously suboptimal since they do not use any
information regarding the underlying graph. Denote by L(G) and L(P ) the
loss associated with the Greedy and Patient algorithms, respectively, over the
horizon [0, T ].

Proposition 9 (Loss Bounds) For d ≥ 2, as T,m→∞, we have:

L(G) ≥ 1

2d+ 1
and L(P ) ≤ 1

2
e−

d
2 .

Proposition 9 suggests that the Patient algorithm’s loss is exponentially
small, while the Greedy algorithm’s loss is not. That is, the option value of
waiting before matching pairs is large. To see why, suppose there are z pairs
in the market. If a new pair enters the market under the Greedy algorithm, or
becomes critical under the Patient algorithm, the probability that no pair on
the market is compatible is (1− d

m )z. However, the number of pairs in the mar-
ket depends on the algorithm under consideration. As more pairs wait under
the Patient algorithm, the market is thicker, which reduces the probability of
any critical pair being unmatched. To estimate the performance of the Patient
algorithm, it is useful to establish a lower bound on the loss achieved by the
optimal algorithm, which we denote by L∗.

Proposition 10 (Efficiency of the Patient Algorithm) Let A be any al-
gorithm that observes the set of critical pairs with associated loss L(A).
Then, for d ≥ 2, as T,m→∞,

L∗ ≥ e−
d
2 (1+L(A))

d+ 1
.
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Substituting the Patient algorithm for A, we obtain L∗ ≥ e−
d
2
(1+ e

− d
2

2
)

d+1 or, as
T,m→∞,

L(P )− L∗ ≤ e− d
2

1

2
− e−

d
4 e
− d

2

d+ 1

 ,
indicating that the performance of the optimal algorithm is close to that of the
Patient algorithm. This suggests that the benefit of allowing the market to
thicken before matching pairs is substantial even if the implemented mechanism
does not fully exploit all the information contained in the network structure.

4 Notes

The model described in Section 2.1 relies on Bloch and Cantala (2017). The
model described in Section 2.2 is analyzed by Leshno (2019). While that model
assumes agents are heterogenous in what items, say public-housing units, they
prefer, recent work considers settings in which agents agree on the ranking of
the items, but differ in their preference intensities, see Ortoleva et al. (2021).
In addition, when the items are thought of as services—e.g., medical services
by junior or senior physicians, legal aid from rookie or experienced lawyers,
etc.—the distribution of these services can be endogenized. Namely, junior
service providers become senior providers after attending to a sufficient number
of tasks. In such settings, the balance between service quality and wait times
needs to account for the training possibilities that affect the future distribution
of available services. See Baccara et al. (2021) for details.

Our discussion of decentralized market games in Section 3.1 relies on a model
offered by Ferdowsian et al. (2021), while the main example in that section re-
lates to an example appearing in Echenique et al. (2016). Ferdowsian et al.
(2021) also study decentralized market games in settings in which agents have
incomplete information about others’ preferences. They show that incomplete
information introduces another hurdle for (complete-information) stability, even
when market participants are very patient and interactions offer ample opportu-
nities for learning. Dynamic decentralized interactions have been studied using
lab experiments as well, see Echenique et al. (2021) and Agranov et al. (2021).
While stability has strong drawing power with complete information, the intro-
duction of transfers or incomplete information impedes stability.

The notion of dynamic stability described in Section 3.2.1, as well as the
example in that section, were suggested by Doval (2021). She offers a definition
of stability for far more general dynamic settings than those sketched here,
allowing for multiple periods and uncertainty about agents’ arrival over time.

Our discussion in section 3.2.2 of optimal clearinghouses in environments
in which agents on two market sides arrive over time relies on Baccara et al.
(2020). They also analyze a discretionary counterpart in which participants
choose whether to wait for a more desirable partner.12 They illustrate that

12Individual utilities are assumed to be such that all squares prefer h-rounds and all rounds
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agents wait excessively, not internalizing the externalities on other agents who
arrive after them.

The literature on dynamic matching arguably started from the consideration
of organ donation, see Part III of this book. Ünver (2010) illustrated the value
of multi-way swaps. The results described in Section 3.2.3 appear in Akbarpour
et al. (2020).13

The discussion in this chapter illustrates the different ways by which waiting
costs are modeled: as flow costs, discounted match values, or through the like-
lihood of urgently needing a match. The use of each naturally depends on the
application. In decentralized interactions, costs can take either form. From a
market-design perspective, however, discounting introduces several challenges.
First, the market designer may need to keep track of the arrival time of partici-
pants, placing a heavy computational and potentially logistical burden. Second,
agents who have waited for a long time exhibit low discounted match values and
would then receive lower weight in the market designer’s considerations. In con-
trast, in many applications, seniority lends an advantage—for example, patients
waiting for a long time for an organ or families queuing for public housing are
prioritized.

There are many natural directions by which the models described in this
chapter could be extended. While transfers are banned or limited in many ap-
plications such as organ donation, child adoption, and public housing, they are
present in many others, particularly when considering dynamic labor markets.
Their consideration could enrich our models substantially. Incomplete infor-
mation regarding the underlying preferences in the market would also be an
interesting direction to pursue further in this area.
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Ünver, M. U. (2010): “Dynamic kidney exchange,” The Review of Economic
Studies, 77, 372–414.

23


