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Abstract. Stability is often the goal for matching clearinghouses, such as

those matching residents to hospitals, students to schools, etc. We study the wedge

between stability and utilitarian effi ciency in large one-to-one matching markets. We

distinguish between stable matchings’average effi ciency (or, effi ciency per-person), which

is maximal asymptotically for a rich preference class, and their aggregate effi ciency,

which is not. The speed at which average effi ciency of stable matchings converges to its

optimum depends on the underlying preferences. Furthermore, for severely imbalanced

markets governed by idiosyncratic preferences, or when preferences are sub-modular,

stable outcomes may be average ineffi cient asymptotically. Our results can guide market

designers who care about effi ciency as to when standard stable mechanisms are desirable

and when new mechanisms, or the availability of transfers, might be useful.
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1. Introduction

1.1. Overview. The design of most matching markets has focused predominantly on

mechanisms in which only ordinal preferences are specified: the National Resident Match-

ing Program (NRMP), clearinghouses for matching schools and students in New York City

and Boston, and many others utilize algorithms that implement a stable matching correspond-

ing to reported rank preferences. The use of ordinal preferences contrasts with other economic

settings, such as auctions, voting, etc., in which utilities are specified for market participants

and serve as the primitive for the design of mechanisms maximizing effi ciency. For certain

matching contexts, such as those pertaining to labor markets, school choice, or real estate, to

mention a few, it would appear equally reasonable to assume cardinal assessments.1 A de-

signer may then face a trade-off between utilitarian effi ciency and stability. In this paper, we

investigate this trade-off and identify environments in which it may be particularly important.

Our analysis considers large markets, as most applications of market design to matching

markets entail tens or hundreds of thousands of participants. We consider two notions of utili-

tarian effi ciency: average effi ciency, corresponding to the average expected utility each market

participant receives, and aggregate effi ciency, corresponding to the sum of expected utilities

in the market. We show that stability generates average effi cient outcomes asymptotically for

a wide class of preferences. However, vanishingly small effi ciency losses on the individual level

sum up to substantial aggregate losses– aggregate effi ciency generated by stable matchings

falls short of what is feasible for all classes of preferences we consider. Furthermore, for partic-

ular types of preferences, and for dramatic enough imbalances in participant volumes on each

market side, even average effi ciency is sub-optimal when stable outcomes are implemented.

We also characterize the speeds at which stable matchings’average effi ciency converges and il-

lustrate its strong dependence on the structure of participants’preferences.2 While we present

1In fact, there is a volume of work that studies matching scenarios in which agents’preferences are cardinal.
E.g., in the context of the marriage market, Becker 1973, 1974 and Hitch, Hortacsu, and Ariely, 2010; in the
context of decentralized matching, Lauermann, 2013 and Niederle and Yariv, 2009; in the context of assignment
problems, Budish and Cantillon, 2012 and Che and Tercieux, 2018; etc.

2The NRMP is a leading example of a large matching market. In the 2018 installment of the NRMP,
looking at matched US seniors, 48.5% of applicants were matched with their first-ranked hospital and 79.5%
were matched with one of their four top-ranked hospitals, with similar figures appearing for independent
applicants (see Table 15 in the NRMP’s Results and Data report from the 2018 Main Residency Match).
Furthermore, there is a negative association between the number of applicants in a specialty, reflecting the
size of the relevant sub-market, and the average rank of matched programs (where lower ranks correspond to
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the results for one-to-one matching environments, their messages extend directly to many-to-

one matching markets with responsive preferences. Taken together, our results offer guidance

for market designers concerned with effi ciency as to when different classes of mechanisms than

those often considered might be called for.

Utilitarian effi ciency and stability are not completely disjoint notions. Indeed, when trans-

fers are available, assuming match utilities are quasi-linear in monetary rewards, stability is

tantamount to utilitarian effi ciency (see Roth and Sotomayor, 1992). Even so, most central-

ized matching mechanisms in place, due to their ordinal nature, do not allow for transfers

between participants. In fact, in some cases, such as organ donations or child adoption, trans-

fers are viewed not only as “repugnant,”they are banned by law (see Roth, 2007). Certainly,

(ordinal) stable matchings absent transfers are appealing in many respects– it is simple to

identify one of them once preferences are reported, and they are all Pareto effi cient. Further-

more, some work suggests that clearinghouses that implement such stable matchings tend to

be relatively persistent (see Roth, 2002; Roth and Xing, 1994). Nevertheless, the NRMP, for

instance, has been subject to complaints from residents regarding the underlying mechanism’s

ordinal nature. These complaints culminated in an offi cial lawsuit filed by a group of resident

physicians on May of 2002.3 From this perspective, our paper identifies environments in which

restricting attention to ordinal mechanisms that ban transfers might have a substantial impact

on resulting effi ciency levels.

In general, stable matchings identified only by ordinal preferences, ignoring cardinal util-

ities (and excluding transfers), need not be utilitarian effi cient. Indeed, consider a market

with two firms {f1, f2} and two workers {w1, w2}, in which any match between a firm fi

and a worker wj generates an identical payoff to both (say, as a consequence of splitting the

more preferred programs).
3Details of the case can be found at http://www.gpo.gov/fdsys/pkg/USCOURTS-dcd-1_02-cv-00873
The lawsuit alleged that several major medical associations such as the NRMP and the American Council for

Graduate Medical Education, as well as numerous prominent hospitals and universities, violated the Sherman
antitrust act by limiting competition in the “recruitment, hiring, employment, and compensation of resident
physicians”and by imposing “a scheme of restraints which have the purpose and effect of fixing, artificially
depressing, standardizing, and stabilizing resident physician compensation and other terms of employment.”
The lawsuit highlighted the restricted ability of the NRMP to account for marginal (cardinal) preferences of
participants over matches (see Crall, 2004). It inspired a flurry of work studying the potential effects the
NRMP imposes on wage patterns, as well as on possible modifications to the NRMP that could potentially
alleviate the issues (see Bulow and Levin, 2006, Crawford, 2008, and follow-up literature).
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resulting revenue), and all participants prefer to be matched to anyone in the market over

being unmatched. Payoffs are given as follows:

w1 w2

f1 5 4

f2 3 1

where the entry corresponding to fi and wj is each agent’s payoff for that pair if matched. In

this case, the unique stable matching matches fi with wi, i = 1, 2 and generates utilitarian

welfare of 2 × (5 + 1) = 12. However, the alternative matching, between fi and wj, i 6= j,

i = 1, 2, generates a greater utilitarian welfare of 2 × (3 + 4) = 14, and would be the unique

stable outcome were transfers available, assuming quasi-linear utilities in money. In this

paper, we analyze the wedge between stability and effi ciency in large markets. Certainly, if

we just replicate the 2× 2 market above, we can easily generate an arbitrarily large market in

which stable matchings lead to a significantly lower utilitarian welfare than the first best, and

transfers could prove useful. To obtain results on the likelihood of such cases, we introduce

randomness to match utilities. As we illustrate, the conclusions are nuanced: for a rather broad

class of preferences and their hybrids, substantial per-person utility losses are increasingly

unlikely as market size grows. Nonetheless, when considering the total utilitarian welfare,

stable matchings yield substantial ineffi ciencies. Furthermore, the speed at which expected

per-person utility of stable matchings converges to its maximum varies for different preferences.

In more detail, we first generalize the example above to settings in which firms and workers

split their match surpluses using a fixed sharing rule, which we term aligned preferences.

Such settings are common in many applications (see, e.g., Sorensen, 2007, and the literature

that followed). In Section 3.1, we show that the (generically unique) stable matching is

asymptotically average effi cient. Furthermore, when match utilities are drawn uniformly, the

convergence speed is of the order of logn
n
. The proof relies on the following idea. In such

aligned markets, there is always a firm and worker who are each other’s most preferred.

Any stable matching would therefore have them matched. Their utility is the maximal match

surplus generated in the market corresponding to n2 possible pairings. Naturally, the expected

surplus from this match approaches the maximal possible as n grows large. Once that pair is
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matched, we are left with a market of n − 1 firms and workers. Again, there must be a firm

and worker who are each other’s most preferred within this restricted market. The expected

surplus they generate is very high as well. Continuing recursively, we show that a suffi ciently

large fraction of firms and workers receives a fairly large share of the maximal surplus they

could hope for.

Similar arguments hold for assortative markets, where at least one side of the market is

unified in its rankings. For instance, medical residents may share preferences over hospitals

through their published rankings and hospitals may agree on what makes a medical resident

desirable.4 Such markets also generate average effi ciency converging to the optimum when

markets are large, with a convergence speed of logn
n
.

Turning to aggregate effi ciency, when preferences are fully aligned, the benchmark max-

imum effi ciency achievable through any matching is a solution of the optimal assignment

problem in statistics (see, e.g., Walkup, 1979 and work that followed). In such settings, the

aggregate effi ciency loss relative to the maximally feasible effi ciency is of the order of log n.

This is also the order of the average effi ciency loss if the support of individual match utilities

grows linearly with market size.

There are many settings in which individuals have idiosyncratic preferences over partners.

For instance, employees may have idiosyncratic preferences over locations of their employers,

while employers may have idiosyncratic preferences over the particular profiles of potential

employees. Propositions 1 and 2 in Section 3 provide general results for settings in which the

utilities of each participant pair depend on common and idiosyncratic shocks in an arbitrary

manner. We show that average effi ciency in all stable matchings is asymptotically maximal

in these settings. The proof introduces some new techniques inspired by Pittel (1989, 1992).

Nonetheless, idiosyncrasies reduce convergence speed. When utilities are fully idiosyncratic

and uniform, the difference between average effi ciency generated by stable matchings and the

maximally possible average effi ciency is of the order of 1
logn

. Furthermore, when considering

aggregate effi ciency, or if the support of match utilities grows linearly with market size, stable

outcomes no longer fare as well. We generalize the classical optimal assignment problem in

Section 3.4 to show that, when preferences are idiosyncratic, the maximal aggregate effi ciency

4Agarwal (2015) reports that conversations with residency program and medical school administrators
indicate that, indeed, programs broadly agree on what makes a resident appealing.
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is n−O(
√
n) while aggregate effi ciency of stable matchings is of the order of n

logn
.

In Section 4, we consider arbitrary hybrids of assortative and idiosyncratic preferences.

This case also corresponds to asymptotic average effi ciency, but with convergence speed of the

order of n−1/4, substantially higher than that corresponding to fully idiosyncratic preferences.

Aggregate effi ciency of stable matchings is still substantially lower than maximally feasible,

and the distance is in-between that corresponding to aligned and idiosyncratic preferences.

There are certain market features that may induce stable matchings whose average effi -

ciency is bounded away from the maximal even in large markets. One such feature is market

imbalances. Indeed, many real-world markets contain unequal volumes of participants on both

sides of the market. From a theoretical perspective, recent work suggests that an imbalance

in the market gives a disadvantage to the market’s abundant side (see Ashlagi, Kanoria, and

Leshno, 2017). In our setting, a bounded difference between the volumes on either side does

not change our conclusions that stable matchings achieve asymptotically the maximal average

effi ciency. These results also continue to hold for unbounded volume differences when prefer-

ences are aligned or assortative. However, in Section 5.1 we show that whenever preferences

are idiosyncratic and the difference between the volumes on the two sides of the market in-

creases at least linearly in the size of the market, stable matchings may not yield the maximal

average effi ciency asymptotically. To get a sense of the competitive forces driving this result,

consider a market with one firm and n workers, where match utilities for both the firm and

the workers are independently drawn. The generically unique stable matching would match

the firm to its favorite worker that views her as acceptable, not accounting for that worker’s

match utilities at all. Maximal effi ciency, on the other hand, is achieved by matching the firm

and worker that generate the greatest joint match surplus.

Another market feature that may lead to sub-optimal stable matchings, even in terms of

average effi ciency asymptotically, has to do with preferences. While the classes of preferences

we focus on in the paper (namely, hybrids of aligned, assortative, and idiosyncratic compo-

nents) are some of the most prominent in the literature, our results do not hold globally. For

instance, Becker (1974) has already pointed out the impact of preference modularity on the

effi ciency of stable matchings. In Section 5.2 we show that with sub-modular assortative pref-

erences, stable matchings may entail a substantial amount of average ineffi ciency regardless
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of market size.5

To summarize, our results can provide guidance to market designers who care about ef-

ficiency, or contemplate the introduction of some form of cardinal mechanisms, potentially

including transfers between participants, as to when standard stable mechanisms are desir-

able. If a designer is concerned with expected utilities per participant, and markets are fairly

balanced, implementing an (ordinal) stable matching is justified on effi ciency grounds for

suffi ciently large markets. In particular, the availability of transfers will not affect welfare sig-

nificantly. However, if markets are either limited in size, or severely imbalanced and entailing

a prominent idiosyncratic component in participants’preferences, or if the designer worries

about aggregate effi ciency, commonly-used ordinal stable mechanisms may not be ideal.

