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Abstract.

We study whether a given Nash equilibrium can be improved within the set of corre-

lated equilibria for arbitrary objectives. Our main contribution is a sharp characterization:

in a generic game, a Nash equilibrium is an extreme point of the set of correlated equilibria

if and only if at most two agents randomize. Consequently, any sufficiently mixed Nash

equilibrium involving at least three randomizing agents can always be improved by cor-

relating actions or switching to a less random equilibrium, regardless of the underlying

objective. We show that even if one focuses on objectives that depend on payoffs, excess

randomness in equilibrium implies improvability. We extend our analysis to symmetric

games, incomplete information games, and coarse correlated equilibria, revealing a fun-

damental tension between the randomness in Nash equilibria and their optimality.
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1 Introduction

Correlated equilibria are a powerful generalization of Nash equilibrium, offering both

computational and strategic advantages. Unlike Nash equilibria, which can be notori-

ously difficult to compute in general games, correlated equilibria are computationally

simple. They also naturally arise in settings where agents can communicate or collude,

making them a plausible solution concept for many applications. Moreover, they are

mechanism-implementable: a mediator can credibly induce agents to follow correlated

strategies without requiring external enforcement. Given these advantages, a fundamen-

tal question arises: when can Nash equilibria be strictly improved through correlation?

This paper examines conditions under which correlated equilibria outperform Nash

equilibria, revealing a key insight: whenever a Nash equilibrium involves significant ran-

domization, it is improvable, irrespective of the objective. This observation has broad

implications, from auction design to voting mechanisms to firm competition. In many

strategic settings, decision-makers rely on mixed strategies, whether bidders randomizing

in auctions, firms setting stochastic pricing policies, or voters deciding probabilistically

whether to turn out. Our results show that such randomness frequently leaves room for

improvement via correlation.

In Section 3, we establish that whenever a Nash equilibrium involves more than two

agents using mixed strategies, it is improvable. The set of correlated equilibria is convex,

meaning that any generic objective function is maximized at an extreme point of this set.

Thus, unless a Nash equilibrium is an extreme point itself, it can be improved irrespective

of the objective. As we show, extremality is a stringent requirement.

To build intuition, consider a game where n agents each choose between two actions.

Such a setup arises in various strategic settings: voters deciding whether to cast a costly

ballot, firms choosing whether to engage in costly R&D, or individuals in a social network

deciding whether to adopt a new technology. A correlated equilibrium is a probability

distribution over action profiles, where each agent receives a recommendation and finds

it optimal to follow. The feasibility of such an equilibrium is governed by 2n linear con-

straints: one per agent per action. A foundational linear programming result (Winkler,

1988) states that any extreme point of this set must be supported on at most 2n+ 1 action

profiles. Now, consider a Nash equilibrium where all agents use mixed strategies, imply-

ing that every action profile is played with positive probability. Since this yields 2n active

action profiles, the equilibrium can only be an extreme point if 2n ≤ 1 + 2n. This condition

holds only for n = 1,2, meaning that for any binary-action game with three or more agents

who all mix, Nash equilibria are necessarily non-extreme, and hence, improvable.

In Section 4, we extend our analysis to objectives based on payoffs, rather than dis-
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tributions over action profiles. We show that even when focusing solely on utilitarian

welfare—the sum of agents’ payoffs—mixed-strategy Nash equilibria remain generically

improvable whenever more than two agents participate.

The intuition follows from convexity principles. The set of achievable payoffs under

correlated equilibria forms a linear projection of the correlated equilibrium polytope onto

a lower-dimensional space. The extreme points of a projected set are contained within the

projection of the extreme points of the original set. Given that utilitarian welfare is almost

always maximized at a unique extreme point, it follows that Nash equilibria with excess

randomness leave room for welfare improvements via correlation.

Symmetric Games and Symmetric Improvements Symmetric games are prevalent in

economic and strategic settings, appearing in auctions, voting models, and competitive

markets, where identical agents face identical strategic choices. In such games, symmetric

equilibria, with all agents adopting the same strategy, often emerge as focal solutions.

In