1.2. Literature Review. There are several strands of literature related to this paper.

Effi ciency of stable matchings has been a topic of recent study. Boudreau and Knoblauch

(2013) provide an upper bound on the sum of partner ranks in stable matchings when prefer-

ences exhibit particular forms of correlation. Consistent with our results, these upper bounds

increase at a speed slower than the size of the market.6

Several papers have considered the utilitarian welfare loss stability may entail in match-

ing markets. Anshelevich, Das, and Naamad (2013) consider finite markets and particular

constellations of utilities. They provide bounds on the utilitarian welfare achieved through

stability relative to that achieved by the welfare-maximizing matching. Compte and Jehiel

(2008) consider a modified notion of stability taking into account a default matching and sug-

gest a mechanism that produces an “optimal”such matching that is asymptotically effi cient

when fully idiosyncratic preferences are drawn from the uniform distribution, in line with our

Proposition 1. Durlauf and Seshadri (2003) consider markets with assortative preferences in

which agents may form coalitions, of any size, whose output depends on individuals’ability

5For these assortative preferences, each individual is characterized by an ability, and a pair’s utility coincides
with their “output,”which increases in both of their abilities. Sub-modularity then means that the marginal
increase in output with respect to a match’s ability is decreasing in one’s own ability.

6In a related paper, Knoblauch (2007) illustrates bounds on expected ranks for participants when one
side of the market has fully idiosyncratic preferences and the other has arbitrary preferences. Liu and Pycia
(2016) consider ordinally effi cient mechanisms and illustrate that uniform randomizations over deterministic
effi cient mechanisms in which no small group of agents can substantially change the allocation of others are
asymptotically ordinally effi cient, thereby showing that ordinal effi ciency and ex-post Pareto effi ciency become
equivalent in large markets, and that many standard mechanisms are asymptotically ordinally effi cient.
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profile. Their results imply that the average effi ciency of assortative matchings depends on

the presence of positive cross-partial derivatives between the abilities of the partners in the

output of a marriage, in line with our results in Section 5.2.7

Che and Tercieux (2018) study assignment problems in which individual agents have util-

ities that are composed of a valuation common to all agents and idiosyncratic individual

shocks, analogous to our hybrid model of assortative and idiosyncratic preferences, studied

in Section 4. They show that Pareto effi cient allocations are asymptotically average effi cient.

However, in the case of assignment problems they study, stable allocations are not necessarily

Pareto effi cient, so they are not necessarily average effi cient. To glean intuition on the different

mechanisms at play in this paper and ours, suppose that n agents’utilities from n objects

are composed of a valuation common to all agents and an idiosyncratic shock. For simplicity,

suppose the common component takes values of 0 or 1, equally likely and independently de-

termined for each object. With suffi ciently large n, every agent finds some high common-value

objects appealing, accounting for idiosyncratic shocks. Thus, n agents compete for n/2 high-

value objects, with different agents preferring different high-value objects, depending on their

idiosyncratic shocks. The market effectively segments: some agents are assigned a high-value

object (“high-tier agents”). Those who do not (“low-tier agents”) are assigned a low-value

object. The competition for high-value objects is similar to that in an imbalanced market

(Ashlagi, Kanoria, and Leshno, 2017). Competition implies that high-value objects are as-

signed according to objects’priorities without accounting for agents’utilities, which leads to

asymptotic average ineffi ciency. This kind of ineffi ciency is ruled out in our paper (other than

in Section 5.1). By assuming a continuous distribution with full support for common values,

we ensure that every agent has suffi ciently many close alternatives to any potential partner

in terms of common values. We also consider other kinds of preferences, including arbitrary

hybrids of aligned and idiosyncratic preferences on both sides.

Our results focus on large markets, which have received some attention in the literature,

7Dizdar and Moldovanu (2016) study a matching market of fixed size in which agents are characterized by
privately known, multi-dimensional attributes that jointly determine the “match surplus” of each potential
partnership. They assume utilities are quasi-linear, and monetary transfers among agents are feasible. Their
main result shows that the only robust rules compatible with effi cient matching are those that divide realized
surplus in fixed proportions, independently of the attributes of the pair’s members. Several papers highlight
the possible impact of incomplete information on the effi ciency of commonly used assignment and matching
mechanisms (Abdulkadiro ğlu, Che, and Yasuda, 2011; Bordon and Fu, 2015; Fernandez and Yariv, 2018).
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mostly due to the observation that many real-world matching markets involve many partic-

ipants (e.g., the NRMP that involves several tens of thousands of participants each year,

schooling systems in large cities, etc.). The literature thus far has mostly focused on incentive

compatibility constraints imposed by stable matching mechanisms when markets are large;

see, for instance, Immorlica and Mahdian (2005), Kojima and Pathak (2009), and Lee (2017).

While most of this literature focuses on balanced markets, Ashlagi, Kanoria, and Leshno

(2017) have noted that imbalances in participant volumes across market sides may alleviate

incentive compatibility issues, particularly in large markets. We use some of their results when

analyzing the effi ciency in imbalanced markets in Section 5.1.

Our paper also relates to the “price of anarchy”notion introduced in Computer Science

(see Roughgarden and Tardos, 2007). In general, the price of anarchy is defined as the ratio

between the utilitarian welfare of the (worst) Nash equilibrium outcome of a game and the

maximum utilitarian welfare possible in that game. In our context, a natural substitute to

Nash equilibrium is a stable matching. In that respect, our results characterize an analogous

“price of stability”in many one-to-one matching environments. In particular, the asymptotic

price of stability is 1 for a wide array of balanced markets.8

There is a large body of literature studying effi ciency of mechanisms in other realms, such

as auctions (see Chapter 3 in Milgrom, 2004) or voting (see Krishna and Morgan, 2015). The

current paper provides an analogous study in the matching context.

Methodologically, our results borrow techniques introduced by Knuth (1976), Walkup

(1979), Pittel (1989, 1992), and Lee (2017).

2. The Model

Consider a market of n firms F = {f1, ..., fn} and n workers W = {w1, ..., wn} who are to be
matched with one another. At the outset, two n×n matrices (ufij)i,j and (uwij)i,j are randomly

determined according to a non-atomic probability distribution G over [0, 1]2n
2

. When firm fi

and worker wj match, they receive match utilities u
f
ij and u

w
ij, respectively. We assume that

any agent remaining unmatched receives a match utility of 0, so that all agents prefer, at

8Without restricting preferences in any way, and taking a worst-case point of view, Echenique and Galichon
(2015) show that the price of anarchy can be arbitrarily low (i.e., for any value, one can always find a market
in which stability in the non-transferable utility model produces per-person utility lower than the maximal by
at least that value).
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least weakly, to be matched with any agent over remaining unmatched (and this preference is

strict almost always).9 If we further assume that utilities are quasi-linear in money,10 there

is a natural benchmark of utilitarian welfare that corresponds to any stable matching with

transfers. Throughout, we often refer to ufij and u
w
ij as utilities.

We consider market matchings µ : F ∪W → F ∪W such that for any fi ∈ F , µ (fi) ∈ W ,
for any wj ∈ W , µ(wj) ∈ F , and if µ(fi) = wj, then µ(wj) = fi. We will often abuse notation

and denote µ(i) = j and µ(j) = i if µ(fi) = wj. Denote byM the set of all market matchings.

For any realized match utilities ufij and u
w
ij, a stable matching µ ∈ M satisfies the following

condition: For any firm and worker pair (fi, wj), either either u
f
iµ(i) ≥ ufij or u

w
µ(j)j ≥ uwij. In

other words, at least one of the members of the pair (fi, wj) prefer their allocated match under

µ over their pair member.11 Whenever there exist a firm and a worker that prefer matching

with one another over their allocated match partners, the matching under consideration is

unstable and that pair is referred to as a blocking pair.

In most applications, centralized clearinghouses are designed to implement stable match-

ings. Our focus in this paper is therefore in assessing the relative utilitarian welfare of stable

matchings to the maximal utilitarian welfare achievable through any matching.

The expected maximal utilitarian welfare achievable across all matchings, which we call

the maximal aggregate effi ciency, is denoted by En :

En ≡ EG max
µ∈M

n∑
i=1

(
ufiµ(i) + uwiµ(i)

)
.

Since stable matchings are not necessarily unique, and utilities of firms and workers are

not necessarily symmetric, we denote the worst-case utilitarian welfare of stable matchings for

firms and workers as follows:

Sfn ≡ EG min
{µ∈M |µ is stable}

n∑
i=1

ufiµ(i) and Swn ≡ EG min
{µ∈M |µ is stable}

n∑
i=1

uwiµ(i).

9We relax the assumptions that utilities are drawn from distributions with bounded support and that all
agents are acceptable in the Online Appendix.
10That is, whenever firm fi matches with worker wj and transfers an amount m to the worker, the respective

utilities for the firm and worker are given by: Ufi(wj ;m) = ufij −m and Uwj (fi;m) = uwij +m.
11In general, stability also entails an individual rationality constraint: no agent prefers remaining unmatched

over her prescribed match. Given our assumptions on utilities, this constraint is automatically satisfied.
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The expected minimal utilitarian welfare achievable by a stable matching, which we call

the aggregate effi ciency of (worst-case) stable matchings, is denoted by Sn and defined as:

Sn ≡ EG min
{µ∈M |µ is stable}

n∑
i=1

(
ufiµ(i) + uwiµ(i)

)
≥ Sfn + Swn .

We call En
2n
and Sn

2n
the maximal average effi ciency and the average effi ciency (of worst-case

stable matchings), respectively. Our goal is to characterize when En
2n
and Sn

2n
, as well as En

and Sn, become close when markets are very large, in which case we say that stable matchings

are asymptotically effi cient under the respective criterion. Notice that the average effi ciency

of stable matchings is always bounded by the maximal value of the support of match utilities,
Sn
2n
≤ 1 for all n. In particular, whenever Sn

2n
→ 1, stable matchings achieve maximal average

effi ciency asymptotically.

A few notes on our underlying model. First, while we phrase our results with the labeling

of “firms” and “workers”, they pertain to pretty much any two-sided one-to-one matching

environment in which a centralized clearinghouse could be utilized. Furthermore, the results

extend directly to many-to-one settings, such as school choice, labor markets in which each

firm seeks multiple workers, etc., as long as preferences are responsive. Formally, suppose that

each firm fi has a quota qi and that whenever µ(fi) = {wj1 , ..., wjqi}, the firm’s match utility
is given by υf (uf,1ij1 , ..., u

f,qi
ijqi

), where uf,kij now stands for the randomly determined value of the

match of fi with worker wj in the k’th position, and υf is continuous and increasing in each of

its arguments. If the market has n firms and
n∑
i=1

qi workers, our results regarding asymptotic

average and aggregate effi ciency go through directly by considering a one-to-one market in

which each firm fi is duplicated qi times and the duplicates inherit match utilities u
f,1
i· , ..., u

f,qi
i· .

Nonetheless, there are some details that our analysis does not handle, for example pre-match

investment in perceived quality in the form of test preparation, geographic relocation, and the

like (see, e.g., Cole, Mailath, and Postlewaite, 2001 and Avery and Pathak, 2017). We hope

this paper opens the door to further studies incorporating these elements.

Second, for most of the paper we will consider the case of a balanced market (n agents

on each side). All of our results go through when the gap between the volume of firms and
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workers is bounded (say, there are n firms and n + k workers, where k is fixed). When the

difference in volumes is increasing (say, there are n firms and n+ k(n) workers, where k(n) is

increasing in n), some subtleties arise that we discuss in Subsection 5.1.

Last, we assume throughout the paper that utilities are drawn from bounded supports12

and are such that all participants view all partners as acceptable. In the Online Appendix, we

relax these restrictions and show that our results do not hinge on them. We illustrate that as

long as the support of match utilities increases suffi ciently slowly with the size of the market,

our insights regarding asymptotic effi ciency continue to hold. If the supports increase linearly

or faster with the size of the market, however, our results regarding average effi ciency break

down. In fact, the average effi ciency corresponding to the case in which supports increase

linearly with market size is effectively the aggregate effi ciency we analyze in the paper (when

supports are bounded). Having a random fraction of agents unacceptable makes no difference

to our results. This point relates to the market thickness inherent in our environment– we

effectively show that thinning the market by deeming a certain fixed fraction, even a large

fraction, of participants unacceptable does not alter results qualitatively. Naturally, the speed

of convergence may slow down and, even when considering average effi ciency, achieving close

to maximal effi ciency may require larger markets.

3. General Aligned Markets with Idiosyncratic Shocks

We first focus on markets that entail aligned or common impacts on utilities (say, the revenue

a worker and firm can generate together) as well as idiosyncratic ones (say, ones corresponding

to the geographical location of an employer, or the precise educational background of a po-

tential employee). We consider general markets allowing for both components. We illustrate

that stable matchings in such markets yield the maximal average effi ciency asymptotically,

but not the maximal aggregate effi ciency. We also characterize the speed at which the av-

erage effi ciency of stable matchings converges to its maximal level. In particular, we show

that convergence speed is substantially faster as the idiosyncratic component of preferences

vanishes.
12This is an analogous assumption to that made in the literatures inspecting auctions and elections with

large numbers of participants– the support of valuations (in auctions), or utilities from different policies or
candidates (in elections), are commonly assumed independent of the number of participants.
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3.1. Average Effi ciency. Formally, we consider utility realizations such that each pair

(fi, wj) receives a utility that is a combination of the pair’s common surplus cij and indepen-

dent utility “shocks”zfij and z
w
ij . That is,

ufij ≡ φ(cij, z
f
ij) and

uwij ≡ ω(cij, z
w
ij).

We assume the functions φ(., .) and ω(., .) from [0, 1]2 to [0, 1] are continuous. We further

assume that they are both either strictly increasing in the common component cij but inde-

pendent of the idiosyncratic components, zfij and z
w
ij ; or strictly increasing in the idiosyncratic

components but independent of the common component; or strictly increasing in both ar-

guments. In this way, we capture markets characterized by fully aligned preferences, fully

idiosyncratic preferences, and non-trivial hybrids of aligned and idiosyncratic preferences.

Each of cij, z
f
ij, and z

w
ij is drawn independently from distributions that have positive density

functions over [0, 1].

Our main result here shows that, asymptotically, market participants achieve, on average,

their maximal conceivable match utility, regardless of which stable matchings are selected.

Proposition 1 [Effi ciency of Stable Matchings]. Stable matchings are asymptotically effi cient:

limn→∞
Sn
2n

= 1. Furthermore,

lim
n→∞

Sfn
n

= lim
n→∞

Swn
n

= 1.

Proposition 1 illustrates that stable matchings achieve the maximal average effi ciency, even

for utilities that are arbitrary combinations of common and idiosyncratic components that are

realized from arbitrary continuous distributions. An indirect consequence of the proposition

is that the most effi cient matching, stable or not, asymptotically achieves the maximal con-

ceivable utility per participant.

Some prior work (most notably, Abdulkadiroglu, Pathak, and Roth, 2009 in the context

of school choice) has suggested that the top trading cycle mechanism can considerably im-

prove upon deferred-acceptance algorithms, even in large markets, when considering matched

partners’ ranks. These results are consistent with ours. For illustration, consider the case

in which agents’preferences are fully idiosyncratic: each firm’s utility from each worker, and
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each worker’s utility from each firm are i.i.d draws from the uniform distribution over [0, 1].

Our results suggest that for any ε > 0, in large enough markets, most agents will be matched

with an agent achieving at least 1 − ε in utility terms. So, while agents will not necessarily
be matched with their very top candidates, they will match with fairly close substitutes.13

As we show in the Online Appendix, this observation is not an artifact of our assumption

that utilities are drawn from bounded supports, though when the support of utilities expands

rapidly enough, asymptotic average effi ciency fails, as we will see in Section 3.4.

We soon describe some intuition for this result. Before we do so, we discuss the speeds

with which the limits in Proposition 1 are achieved.

3.2. Speed of Convergence. We now turn to the speed of convergence pertaining to the

average effi ciency of stable matchings. As it turns out, the structure of preferences is crucial.

In order to provide a characterization of the convergence speed, we restrict attention to linear

functions φ and ω. Namely, for each firm fi and worker wj,

φ(cij, z
f
ij) = (1− α)cij + αzfij and

ω(cij, z
w
ij) = (1− α)cij + αzwij ,

where α ∈ [0, 1]. We further assume that cij, z
f
ij, and z

w
ij are all uniformly distributed over

[0, 1].

Proposition 2. 1. If α = 0, then for any n ≥ 3,

1

2

log n

n
≤ 1− Sn

2n
≤ log n

n
.

2. If α > 0,

lim sup
n→∞

(
1− Sfn

n

)
log n = lim sup

n→∞

(
1− Swn

n

)
log n ≤ 2.

13In fact, simulations of such markets suggest that even for a market with 1000 participants on each side,
the top trading cycle mechanism improves the ranking of matched partners under deferred acceptance for over
50% of market participants, but improves average utilities of participants by about 1% within the [0, 1] range.
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The proposition suggests that the speed of convergence is substantially faster when prefer-

ences are aligned. Indeed, when α = 0, preferences depend solely on the common component

cij. The proposition implies that the speed of convergence of Sn2n in this case is of the order of
logn
n
. In contrast, whenever α > 0, there is positive weight on the idiosyncratic component.

In this case, there might be multiple stable matchings and we consider Sfn
n
and Swn

n
separately.

Their speed of convergence is at least of the order of 1
logn

. In fact, when α = 1, we show in

the Online Appendix that

lim
n→∞

(
1− Sfn

n

)
log n = lim

n→∞

(
1− Swn

n

)
log n = 1.

Figure 1 illustrates numerical results for the average effi ciency for different levels of α.

For each market size n, we run 100 simulations, each corresponding to one realization of

preferences in the market. For each simulation, we compute the lowest per-participant utility

by a stable matching. The solid black line, the long dashed line, and the short dashed line

depict, respectively, the mean, the 95’th percentile, and the 5’th percentile of the simulated

distributions of these averages across the 100 simulations.14 The solid red line depicts the

mean maximal per-participant utility feasible across the realized markets. As one might

expect, greater values of α are associated with lower speeds of convergence. There are two

features to note in the figure. First, even for high levels of α, the fraction of the maximal per-

participant utility that is achieved through stability is substantial. For markets with around

1000 participants on each side– much smaller than many of the markets in the applications we

discuss– that fraction is about 88% even when α = 1, and much higher for lower α. Second,

that fraction does not depend linearly on α. For instance, for markets with around 1000

participants on each side, that fraction is about 98% for α = 1/3, about 95% for α = 2/3,

and, as mentioned, about 88% for α = 1.

Ultimately, Propositions 1 and 2 combined illustrate that when preferences have either

or both aligned and idiosyncratic components, any selection of stable matchings will lead

to approximately average effi cient matchings for suffi ciently large markets. Nonetheless, the

14In principle, when preferences are perfectly aligned, α = 0, we can use the formula developed in the section
that follows to calculate the average effi ciency. The figure gives a sense of the spread of the distribution (and
the mean tracks closely that generated by the formal expression of the average effi ciency).
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Figure 1: Convergence Speeds for Linear Hybrid Models of Aligned and Idiosyncratic Prefer-
ences (α is the Weight on the Idiosyncratic Component)

speed of convergence depends heavily on the structure of preferences: as the idiosyncratic

component becomes more prominent, markets need to be larger to near the maximal average

effi ciency.

3.3. Intuition Underlying Propositions 1 and 2. In this section, we provide a heuristic

construction underlying the proofs of Propositions 1 and 2. As it turns out, the case in which

preferences are fully aligned requires qualitatively different techniques than the case involving

idiosyncratic components. We thus describe them separately.

Fully Aligned Preferences. We start with the fully aligned case, where members of

each matched pair receive utilities proportional to one another (e.g., a firm and a worker may

split the revenues their interaction generates). As mentioned in the Introduction, such settings

are common in many applications (see, e.g., Sorensen, 2007, and the literature that followed).

Formally, we assume here that the utility both firm fi and worker wj receive if they are

matched is given by uij ≡ ufij = uwij. We assume uij are independently drawn across all pairs

(i, j) from a continuous distribution over [0, 1]. It follows that, generically, utility realizations
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(uij)i,j entail a unique stable matching. Indeed, consider utility realizations (uij)i,j such that no

two entries coincide, and take the firm and worker pair (fi, wj) that achieve the maximal match

utilities, {(i, j)} = arg max(i′,j′) ui′j′ . They must be matched in any stable matching since

they both strictly prefer one another over any other market participant. Consider then the

restricted market absent (fi, wj) and the induced match utilities for the remaining participants.

Again, we can find the pair that achieves the maximal match utility within that restricted

market. As before, that pair must be matched in any stable matching. Continuing recursively,

we construct the unique stable matching.

The proof of Proposition 1 in this case proceeds as follows. We first consider the uniform

distribution. When determining match utilities, the greatest realized entry, corresponding to

the first matched pair in the construction of the generically unique stable matching mentioned

above, is the extremal order statistic of n2 entries. Since each entry is uniform, the expected

value of the maximal entry is given by n2

n2+1
. In the next step of our construction, we seek

the expected maximal value within the restricted market (derived by extracting the firm and

worker pair that generates the highest match utility). That value is the extremal order statistic

of (n− 1)2 uniform random numbers that are lower than the entry chosen before, and can be

shown to have expected value of n2

n2+1
(n−1)2

(n−1)2+1 . Continuing recursively,

Sn
2

=
n2

n2 + 1
+

n2

n2 + 1

(n− 1)2

(n− 1)2 + 1
+

n2

n2 + 1

(n− 1)2

(n− 1)2 + 1

(n− 2)2

(n− 2)2 + 1
+ ...

While corresponding summands become smaller and smaller as we proceed with the recur-

sive process above, there are enough summands that are close enough to 1 so that limn→∞
Sn
2n

=

1, which is what the proof illustrates.

We then show that our result regarding asymptotic average effi ciency does not depend on

the uniform distribution of utilities.15 However, for Proposition 2, in order to show that the

average effi ciency of stable matchings converges to 1 at a speed of the order of logn
n
, we use

the precise formulation of Sn above.

15This effectively relies on the speedy convergence of extremal order statistics for the distributions we
consider. As mentioned, in the Online Appendix, we show that stable matchings are asymptotically average
effi cient even when considering a class of utility distributions that are not bounded and allowing for agents to
view certain partners as unacceptable.
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Fully Idiosyncratic Preferences. The other extreme case of Propositions 1 and 2 has

to do with the polar case in which preferences are determined in a fully independent manner.

That is, all values (ufij)i,j and (uwij)i,j are independently and identically distributed according

to a continuous distribution over [0, 1].

In this setting, stable matchings are not generically unique and the formal proof of Propo-

sition 1 for this case utilizes different techniques than those employed to prove the proposition

for the fully aligned case. It relies on results by Pittel (1989). To see the method of proof,

suppose utilities are drawn from the uniform distribution. Notice that from the ex-ante sym-

metry of the market, each firm fi (respectively, each worker wj) has equal likelihood to be

ranked at any position in any worker’s (respectively, firm’s) preference list. Therefore, each

one of n! matches of n firms and n workers has the same probability Pn of being stable. Knuth

(1976) proved that

Pn =

∫ 1

0

· · ·
∫ 1

0︸ ︷︷ ︸
2n

Π1≤i 6=j≤n

(
1− (1− ufii)(1− uwjj)

)
dufiidu

w
jj,

where dufii = duf11du
f
22 · · · dufnn and duwjj = duw11du

w
22 . . . du

w
nn.

The intuition behind this formula is simple. The formula essentially evaluates the proba-

bility that the matching µ, with µ(i) = i for all i, is stable. For any realized market, in order

for µ to be stable, utilities (ufij, u
w
ij)1≤i 6=j≤n must satisfy that either u

f
ij ≤ ufii or u

w
ij ≤ uwjj for

all i 6= j. The integrand corresponds to the probability that these restrictions hold.

Take any ε > 0. Let Pε,n be the probability that µ is stable and the sum of firms’utilities

is less than or equal to (1− ε)n. That is,

Pε,n =

∫
0≤ufii,uwjj≤1∑n
i=1 u

f
ii≤(1−ε)n

Π1≤i 6=j≤n

(
1− (1− ufii)(1− uwjj)

)
d(ufii,u

w
jj). (1)

From symmetry, the probability that any matching is stable and the sum of firms’utilities

is at most (1 − ε)n coincides with Pε,n. Since there are n! possible matchings, it suffi ces to

show that n!Pε,n converges to 0 as n increases. Our proof then uses the techniques developed

in Pittel (1989) to illustrate this convergence.16 When utilities are distributed uniformly, we

16The proof appearing in the Online Appendix for this extreme case circumvents the formulas described
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further show in the Appendix that the convergence speed of 1− Sfn
n
is of the order of 1

logn
.

We note that Proposition 1 for the hybrid model is not a direct generalization of the

arguments used for the two polar cases above. In order to get a sense of the diffi culty intro-

duced by combining aligned preferences with idiosyncratic shocks, consider Equation 1 above.

Roughly speaking, alignment introduces a positive correlation between match utilities (in fact,

the relevant match utilities in Equation (1) are positively associated, see Esary, Proschan, and

Walkup, 1967). This positive correlation affects both the integrand as well as the conditioning

region over which the integral (or expectation) is taken. Much of the proof appearing in the

Appendix handles these correlations.

3.4. Aggregate Effi ciency. Up to now, we considered average effi ciency, where utility is

averaged across market participants. The average effi ciency notion is particularly useful when

the designer is concerned with expected outcomes of a clearinghouse’s participants, or when

contemplating individual incentives to shift from one institution to another (e.g., allowing for

transfers or implementing an effi cient rather than stable matching). However, market designers

may also be concerned with aggregate effi ciency. In this section, we study the wedge in terms

of aggregate effi ciency between optimal matchings, those maximizing aggregate effi ciency, and

stable matchings. Our results suggest a substantial welfare loss induced by stability, one that

is more pronounced when preferences are idiosyncratic.

Formally, recall that we denoted by En the maximal aggregate effi ciency across all match-

ings. Our goal in this Section is to characterize the aggregate effi ciency loss Ln ≡ En−Sn. In
order to provide precise bounds on this difference, we focus on two polar cases in our setting:

fully aligned and fully idiosyncratic preferences, where utilities are drawn from the uniform

distributions– the environments discussed in Subsections 3.3 and 3.3.

We denote the aggregate effi ciency loss associated with fully aligned preferences (with

uniformly distributed utilities over [0, 1]) with n participants on each side by LAn and the

aggregate effi ciency loss associated with fully idiosyncratic preferences (with uniformly dis-

tributed utilities over [0, 1]) with n participants on each side by LIn. The following proposition

provides bounds on LAn and L
I
n.

here and utilizes more directly results from Pittel (1989).
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Proposition 3 [Aggregate Effi ciency Loss].

1. For any n ≥ 3,

log n− 6 ≤ LAn ≤ 2 log n.

2. The relative loss of aggregate effi ciency satisfies the following:

1 ≤ lim inf
n−→∞

(log n)2 LIn
nLAn

≤ 2.

The proposition illustrates the substantial effi ciency loss imposed by stability relative to

any “optimal”matching, despite this loss having a vanishing effect on individual participants’

expected payoffs. The proposition also suggests that the structure of preferences impacts

significantly the speed at which this effi ciency loss grows with market size, with idiosyncratic

preferences exhibiting a greater loss asymptotically. Namely, the ratio between the aggregate

effi ciency loss with idiosyncratic preferences relative to the loss with aligned preferences is

asymptotically of the order of n/ (log n)2, which increases with market size.

The proof of Proposition 3 relies on two sets of results. First, notice that Proposition 2

provides bounds on the speeds at which the average effi ciency of stable matchings grows for

the environments we focus on here. We therefore need bounds on the speed with which the

maximal average effi ciency grows. As it turns out, finding the maximal aggregate effi ciency

is a variation of the optimal assignment problem in statistics. The literature on optimal

assignment problems is still in flux and results are known only for particular distributions,

mainly the uniform and exponential distributions. When preferences are fully aligned, we can

interpret a result of Walkup (1979), which implies directly that when utilities are drawn from

the uniform distribution, 2n− 6 ≤ En ≤ 2n.17

Consider now markets with fully idiosyncratic preferences. That is, for each (i, j), match

utilities are given by ufij and u
w
ij that are distributed uniformly on [0, 1]. We define ũij ≡

ufij+u
w
ij

2

and consider the maximal aggregate effi ciency achieved by the optimal matching correspond-

ing to a fully aligned market with preferences specified by (ũij)i,j. Walkup (1979)’s result

17Follow-up work has improved upon this bound (see, for instance, Coppersmith and Sorkin, 1999, whose
work suggests that En ≥ 2n− 3.88). We use Walkup’s bound since it is suffi cient for our conceptual message
and as we use his method of proof to identify En when preferences are fully idiosyncratic.
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cannot be used directly, however, since now each ũij is distributed according to the symmetric

triangular distribution over [0, 1]. In the Appendix, we modify the proof in Walkup (1979)

and illustrate that, in this environment, En ≥ 2n− 3
√
n. In fact, in the Online Appendix, we

also show that limn→∞
2n−En√

n
≥
√

π
2
so that indeed the difference between En and 2n is of the

order of
√
n.

4. Assortative Markets

Another class of matching markets that plays an important role in many applications allows

for assortative preferences (see Becker, 1973). In such markets, one or both sides of the

market agree on the ranking of the other side. For instance, medical residents may evaluate

hospitals, at least to some extent, according to their publicly available rankings and hospitals

may agree on the attributes that make a resident appealing (see Agarwal, 2015); similarly,

potential adoptive parents may evaluate children up for adoption similarly (see Baccara et al.,

2014); and so on. In this section, we illustrate that such markets, in which preferences are a

combination of a common ranking across firms or workers and arbitrary idiosyncratic shocks,

still entail asymptotically average effi cient stable matchings.

We assume that each agent has her own intrinsic value, which we denote by (cfi )
n
i=1 for

firms and (cwj )nj=1 for workers. When firm fi matches with worker wj, the firm’s utility is

determined by the worker’s intrinsic value cwj and the worker’s value assessed individually by

the firm, the idiosyncratic component zfij. Similarly, worker wj’s utility of matching with firm

fi is a combination of the firm’s intrinsic value c
f
i and the worker’s idiosyncratic assessment

of the firm zwij . That is,

ufij ≡ Φ(cwj , z
f
ij) and

uwij ≡ Ω(cfi , z
w
ij).

The functions Φ(., .) and Ω(., .) from [0, 1]2 to [0, 1] are continuous and strictly increasing

in both arguments. We assume that cfi , c
w
j , z

f
ij, and z

w
ij are all drawn independently from

distributions that have positive density functions over [0, 1].

Let Ef
n and E

w
n be the maximal aggregate effi ciency for n firms and workers, respectively,
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achievable by any market matching:

Ef
n ≡ E

(
max
µ∈M

n∑
i=1

ufiµ(i)

)
and Ew

n ≡ E
(

max
µ∈M

n∑
i=1

uwiµ(i)

)
.

In the following proposition, we show that all stable matchings deliver approximately

maximal average effi ciency as market size increases.

Proposition 4 [Average Effi ciency of Stable Matchings]. Stable matchings in assortative mar-

kets with idiosyncratic shocks achieve maximal average effi ciency asymptotically:

lim
n→∞

Ef
n − Sfn
n

= lim
n→∞

Ew
n − Swn
n

= 0.

The proof of Proposition 4 is a direct consequence of Lee (2017). Proposition 1 in the

online appendix of Lee (2017) indicates that:

lim
n→∞

E
[

Sfn∑n
i=1 Φ(cwj , 1)

]
= 1,

which, in turn, implies the claim of the Proposition pertaining to firms. A symmetric argument

holds for the average effi ciency experienced by workers.18

Lee (2017) suggests that in settings such as these, for any stable matching mechanism,

asymptotically, there is an “almost”-equilibrium that implements a stable matching corre-

sponding to the underlying preferences. Formally, Lee (2017) implies that for any stable

matching mechanism and any ε, δ, θ > 0, there exists N such that with probability of at least

1− δ, a market of size n > N has an ε-Nash equilibrium in which a fraction of at least 1− θ
of agents reveal their true preferences. Together with our results, this suggests the following.

Corollary 1 [Stable Matching Mechanisms]. When preferences are hybrids of assortative and

idiosyncratic components, stable matching mechanisms are asymptotically average effi cient

and incentive compatible.

18The results of Che and Tercieux (2018) suggest average effi ciency that is bounded below the maximal
feasible when utility distributions are atomic. Combined with our results, we conjecture that the speed of
convergence for continuous distributions that approach atomic ones becomes infinitely slow.
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In order to identify the speed of convergence, we restrict attention to linear functions Φ

and Ω. For each pair (fi, wj), we assume that:

Φ(cwj , z
f
ij) = (1− β)cwj + βzfij, and

Ω(cfi , z
w
ij) = (1− β)cfi + βzwij ,

where β ∈ [0, 1], and cfi , c
w
j , z

f
ij and z

w
ij are independently drawn from the uniform distribution

over [0, 1] for all i, j.

Notice that any matching generates the same expected average effi ciency corresponding to

the assortative component of preferences, evaluated at β = 0, given by 1/2. Therefore, the

maximum conceivable average effi ciency is

lim
n→∞

Ef
n = lim

n→∞
Ew
n = (1− β)

1

2
+ β.

As mentioned, when β = 0, the average effi ciency of the (generically unique) stable match-

ing is 1/2 for all n. When β = 1, our characterization in Proposition 2 provides the speed

of convergence. The following proposition characterizes the speed at which average effi ciency

converges to the maximum conceivable when β ∈ (0, 1).

Proposition 5. For any β ∈ (0, 1),

(1− β)
1

2
+ β − Sfn

n
= (1− β)

1

2
+ β − Swn

n
= O(n−1/4).

Proposition 5 suggests an important difference between markets entailing preferences that

have an aligned component, relative to markets characterized by preferences with a dominant

assortative component. The convergence speed in the latter is substantially faster.

Figure 2 corresponds to average effi ciency levels in 100 simulated markets. As before,

we depict a worst-case scenario, where we consider firms’per-participant utilities when the

worker-optimal stable matching is implemented in each market. We also depict the maximal

feasible per-participant utility, which depends on β. In each panel of the figure, corresponding

to a different level of β, we also mark with a horizontal line the bound on the maximal

conceivable average effi ciency, labeled “effi ciency limit.”When markets contain about 1000
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Figure 2: Convergence Speeds for Linear Hybrid Models of Assortative and Idiosyncratic
Preferences (β is the Weight on the Idiosyncratic Component)

individuals on each side, the fraction of the maximal achievable per-participant utility that

stable matchings yield is quite high, especially for β ≤ 2/3. As for the case of aligned and

idiosyncratic hybrid preferences, the dependence of that fraction on β is non-linear, with more

pronounced effi ciency losses appearing only for fairly high levels of β, even for these fairly small

markets.19

19The case considered here lends itself to particular match utilities that involve interaction terms. Consider
a simple case with interactions, where for each firm i with attributes cfi and worker j with attributes c

w
j :

ufij = βcfi c
w
j + ε

f
ij

uwij = βcfi c
w
j + ε

w
ij ,

where cfi , c
w
j , and εfij , ε

w
ij are random variables and we assume that individual attributes cfi and cwj have

supports bounded above 0, say of the form [a, 1], where a > 0. Then, when supports are bounded, it suffi ces
to consider the effi ciency of stable matchings in a market with modified utilities that normalize each agent’s
original utility by her own attribute. Under further assumptions of distributions, these utilities are of the form
we discuss here. We note that Menzel (2015) considers utility forms as such, where the set of attributes is finite
and error terms follow extreme distributions, in the style of Dagsvik (2000). With those assumptions, Menzel
(2015) and Peski (2017) illustrate asymptotic average effi ciency in the marriage market and the roommate
problem, respectively.
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In fully assortative markets, all matchings of everyone in the market entail the same

effi ciency level. Thus, both average and aggregate effi ciency levels are maximized under such

markets’stable matchings. In the Online Appendix, we also analyze the asymmetric case in

which workers all share the same evaluation of firms with utilities determined uniformly, while

firms have independent evaluations of workers. In that case, the speed at which the average

effi ciency of stable matchings converges to the maximum is of the order of logn
n
and aggregate

effi ciency patterns mimic those of fully aligned preferences. In particular, asymptotically,

aggregate effi ciency of stable matchings is bounded away from what is feasibly maximal.

5. Markets with Stable Matchings that are not Average Efficient

Asymptotically

It is not very hard to find a large market where stable matchings do not achieve maximal

average effi ciency asymptotically. As mentioned in the Introduction, a replication of small

markets in which stable matchings are ineffi cient generates (larger) markets that entail stable

matchings that are ineffi cient.20 However, in the setting studied up to now, such markets are

asymptotically unlikely. In this section, we study two environments in which stable matchings

are average ineffi cient even when markets are large.

5.1. Severely Imbalanced Markets. Throughout the paper, we assumed that markets

are roughly balanced: our presentation pertained to coinciding volumes of firms and workers

and, as mentioned at the outset, would carry through for bounded imbalances, e.g., if there

were n firms (workers) and n+k workers (firms), where k is fixed.21 Since in many real-world

20One natural way to think of replicating an m×m market (such as the 2× 2 market we first discussed in
the introduction) characterized by utilities (ufij , u

w
ij) is by considering a market of size km× km, with match

utilities (ũfij , ũ
w
ij), where

ũxi′j′ =

{
uxi′mod k, j′mod k i′ div k = j′ div k

0 otherwise
,

so that, for any l = 0, 1, . . . , k − 1, firms flm+1, ..., f(l+1)m and workers wlm+1, ..., w(l+1)m have the same
preferences over one another as in the original market, and generically prefer matching with agents in this
“sub-market”over matching with anyone else in the market.
21In fact, the claims go through for any bounded difference in volumes — i.e., markets with n firms and

n+ k(n) workers, where k(n) ≤ K for all n. The proofs for markets that entail idiosyncratic preferences need
to be more carefully modified and are available from the authors. We note that the results are consistent
with Ashlagi, Kanoria, and Leshno (2017). For instance, for markets with n firms, n + 1 workers, and fully
idiosyncratic preferences, with high probability, their results suggest that firms’ average rank of employed
workers in any stable matching is no more than 3 log n, whereas the workers’average rank of their employing
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matching markets one side has more participants than the other, in this section, we study the

robustness of our main result to the assumption that this imbalance is not too severe. This is

particularly interesting in view of recent results by Ashlagi, Kanoria, and Leshno (2017) that

illustrate the sensitivity of the structure of stable matchings to the relative sizes of both sides

of the matching market.

We now consider markets with n firms and n + k(n) workers, where k(n) is increasing in

n, and examine the asymptotic average effi ciency for matched workers when the firm-optimal

stable matching, the worker-pessimal stable matching, is implemented. The main result of

this section is that average effi ciency for workers may be bounded away from the maximal fea-

sible, even asymptotically, whenever markets are severely imbalanced and preferences exhibit

substantial idiosyncratic components.

We will assume that utilities from matching with anyone are positive almost always,

whereas remaining unmatched generates zero utility. Under these assumptions, all partici-

pants of the scarce side of the market are generically matched in any stable matching. Fur-

thermore, the Rural Hospital Theorem (see Roth and Sotomayor, 1992) assures that the set

of unmatched individuals does not depend on the implemented stable matching. Since no

matching can increase the number of matched individuals, a natural analogue for our average

effi ciency notion considers the per-person expected utility, conditional on being matched. As

before, since there might be multiple stable matchings, we will inspect the worst-case scenario.

We will continue using the term “average effi ciency” for this notion. We focus on cases in

which the relative volumes of participants on both sides of the market are comparable, so that
k(n)
n
is bounded.22

Notice that the addition of workers can only improve firms’average effi ciency when focusing

on the extremal stable matchings (see Roth and Sotomayor, 1992). Therefore, in any balanced

setting in which maximal average effi ciency is achieved asymptotically, the introduction of

more workers will maintain the asymptotic average effi ciency of stable matchings for firms.

When markets are fully aligned or fully assortative, the proofs of Propositions 1 and

4 carry through for arbitrary increasing functions k(n) and maximal average effi ciency of

firms is at least n/3 log n. With normalization by n, both of these bounds converge to 0.
22Whenever k(n)

n explodes, the relevant effi ciency statements would pertain to an insignificant fraction of
firms that end up being matched.
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stable matchings is achieved asymptotically.23 We now focus on markets with idiosyncratic

preferences, where we normalize the utility from remaining unmatched to be zero. Recall that

Swn denotes workers’aggregate effi ciency in the worker-pessimal stable matching.

The following proposition illustrates the impacts of market imbalances. If one side of the

market is proportionally larger and preferences are fully idiosyncratic, average ineffi ciency

may arise even when markets are large.

Proposition 6 [Imbalanced Markets with Fully Idiosyncratic Preferences]. Suppose k(n) ≥
λn for some λ > 0, and all utilities (ufij)i,j and (uwij)i,j are independently drawn from the

uniform distribution over [0, 1]. Then,

lim
n→∞

Swn
n
≤
{

1− 1
−3 log λ for 0 < λ ≤ 1/2

1− 1
3 log 2

for 1/2 < λ.

Notice that this indeed suggests average ineffi ciency of stable matchings in large markets.

For each realization of a market, characterized by realized utilities (ufij)i,j and (uwij)i,j, consider

the induced fully aligned market with utilities (ũij ≡
ufij+u

w
ij

2
)i,j. That is, in the induced market,

each matched firm and worker receive their average match utilities in the original market. The

average effi ciency of stable matchings pertaining to aligned markets then carry through for

the induced market. Since these matchings produce the same per-participant utilities in

the original market, maximal average effi ciency can be achieved asymptotically. The wedge

identified in Proposition 6 then implies a substantial average effi ciency loss due to stability,

even in large markets.

To gain some intuition as to why severe imbalances can lead to average ineffi ciencies when

preferences are idiosyncratic, consider an extreme sequence of markets comprised of one firm

and n workers. In such markets, the stable matching matches the firm with its favorite worker.

Therefore, the firm’s expected utility in the stable matching is the maximum of n samples

from the uniform distribution over [0, 1] , which is n
n+1

and indeed converges to 1. However,

since workers’utilities are drawn independently from the firm’s, the worker matched under the

stable matching has an expected utility of 1
2
. Nonetheless, for the matching that maximizes

23For markets with underlying preferences that are hybrids of assortative and idiosyncratic, slightly more
involved arguments are required that follow directly from results in Lee (2017).
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effi ciency, we should look for j that maximizes uf1j + uw1j, which is distributed according to

the symmetric triangular distribution over [0, 2]. Therefore, the maximal feasible aggregate,

and thereby average, effi ciency corresponds to the maximum of n samples from the triangular

distribution, which converges to 2 as n grows large. Roughly speaking, the crux of this example

is that, in stable matchings, agents in the scarce side of the market do not take into account

utilities achieved by the other side of the market. In particular, a matching that implies even

a minuscule loss for the firm, but a substantial increase in the utility of the matched worker

will not be implemented.

5.2. Sub-modular Match Utilities. Another important class of markets in which av-

erage ineffi ciency arises asymptotically pertains to assortative preferences in which match

utilities are sub-modular in partners’intrinsic values. For finite markets, Becker (1974) illus-

trated that sub-modularity in assortative markets leads to the negatively assortative unique

effi cient matching and the positively assortative unique stable matching.

Formally, consider a sequence of markets in which firms’ intrinsic values are given by

(cfi = i/n)ni=1 and workers’intrinsic values are given by (cwj = j/n)nj=1. Match utilities are

determined according to an “output function”φ:

ufij = uwij = φ(cfi , c
w
j )

such that
∂φ(cfi , c

w
j )

∂cfi
> 0,

∂φ(cfi , c
w
j )

∂cwj
> 0.

The positively assortative matching partners each fi with wi, and it is the unique stable

matching in these markets. The negatively assortative matching partners each fi with wn+1−i.

The cross-partial derivatives of the output function φ are crucial in determining whether

the positively assortative matching is an (average or aggregate) effi cient matching or not.

Indeed, when φ is linear, all matchings generate the same effi ciency and both the positively and

negatively assortative matchings are effi cient. When output is super-modular,
∂2φ(cfi ,c

w
j )

∂cfi ∂c
w
j

> 0,

the positively assortative matching (i.e., the stable matching) is an effi cient matching, while

when output is sub-modular,
∂2φ(cfi ,c

w
j )

∂cfi ∂c
w
j

< 0, the positively assortative matching is not an

effi cient matching, which is negatively assortative.
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In order to illustrate how these features may carry through to large markets, we consider

a particular class of output functions:

ufij = uwij = φ(cfi , c
w
j ) ≡ (cfi + cwj )α,

where α ∈ (0, 1) , so that output is sub-modular.

The maximal aggregate effi ciency, from the effi cient (negatively assortative) matching, is

En = 2 ·
n∑
i=1

(
i+ µ(i)

n

)α
= 2 ·

n∑
i=1

(
n+ 1

n

)α
= 2n

(
n+ 1

n

)α
.

Therefore,

lim
n→∞

En
2n

= lim
n→∞

(
n+ 1

n

)α
= 1.

On the other hand, aggregate effi ciency from the stable (positively assortative) matching

is

Sn = 2 ·
n∑
i=1

(
i+ µ(i)

n

)α
= 2 ·

n∑
i=1

(
2i

n

)α
.

Note that

1

n

n∑
i=1

(
2i

n

)α
≥
∫ 1

0

(2x)αdx =
2α

α + 1
≥ 1

n

n−1∑
i=0

(
2i

n

)α
=

1

n

n∑
i=1

(
2i

n

)α
− 2α

n
.

Thus,

lim
n→∞

Sn
2n

= lim
n→∞

1

n

n∑
i=1

(
2i

n

)α
=

2α

α + 1
.

In this example,
∂2φ(cfi ,c

w
j )

∂cfi ∂c
w
j

= −α(1 − α)(cfi + cwj )α−2. Sub-modularity then vanishes as α

approaches 0 or 1. When α is close to 0, output is very insensitive to individual values, and

any matching, in particular the stable one, generates average effi ciency close to the optimum.

When α is close to 1, the output function is “almost linear”in individual values and, again,

the stable matching is asymptotically nearly average effi cient. Nonetheless, for intermediate

values of α, preferences are strictly sub-modular and asymptotic average effi ciency of the

stable matching is bounded strictly below 1, which is achieved by the most effi cient matching.
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6. Conclusions

This paper illustrates that for a large class of preferences, stable matchings achieve maximal

average effi ciency asymptotically, but their aggregate effi ciencies fall far short of the maximal

feasible effi ciency even when markets are large. These conclusions are particularly relevant in

view of the observation that many markets entail fixed wages (see Hall and Kreuger, 2012),

or are subject to legal or “moral” constraints that ban transfers (see Roth, 2007). In such

settings, a market designer who implements stable outcomes using an ordinal mechanism

sacrifices little in terms of average effi ciency. However, a designer who aims at maximizing

aggregate effi ciency would potentially require mechanisms that take into account cardinal

utilities, and possibly allow transfers among participants.

Our results also illustrate the speeds of convergence of the average effi ciency of stable

matchings to the optimum. Idiosyncratic preferences yield a substantially lower speed of

convergence than those exhibited in markets with aligned or assortative preferences. This

suggests that even market designers concerned with average effi ciency should consider market

size with special caution.

Markets with idiosyncratic preferences are also fragile to imbalances in the volumes of

participants on either side. When those imbalances are severe– when the volume of one side

constitutes a fixed fraction of the volume of the other– stable matchings are no longer average

effi cient in general, even in large markets. Again, mechanisms that take cardinal utilities into

account, possibly allowing transfers, could prove beneficial.

While our results simply assess the effi ciency features of stable matchings in a variety of

markets, they open the door for many interesting questions regarding incentive compatibility

of effi cient mechanisms. When preferences combine assortative and idiosyncratic components,

stable matchings are not only asymptotically average effi cient, they are also asymptotically

incentive compatible. Our results then serve as a rather positive defense of commonly used

mechanisms such as the Gale-Shapley (1962) deferred acceptance algorithm when average

effi ciency is the objective– in such settings, these mechanisms are asymptotically incentive

compatible and average effi cient (our Corollary 1). Nonetheless, for a designer concerned with

aggregate effi ciency, it would be important to analyze the most effi cient incentive compati-

ble mechanisms. Furthermore, for other types of preferences, even the question of incentive
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compatibility of stable mechanisms in large markets is still open.

Our analysis pertains to one-to-one matching markets such as those matching doctors and

residency positions, rabbis and congregations, children up for adoption and potential adoptive

parents, etc. It also extends directly to many-to-one matching markets, such as school choice,

if preferences are responsive. Additional details could be relevant for such an analysis, for

instance parents’ investments in student qualifications (see Cole, Mailath, and Postlewaite,

2001) and the interaction between matching processes and the real estate market (see Avery

and Pathak, 2017). Naturally, incorporating these details would make welfare assessments

more subtle in this context.
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7. Appendix —Proofs

7.1. Proof of Propositions 1 and 2 for Fully Aligned Preferences. We start by

proving Propositions 1 and 2 for the case of fully aligned preferences, as in Section 3.3. That

is, the match utilities of each firm and worker pair depend only on a random common value.

Formally, we assume the functions φ(., .) and ω(., .) are both strictly increasing in cij but

independent of the idiosyncratic components.

We begin with the derivation of a formula for Sn suggested in the text when utilities

are distributed uniformly and illustrate both asymptotic average effi ciency and the speed of

convergence for that case. We then generalize our asymptotic average effi ciency result to

arbitrary continuous distributions.

As illustrated in the text, realized utilities (uij)i,j generically induce a unique stable match-

ing. Denote by u[k;n] the k-th highest match utility of pairs matched within that unique stable

matching. Therefore,
Sn
2

= E

(
n∑
k=1

u[k;n]

)
=

n∑
k=1

E(u[k;n]).

We use induction to show that for k = 1, . . . , n,

E(u[k;n]) =
n2

n2 + 1

(n− 1)2

(n− 1)2 + 1
· · · (n− k + 1)2

(n− k + 1)2 + 1
.

For k = 1, u[1;n] is the maximal utility achievable from all firm-worker pairs. Thus, u[1;n]

is the highest entry from n2 samples from the uniform distribution over [0, 1] and so:

E(u[1;n]) =
n2

n2 + 1

Suppose the claim is shown for k− 1. From the construction of the stable matching, u[k;n]

is the maximal utility among all firm-worker pairs, after all firms and workers receiving the

k − 1 highest utilities within the stable matching have been removed from the market. Thus,

u[k;n] is the highest entry from (n − k + 1)2 samples from the uniform distribution over [0, 1]

restricted so that each sample has a value lower than or equal to u[k−1;n]. Therefore,

E(u[k;n]|u[k−1;n]) = u[k−1;n]
(n− k + 1)2

(n− k + 1)2 + 1
.
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By the law of iterated expectations,

E(u[k;n]) = E
(
E(u[k;n]|u[k−1;n])

)
= E

(
u[k−1;n]

) (n− k + 1)2

(n− k + 1)2 + 1

=
n2

n2 + 1
· · · (n− k + 2)2

(n− k + 2)2 + 1

(n− k + 1)2

(n− k + 1)2 + 1
,

where the last equality is from the induction hypothesis. The formula for Sn follows.

We now turn to the proof of Propositions 1 and 2 for this setting. First, denote by

Cn = 1− Sn
2n
.

Notice that C1 = 1/2. For any n > 1,

Sn
2

=
n2

n2 + 1
+

n2

n2 + 1

Sn−1
2

,

which implies that

Cn = 1− Sn
2n

= 1− n

n2 + 1
− n

n2 + 1

Sn−1
2

=
1

n2 + 1
+
n(n− 1)

n2 + 1

(
1− Sn−1

2(n− 1)

)
=

1

n2 + 1
+
n(n− 1)

n2 + 1
Cn−1.

Then, we can find that

C3 =
1

10
+

6

10
C2 =

1

10
+

6

10

(
1

5
+

2

5

1

2

)
=

17

50
= 0.34,

which is between 1
2
log 3
3

= 0.18... and log 3
3

= 0.37 . . . .

For any n > 3, suppose

1

2

log(n− 1)

n− 1
≤ Cn−1 ≤

log(n− 1)

n− 1
.

Then,

1

n2 + 1
+

n

2(n2 + 1)
log(n− 1) ≤ Cn =

1

n2 + 1
+
n(n− 1)

n2 + 1
Cn−1 ≤

1

n2 + 1
+

n

n2 + 1
log(n− 1).
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Notice that

1

n2 + 1
+

n

n2 + 1
log(n− 1) <

1

n2
+

1

n
log(n− 1) <

log n

n
,

where the second inequality, which is equivalent to log
(
1− 1

n

)
< − 1

n
, holds from 1− 1

n
< e−1/n.

Further, we have

1

n2 + 1
+

n

2(n2 + 1)
log(n− 1) =

2 + n log(n− 1)

2(n2 + 1)
>
n log n+ (1/2)

2(n2 + 1)
>

log n

2n
,

where the first inequality, which is equivalent to n log
(

n
n−1
)
< 3

2
, holds for n = 4 since

4 log(4/3) = 1.15 . . . and for n > 4 since

d
(
n log

(
n
n−1
))

dn
= log

(
n

n− 1

)
− 1

n− 1
< 0.

Note that n
n−1 = 1 + 1

n−1 < e
1

n−1 for n ≥ 3.

The proof of Propositions 1 and 2 for this case then follows.

We now show that stable matchings are asymptotically average effi cient even when the

match utilities of firm and worker pairs are independently and identically drawn from an

arbitrary continuous distribution G over [0, 1]. Indeed, we show that for any ε > 0,

lim
n→∞

Sn
2n
≥ 1− ε.

We construct a uniform distribution G′ such that G first order stochastically dominates

G′. The support of G is [0, 1], so there exists γ such that 1− ε < γ < 1 and G(γ) < 1.

Let

G′(x) =
1−G(γ)

γ
x+G(γ),

so that G′ is the uniform distribution over [0, γ].

Let S
′
n be the expected aggregate effi ciency derived from the stable matching when utilities

are drawn from G′(x). The proof above can be replicated to show

lim
n→∞

S ′n
2n

= γ.
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Note that G first order stochastically dominates G′. Thus, every order statistic correspond-

ing to samples from G first order stochastically dominates the corresponding order statistic

of the same number of samples from G′. For every realized utilities (uij)i,j, Sn is a sum of

specific n order statistics. Thus, the aggregate effi ciency from the stable matching under G

first order stochastically dominates that under G′. It follows that

lim
n→∞

Sn
2n
≥ lim

n→∞

S ′n
2n

= γ > 1− ε.

Since ε is arbitrary, limn→∞
Sn
2n

= 1, as desired. �

7.2. Proof of Proposition 1 for Aligned Preferences with Idiosyncratic Shocks.

We now provide the proof of Proposition 1 for the case in which firms’and workers’match

utilities, φ(., .) and ω(., .), are strictly increasing in the idiosyncratic components, zfij and z
w
ij

and either both are independent of the common component cij or both are strictly increasing in

cij. It is without loss of generality to consider cij, z
f
ij, and z

w
ij that are all uniformly distributed

over [0, 1]. Indeed, an appropriate change of variables will generate an equivalent setting in

which the underlying distributions are uniform.24

The model is potentially a mixture of aligned preferences captured by the variables c =

(cij)i,j and idiosyncratic preferences captured by the variables z
f = (zfij)i,j and z

w = (zwij)i,j.

Accordingly, our proof is comprised of two parts.

For each realization (c, zf , zw), let

F̄ (ε; c, zf , zw) ≡ {fi|ciµw(i) ≤ 1− ε}.

Whenever φ(., .) and ω(., .) are strictly increasing in the common component, we first show

that for any ε > 0,

lim
n→∞

E
[
|F̄ (ε; c, zf , zw)|

n

]
= 0. (2)

24See the online appendix of Lee (2017) for details.
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In the second part of the proof, we show that for any ε > 0,

P

(∑n
i=1 z

f
iµw(i)

n
≤ 1− ε

)
→ 0 as n→∞. (3)

Proposition 1, for cases excluding fully aligned preferences, is immediate from (2) and (3).

For any ε, there exist ε′ such that if φ(c, zf ) < φ(1, 1)− ε then either c < 1− ε′ or zf < 1− ε′.
Therefore,

1

n

∣∣{fi|uiµw(i) ≤ φ(1, 1)− ε}
∣∣ ≤ 1

n

∣∣{fi|ciµw(i) ≤ 1− ε′}
∣∣+

1

n

∣∣{fi|ziµw(i) ≤ 1− ε′}
∣∣ .

The right hand side converges to zero in probability by (2) and (3).

Proof of Equation (2). Assume that φ(., .) and ω(., .) are strictly increasing in the

common component cij, in which case Equation (2) is relevant for our proof.

A graph G is a pair (V,E), where V is a set called nodes and E is a set of unordered pairs

(i, j) or (j, i) of i, j ∈ V called edges. The nodes i and j are called the endpoints of (i, j). We

say that a graph G = (V,E) is bipartite if its node set V can be partitioned into two disjoint

subsets V1 and V2 such that each of its edges has one endpoint in V1 and the other in V2.

A biclique of a bipartite graph G = (V1∪V2, E) is a set of nodes U1∪U2 such that U1 ⊂ V1,

U2 ⊂ V2, and for all i ∈ U1 and j ∈ U2, (i, j) ∈ E. In other words, a biclique is a complete
bipartite subgraph of G. We say that a biclique is balanced if |U1| = |U2|, and refer to a
balanced biclique with the maximal number of nodes as a maximal balanced biclique.

Given a partitioned set V1 ∪ V2, we consider a random bipartite graph G(V1 ∪ V2, p). A
bipartite graph G = (V1 ∪ V2, E) is constructed so that each pair of nodes, one in V1 and

the other in V2, is included in E independently with probability p. We use the following

proposition in the proof.

Proposition 7 [Dawande et al., 2001]. Consider a random bipartite graphG(V1∪V2, p), where
0 < p < 1 is a constant, |V1| = |V2| = n, and δ(n) = log n/ log 1

p
. If a maximal balanced bi-

clique of this graph has size B ×B, then

Pr (δ(n) ≤ B ≤ 2δ(n))→ 1, as n→∞.
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By continuity of φ(., .) and ω(., .), there exists ε′ > 0 such that

cij, z
f
ij, z

w
ij > 1− ε′ =⇒ φ(cij, z

f
ij) > φ(1− ε, 1) and ω(cij, z

w
ij) > ω(1− ε, 1).

For each realization (c, zf , zw), we draw a bipartite graph such that F ∪W is the set of

nodes (where F and W constitute the two parts of the graph), and each pair of fi and wj

is connected by an edge if and only if at least one of cij, z
f
ij, or z

w
ij is lower than or equal to

1− ε′.
Let

W̄ (ε; c, zf , zw) ≡ {wj|µw(j) ∈ F̄ (ε; c, zf , zw)}.

Then F̄ ∪ W̄ is a balanced biclique. If a pair (fi, wj) from F̄ ∪ W̄ is not connected by an edge,

then the pair can achieve utilities φ(cij, z
f
ij) > φ(1− ε, 1) and ω(cij, z

w
ij) > ω(1− ε, 1) because

cij, z
f
ij, z

w
ij > 1− ε′. The two utilities are higher than their utilities under µw. This contradicts

µw being stable.

Proposition 7 then implies Equation (2).

Proof of Equation (3). Let µ ≡ {(i, i)|i = 1, . . . , n}. By symmetry, each one of the
n! matchings has the same probability of being both stable and entailing a sum of firms’

idiosyncratic components that is lower than or equal to (1− ε)n. Therefore,

P

(∑n
i=1 z

f
iµw(i)

n
≤ 1− ε

)
≤ n!P

(
µ is stable and

∑n
i=1 z

f
iµ(i)

n
≤ 1− ε

)
.

For each realization (c, zf , zw), we consider the following profile of utilities.

ũfij = φ(cij, z
f
ij) and ũwij = ω(cij, z

w
ij) if i 6= j, and

ũfij = φ(1, zfij) and ũwij = ω(cij, z
w
ij) if i = j.

Remark 1. If preferences are fully idiosyncratic, so that φ and ω are independent of cij, then

ũij = uij for all fi ∈ F and wj ∈ W .

If a pair of fi and wj with i 6= j is a blocking pair of µ under match utilities (ũfij, ũ
w
ij), then
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the pair also blocks µ under the actual realized utilities. Thus,

P

(
µ is stable and

∑n
i=1 z

f
iµ(i)

n
≤ 1− ε

)
≤ Pε,n

where Pε,n is the probability that µ is stable with respect to the utilities (ũfij, ũ
w
ij)i,j and∑n

i=1 z
f
iµ(i)

n
≤ 1− ε. We prove that n!Pε,n converges to zero as n increases.

Preparation Steps for Proof of (3). We denote by Γf the marginal distribution of

ũfij for pairs of (fi, wj) that are not matched under µ (i.e., i 6= j), and by Γw the marginal

distribution of ũwij for any pair of (fi, wj). We define, for all i, j, û
f
ij = Γf (ũfij) and û

w
ij = Γw(ũwij).

Remark 2. The marginal distributions of ûfij for firm and worker pairs with i 6= j, and ûwij
for all pairs are uniform over [0, 1]. Whereas, for pairs with i = j, the marginal distribution

of ûfij first order stochastically dominates the uniform distribution over [0, 1].

For each given realization (ûfii)
n
i=1 and (ûwjj)

n
j=1, the probability that µ is stable with respect

to (ũfij, ũ
w
ij)i,j is the same as

Π1≤i 6=j≤n

(
1− P [ûfij > ûfii and û

w
ij > ûwjj]

)
.

Note that cij, z
f
ij, and z

w
ij are independently and identically distributed, so they are pos-

itively associated (See Theorem 2.1 in Esary, Proschan, and Walkup, 1967). Indeed, since

Γf (φ(., .)) and Γw(ω(., .)) are non-decreasing functions of cij, z
f
ij, and z

w
ij , the covariance of the

corresponding values, ûfij and û
w
ij for i 6= j is non-negative. Thus, we have

P [ûfij > ûfii and û
w
ij > ûwjj] ≥ P [ûfij > ûfii]P [ûwij > ûwjj] = (1− ûfii)(1− ûwjj).

Last, take any 0 < γ < 1/2 such that

Γf (φ(1, zfii)) ≤ (1− γ) + γzfii.

Then,

1− ûfii ≥ γ(1− zfii).
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Therefore, for each realization of cij, z
f
ij, z

w
ij for pairs with i = j, the probability that µ is

stable is bounded above by

Π1≤i 6=j≤n

(
1− γ(1− zfii)(1− ûwjj)

)
.

We therefore obtain that

Pε,n ≤
∫ ∫

∑n
i=1 z

f
ii≤(1−ε)n

Π1≤i 6=j≤n

(
1− γ(1− zfii)(1− ûwjj)

)
dzfiidû

w
jj .

Now, let xi = 1− zfii and yj = 1− ûwjj. Then,

Pε,n ≤
∫

0≤x,y≤1
εn≤

∑n
i=1 xi

Π1≤i 6=j≤n (1− γxiyj) d(x,y).

Proof of Convergence.

Pε,n ≤
∫

0≤x,y≤1
εn≤

∑n
i=1 xi

Π1≤i 6=j≤n(1− γxiyj)d(x,y)

=

∫
0≤x,y≤1

εn≤
∑n
i=1 xi

Π1≤j≤n

(∫ 1

0

Πi 6=j(1− γxiyj)dyj
)

︸ ︷︷ ︸
(∗)

dx.

Let t = n−7/8 and δ = et(1−γt). As 0 < γ < 1/2, for any 0 ≤ z ≤ t, we have 1−γz ≤ δe−z.

Thus, when 0 ≤ yj ≤ t, we have 0 ≤ xiyj ≤ t, so 1 − γxiyj ≤ δ exp(−xiyj). In addition,
1 + γz ≤ eγz for any z, so 1− γxiyj ≤ exp(−γxiyj).
Therefore,

(∗) =

∫ t

0

Πi 6=j(1− γxiyj)dyj +

∫ 1

t

Πi 6=j(1− γxiyj)dyj

=

∫ t

0

Πi 6=jδ exp(−xiyj)dyj +

∫ 1

t

Πi 6=j exp(−γxiyj)dyj

= δ

∫ t

0

exp

(
−yj

∑
i 6=j

xi

)
dyj +

∫ 1

t

exp

(
−γyj

∑
i 6=j

xi

)
dyj.
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Let

s =
n∑
i=1

xi and sj =
∑
i 6=j

xi.

Then,

(∗) = δ

∫ t

0

exp (−yjsj) dyj +

∫ 1

t

exp (−γyjsj) dyj

= δ
1− e−tsj

sj
+
e−γtsj − e−γsj

γsj
≤ 1

sj

(
δ +

1

γ
exp(−γtsj)

)
.

We claim that

δ +
1

γ
exp(−γtsj) < exp(n−6/7) for suffi ciently large n. (4)

As s > εn, we have sj > εn− 1. Thus, (4) follows from

exp(n−7/8) +
1

γ
exp(−γn−7/8(εn− 1)) < exp(n−6/7) for any suffi ciently large n.

Now, we have

Pε,n ≤
∫

0≤x≤1
εn≤

∑n
i=1 xi

Π1≤j≤n(∗)dx

≤
∫

0≤x≤1
εn≤

∑n
i=1 xi

Π1≤j≤n

(
1

sj
exp(n−6/7)

)
dx = exp(n1/7)

∫
0≤x≤1

εn≤
∑n
i=1 xi

Π1≤j≤n

(
1

sj

)
dx.

Note that
(

log 1
sj

)′
= − 1

sj
. Thus,

n∑
j=1

log
1

sj
=

n∑
j=1

(
log

1

s
+ log

s

sj

)
= n log

1

s
+

n∑
j=1

log
s

s− xj
.

In the last term,

s

s− xj
≤ s

s− 1
≤ εn

εn− 1
, for any suffi ciently large n.
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Thus,
n∑
j=1

log
1

sj
≤ n ln

1

s
+ n log

εn

εn− 1
.

Moreover

n log
εn

εn− 1
= log

((
1 +

1

εn− 1

)n)
→ 1

ε
as n→∞,

which implies that for any c > 1
ε
,

n∑
j=1

log
1

sj
≤ n log

1

s
+ c, for any suffi ciently large n.

Therefore,

n!Pε,n ≤ n! exp(n1/7)

∫
εn≤s

exp

(
n log

1

s
+ c

)
fn(s)ds,

where fn(s) is the probability distribution function of s.

We show the convergence of the right hand side of the above inequality by using the

following Lemma.25

Lemma 1 [Pittel, 1989]. Let x1, . . . , xn−1 be i.i.d samples from the Uniform distribution over

[0, 1]. Denote by x(k) the k’th highest of these samples. We define a random variable

rn ≡ max
0≤i≤n−1

{x(i) − x(i+1)},

where x(0) ≡ 1 and x(n) ≡ 0.

Then,

fn(s) =
sn−1

(n− 1)!
Pr(rn ≤ s−1),

and

Pr(rn ≤ x) ≤ exp
(
−ne−x(n+n9/14)

)
+O

(
e−

n2/7

2

)
.

25The Lemma follows from Lemma 1 combined with the first two equations on the top of page 548 in Pittel
(1989).
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By applying Lemma 1, we get

n!Pε,n ≤ n! exp(n1/7)

∫
εn≤s

exp

(
n log

1

s
+ c

)
sn−1

(n− 1)!
Pr(rn ≤ s−1)ds

≤ ecn exp(n1/7)Pr

(
rn ≤

1

εn

)∫ n

εn

1

s
ds

= ecn exp(n1/7)Pr

(
rn ≤

1

εn

)
(− log ε).

Now,

n exp(n1/7)Pr

(
rn ≤

1

εn

)
≤ n exp(n1/7)

(
exp

(
−ne− 1+n

− 5
14

ε

)
+O(e−

n2/7

2 )

)
= exp

(
log n+ n1/7 − ne− 1+n

− 5
14

ε

)
+O

(
n exp(n1/7 − 1

2
n2/7)

)
.

Both of the last two terms converge to 0. This completes the proof. �

7.3. Proof of Proposition 2. We focus here on the case in which match utilities depend

non-trivially on the idiosyncratic components, i.e. when α > 0. The case where utilities are

fully aligned, α = 0, was shown in Section 7.1 in this Appendix.

The model is a mixture of aligned preferences and idiosyncratic preferences. As such, our

proof is comprised of two parts.

Fix εn = 2
logn

.

For each market realization (c, zf , zw), let

F̄ (εn; c, zf , zw) ≡ {fi|ciµw(i) ≤ 1− εn}.

Whenever α < 1, so that utilities depend non-trivially on the common component, we first

show that

ηn ≡ E
[
|F̄ (εn; c, zf , zw)|

n

]
= o(n−1/2) as n→∞. (5)

In the second part of the proof, we show that

ζn ≡ P

(∑n
i=1 z

f
iµw(i)

n
≤ 1− εn

)
= o(e−n

1/4

) as n→∞. (6)
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Proposition 2 is immediate from (5) and (6). Note that

1− Sfn
n

= E
[∑n

i=1(1− uiµw(i))
n

]
= (1− α)E

[∑n
i=1(1− ciµw(i))

n

]
+ αE

[∑n
i=1(1− z

f
iµw(i))

n

]
≤ (1− α)(ηn + εn(1− ηn)) + α(ζn + εn(1− ζn))

≤ εn + (1− α)ηn + αζn.

Therefore,

lim sup
n→∞

(
1− Sfn

n

)
log n ≤ lim sup

n→∞
εn log n = 2.

Proof of Equation (5). The proof of Equation (5) is useful when the common com-

ponent enters match utilities non-trivially, i.e. when α < 1. In this case, we use a result in

Dawande et al., (2001, page 396). Consider a random bipartite graph G(V1 ∪ V2, p), where
0 < p < 1 is a constant, |V1| = |V2| = n, and δn = log n/ log 1

p
. Let Zb be the number of

bicliques of size b× b. The result shows that

Pr(Zb ≥ 1) ≤ 1

(b!)2
, for every n > 1.

If a maximal balanced biclique of this graph has size B ×B, then

Pr (B ≥ δn) ≤ 1

(dδne!)2
, for every n > 1. (7)

For each realization (c, zf , zw), we draw a bipartite graph such that F ∪W is the set of

nodes (where F and W constitute the two parts of the graph), and each pair of fi and wj

is connected by an edge if and only if at least one of cij, z
f
ij, or z

w
ij is lower than or equal to

1− (1− α)εn.

Let

W̄ (εn; c, zf , zw) ≡ {wj|µw(j) ∈ F̄ (εn; c, zf , zw)}.

Then F̄ ∪ W̄ is a balanced biclique. If a pair (fi, wj) from F̄ ∪ W̄ is not connected by an edge,
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then cij, z
f
ij, z

w
ij > 1− (1− α)εn implies

φ(cij, z
f
ij) > 1− (1− α)εn = φ(1− εn, 1), and

ω(cij, z
w
ij) > 1− (1− α)εn = ω(1− εn, 1).

The pair can achieve utilities higher than their utilities under µw. This contradicts µw being

stable.

The approximate upper bound of the sizes of bicliques (7) implies

Pr
(
|F̄ (εn; c, zf , zw)| ≥ δn

)
≤ 1

(dδne!)2
, for every n > 1,

where

δn =
log n

− log pn
and pn = 1− (1− α)3ε3n.

Thus,

E
[
|F̄ (εn; c, zf , zw)|

n

]
≤ δn

n
+

1

(dδne!)2
for every n > 1. (8)

To prove Equation (5), we need to show δn
n

= o(n−1/2) and 1
(dδne!)2 = o(n−1/2).

First, as − log pn ≥ 1− pn,

δn
n

=
log n

(− log pn)n
≤ log n

(1− pn)n
=

log n

(1− α)3ε3nn
=

(log n)4

8(1− α)3n
= o(n−1/2).

Second, from Stirling’s formula,26

1

(dδne!)2
≤ 1(√

2πδn (δn/e)
δn
)2 =

eδn

2πδδn+1n

for every n > 1.

For every suffi ciently large n, since pn → 1,

δn =
log n

− log pn
> log n,

26For every n ≥ 1,
n! =

√
2πn

(n
e

)n
ern with

1

12n+ 1
≤ rn ≤

1

12n
.
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and, since δn →∞,

log

(
eδn

2πδδn+1n

)
= − log(2π)− log δn − δn(log δn − 1) ≤ −δn.

Therefore,
1

(dδne!)2
≤ 1

eδn
≤ 1

elogn
=

1

n
for any suffi ciently large n.

Proof of Equation (6). Let µ ≡ {(i, i)|i = 1, . . . , n}. By symmetry, each one of the
n! matchings has the same probability of being both stable and entailing a sum of firms’

idiosyncratic components that is lower than or equal to (1− εn)n. Therefore,

P

(∑n
i=1 z

f
iµw(i)

n
≤ 1− εn

)
≤ n!P

(
µ is stable and

∑n
i=1 z

f
iµ(i)

n
≤ 1− εn

)
.

For each realization (c, zf , zw), we consider the following profile of utilities:

ũfij = (1− α)cij + αzfij and ũwij = (1− α)cij + αzwij if i 6= j, and

ũfij = (1− α) + αzfij and ũwij = (1− α)cij + αzwij if i = j.

Note that ũfij > ufij, generically for all i = j.

If a pair (fi, wj) with i 6= j is a blocking pair of µ under match utilities (ũfij, ũ
w
ij), then this

pair also blocks µ under the actual realized utilities. Thus,

P

(
µ is stable and

∑n
i=1 z

f
iµ(i)

n
≤ 1− εn

)
≤ Pεn,n

where Pεn,n is the probability that µ is stable with respect to the utilities (ũfij, ũ
w
ij)i,j and∑n

i=1 z
f
iµ(i)

n
≤ 1 − εn. We now show that n!Pεn,n converges to zero as n increases and identify

the speed at which it converges, which yields Equation (6).

Preparation Steps for Proof of Equation (6). We denote by Γf the marginal dis-

tribution of ũfij for pairs of (fi, wj) who are not matched under µ (i.e., i 6= j), and by Γw the

marginal distribution of ũwij for any pair of (fi, wj).

We define ûfij ≡ Γf (ũfij) and û
w
ij ≡ Γw(ũwij). For each given realization (ûfii)

n
i=1 and (ûwjj)

n
j=1,
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the probability that µ is stable with respect to (ũfij, ũ
w
ij)i,j is

Π1≤i 6=j≤n

(
1− P [ûfij > ûfii and û

w
ij > ûwjj]

)
.

Note that cij, z
f
ij, and z

w
ij are independently and identically distributed, so they are posi-

tively associated. Then, for i 6= j, the covariance of ûfij and û
w
ij is non-negative because both

Γf (φ(., .)) and Γw(ω(., .)) are non-decreasing functions of cij, z
f
ij, and z

w
ij .

Thus, we have

P [ûfij > ûfii and û
w
ij > ûwjj] ≥ P [ûfij > ûfii]P [ûwij > ûwjj] = (1− ûfii)(1− ûwjj).

Since

1− ûfii = 1− φ(1, zfii) = α(1− zfii),

for each realization of cij, z
f
ij, z

w
ij for pairs with i = j, the probability that µ is stable is bounded

above by

Π1≤i 6=j≤n

(
1− α(1− zfii)(1− ûwjj)

)
.

We therefore obtain that

Pεn,n ≤
∫ ∫

∑n
i=1 z

f
ii≤(1−εn)n

Π1≤i 6=j≤n

(
1− α(1− zfii)(1− ûwjj)

)
dzfiidû

w
jj .

Now, let xi = 1− zfii and yj = 1− ûwjj. Then,

Pεn,n ≤
∫

0≤x,y≤1
εnn≤

∑n
i=1 xi

Π1≤i 6=j≤n (1− αxiyj) d(x,y).

Proof of Convergence.

Pεn,n ≤
∫

0≤x,y≤1
εnn≤

∑n
i=1 xi

Π1≤i 6=j≤n(1− αxiyj)d(x,y)

=

∫
0≤x,y≤1

εnn≤
∑n
i=1 xi

Π1≤j≤n

(∫ 1

0

Πi 6=j(1− αxiyj)dyj
)

︸ ︷︷ ︸
(∗)

dx.
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We can assume, without loss of generality, that 0 < α < 1/2 as (∗) above decreases in
α. Let t = n−7/8 and δ = et(1 − αt). Note that 1 − αz ≤ δe−z if 0 ≤ z ≤ t. Thus, when

0 ≤ yj ≤ t, we have 0 ≤ xiyj ≤ t, so 1− αxiyj ≤ δ exp(−xiyj). In addition, 1 + αz ≤ eαz for

any z, so 1− αxiyj ≤ exp(−αxiyj).
Therefore,

(∗) =

∫ t

0

Πi 6=j(1− αxiyj)dyj +

∫ 1

t

Πi 6=j(1− αxiyj)dyj

=

∫ t

0

Πi 6=jδ exp(−xiyj)dyj +

∫ 1

t

Πi 6=j exp(−αxiyj)dyj

= δ

∫ t

0

exp

(
−yj

∑
i 6=j

xi

)
dyj +

∫ 1

t

exp

(
−αyj

∑
i 6=j

xi

)
dyj.

Let

s =
n∑
i=1

xi and sj =
∑
i 6=j

xi.

Then,

(∗) = δ

∫ t

0

exp (−yjsj) dyj +

∫ 1

t

exp (−αyjsj) dyj

= δ
1− e−tsj

sj
+
e−αtsj − e−αsj

αsj
≤ 1

sj

(
δ +

1

α
exp(−αtsj)

)
.

We claim that

δ +
1

α
exp(−αtsj) < exp(n−6/7) (9)

for suffi ciently large n.

As s > εnn, we have sj > εnn− 1. Thus, (9) follows from

exp(n−
7
8 ) +

1

α
exp(−αn−7/8(εnn− 1)) < exp(n−6/7) with suffi ciently large n.
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Now, we have

Pεn,n ≤
∫

0≤x≤1
εnn≤

∑n
i=1 xi

Π1≤j≤n(∗)dx

≤
∫

0≤x≤1
εnn≤

∑n
i=1 xi

Π1≤j≤n

(
1

sj
exp(n−6/7)

)
dx = exp(n1/7)

∫
0≤x≤1

εnn≤
∑n
i=1 xi

Π1≤j≤n

(
1

sj

)
dx.

Note that
(

log 1
sj

)′
= − 1

sj
. Thus,

n∑
j=1

log
1

sj
=

n∑
j=1

(
log

1

s
+ log

s

sj

)
= n log

1

s
+

n∑
j=1

log
s

s− xj
.

In the last term,

s

s− xj
≤ s

s− 1
≤ εnn

εnn− 1
for any suffi ciently large n.

Thus,
n∑
j=1

log
1

sj
≤ n ln

1

s
+ n log

εnn

εnn− 1
.

Moreover

εnn log
εnn

εnn− 1
= log

((
1 +

1

εnn− 1

)εnn)
→ 1, as n→∞,

which implies that
n∑
j=1

log
1

sj
≤ n log

1

s
+

2

εn
= n log

1

s
+ log n.

Therefore,

n!Pεn,n ≤ n! exp(n1/7)

∫
εnn≤s

exp

(
n log

1

s
+ log n

)
fn(s)ds,

where fn(s) is the probability distribution function of s.
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From Lemma 1,

n!Pεn,n ≤ n! exp(n1/7)

∫
εnn≤s

exp

(
n log

1

s
+ log n

)
sn−1

(n− 1)!
Pr(rn ≤ s−1)ds

≤ n2 exp(n1/7)Pr

(
rn ≤

1

εnn

)∫ n

εnn

1

s
ds

= n2 exp(n1/7)Pr

(
rn ≤

1

εnn

)
(− log εn)

≤ n2 exp(n1/7)Pr

(
rn ≤

1

εnn

)
(log(log n)).

Now,

n2 exp(n1/7)Pr

(
rn ≤

1

εnn

)
(log(log n))

≤ exp

(
2 log n+ n

1
7 − ne−

1+n
− 5
14

εn

)
log(log n) + o

(
e−n

1/4
)

≤ exp

(
2 log n+ n

1
7 − n 1

2
−n
− 5
14
2

)
log(log n) + o

(
e−n

1/4
)

= o
(
exp(−n1/4)

)
.

�

7.4. Aggregate Effi ciency —Proof of Proposition 3. 1. As mentioned in the text,

Walkup (1979) implies that En ≥ 2n − 6. Since, by definition, En ≤ 2n, combining these

observations with the bounds on Sn provided by Proposition 2, the claim follows.

2. We provide a bound on En for this environment. For each pair of firm fi and worker

wj, suppose u
f
ij and u

w
ij are distributed uniformly on [0, 1]. We define ũij ≡

ufij+u
w
ij

2
, which has

a triangular distribution on [0, 1]. We show that

En = 2 ·max
µ∈M

n∑
i=1

ũiµ(i) ≥ 2n− 3
√
n for every n ≥ 2.

We consider two random variables ṽfij and ṽ
w
ij with cumulative distribution functions

H(x) =

{
0 for 0 ≤ x < 1− 1/

√
2√

1− 2(1− x)2 for 1− 1/
√

2 ≤ x ≤ 1.
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Notice that

P
(

max{ṽfij, ṽwij} ≤ x
)

=

{
0 for 0 ≤ x < 1− 1/

√
2

1− 2(1− x)2 for 1− 1/
√

2 ≤ x ≤ 1
, and

P (ũij ≤ x) =

{
2x2 for 0 ≤ x < 1/2

1− 2(2− x)2 for 1/2 ≤ x ≤ 1
.

Therefore,

P (ũij ≤ x) ≤ P (max{ṽfij, ṽwij} ≤ x) for 0 ≤ x ≤ 1.

That is, ũij first order stochastically dominates max{ṽfij, ṽwij}.
We denote by ṽfi(k) the k’th highest value of (ṽfij)

n
j=1. As H(·) is a concave function on the

support of the distribution, Jensen’s inequality implies that, for any k = 1, . . . , n,

H
(
E[ṽfi(k)]

)
≥ E

[
H(ṽfi(k))

]
.

In addition, H(ṽfi(k)) is equal to the k-th highest value of {H(ṽfij)}nj=1, and H(ṽfij) is dis-

tributed uniformly on [0, 1]. Thus,

H
(
E[ṽfi(k)]

)
≥ E

[
H(ṽfi(k))

]
=
n+ 1− k
n+ 1

.

Therefore,

E
[
ṽfi(k)

]
≥ H−1

(
n+ 1− k
n+ 1

)
.

Identical calculations hold for {ṽwij}ni=1 and the corresponding value ṽwj(k).
Consider now a random directed bipartite graph with F and W serving as our two classes

of nodes, denoted by G. Each firm fi has arcs to two workers with the highest realized values

of ṽfij. Similarly, each worker wj has arcs to two firms generating the highest realized values

of ṽwij.

Let B denote the set of all directed bipartite graphs containing at least one perfect match-
ing. Let αG denote the maximum aggregate effi ciency achievable by matchings in G. We

have

En ≥ E [αG|G ∈ B] · P (G ∈ B) .
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Each pair of firm fi and worker wj matched in the effi cient matching in G has utility ũij

which is no less than either ṽfi(2) or ṽ
w
j(2). Both have expected values no less than H

−1 (n+1−k
n+1

)
,

which is equal to 1−
√
2n

n+1
.

Walkup (1979) illustrates that

P (G ∈ B) ≥ 1− 1

5n
.

Therefore, we have

En ≥ 2n ·
(

1−
√

2n

n+ 1

)
·
(

1− 1

5n

)
≥ 2n− 3

√
n.

In the Online Appendix we show that for idiosyncratic preferences, a slightly tighter char-

acterization of the speed of convergence holds. Namely,

lim
n→∞

(
1− Sfn

n

)
log n = lim

n→∞

(
1− Swn

n

)
log n = 1.

This, together with the last inequality, completes the claim. �

7.5. Convergence Speeds with Assortative Preferences —Proof of Proposition 5.

We provide a proof for the case of deterministic common values and assume that

(cf1 , c
f
2 , . . . , c

f
n) = (cw1 , c

w
2 , . . . , c

w
n ) =

(
n− 1

n
,
n− 2

n
, . . . ,

1

n
, 0

)
.

The assumption of deterministic common values is without loss of generality since the distri-

bution of deterministic common values and the empirical distribution of common values from

the uniform distribution converge to one another at an exponential rate (see Fact 4 in the

Online Appendix of Lee, 2017).

Let εn = 6(1− β)n−1/4 and define

BF (εn; zf , zw) ≡ {fi ∈ F |ufiµW (i) ≤ (1− β)cfi + β − (3/5)εn}.
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We will use some results in the Online Appendix of Lee (2017) and show that

P

(
|BF (εn; zf , zw)|

n
> θn

)
≤ δn, (10)

with some sequences θn = O(n−1/4) and δn = o(e−n
1/2

). Thus,

(1− β)
1

2
+ β − Sfn

n
≤ δn + (1− δn)(θn + (1− θn)(3/5)εn) = O(n−1/4).

A similar argument holds for workers.

Proof of (10). Let Fn denote the set of firms in markets with n participants on each

side. We partition the set Fn into Kn = dn1/4e “tiers”.27 For each tier k = 1, ..., Kn, the firms

in tier k are given by Fk;n, where

Fk;n ≡
{
fi ∈ Fn | (k − 1)n3/4 < i ≤ kn3/4

}
=

{
fi ∈ Fn | 1− kn−1/4 < cfi < 1− (k − 1)n−1/4

}
(since cfi = 1− i

n
).

For any k = 1, . . . , Kn, define

BFk;n(εn; zf , zw) ≡ {f ∈ Fk,n | ufiµW (i) ≤ (1− β)(1− kn−1/4) + β − (2/5)εn}.28

If fi ∈ BF (εn; zf , zw) and fi ∈ Fk,n, then

ufiµW (i) ≤ (1− β)cfi + β − (3/5)εn

< (1− β)(1− (k − 1)n−1/4) + β − (3/5)εn

< (1− β)(1− kn−1/4) + β − (2/5)εn.

Therefore,

BF (εn; zf , zw) ⊂
Kn⋃
k=1

BFk;n(εn; zf , zw).

27For x ∈ R, dxe is the smallest integer that is not smaller than x.
28There is a typo in the definition of BFK;n

on page 13 of the Online Appendix of Lee (2017): n−1/2 should
be replaced with n−1/4.
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Note that
Kn∑

k=Kn−2

|Fk;n| ≤ 3n3/4.

With arguments similar to those in the Online Appendix of Lee (2017), we can show that

P

(
Kn−3∑
k=1

|BFk;n| > (Kn − 3)φn

)
≤ 1− (1− ψn)Kn−3,

with some sequences φn = O((log n)n1/2) and ψn = o(e−φn). By taking into account Kn ≥
n1/4, we obtain

P

(
Kn∑
k=1

|BFk;n| >
1

n
(n1/4 − 3)φn + 3n−1/4

)
≤ 1− (1− ψn)n

1/4−3.

We can then show that

θn ≡
1

n
(n1/4 − 3)φn + 3n−1/4 = O(n−1/4), and

δn ≡ 1− (1− ψn)n
1/4−3 = o(e−n

1/2

).

�

7.6. Severely Imbalanced Markets —Proof of Proposition 6. For any matching µ,

let Rw
j (µ) denote the rank of worker wj’s partner: Rw

j (µ) = 1 if worker wj is matched with

the most preferred firm, Rw
j (µ) = 2 if worker wj is matched with the second most preferred

firm, etc.

We use Theorem 1 in Ashlagi, Kanoria, and Leshno (2017), which implies that for 0 <

λ ≤ 1/2,

Pn ≡ P

(
n∑
i=1

Rw
µf (i)(µ

f ) ≥ n

−3 log λ

)
→ 1 as n→∞.
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Thus, for 0 < λ ≤ 1/2,

Swn
n

=
E
[∑n

i=1 u
w
iµf (i)

]
n

=
E�
[
Eu|�

[∑n
i=1 u

w
iµf (i)
|
∑n

i=1R
w
µf (i)

(µf )
]]

n

=

E�
[∑n

i=1 1−
Rw
µf (i)

(µf )

n+1

]
n

= 1−
E
[∑n

i=1R
w
µf (i)

(µf )
]

n+ 1

≤ 1− nPn
−3(n+ 1) log λ

→ 1− 1

−3 log λ
as n→∞.

A market with λ > 1/2 is a market with more workers than those available in a market with

λ = 1/2. Crawford (1991) shows that every worker becomes weakly worse off in µf as more

workers enter the market, which concludes our proof. �
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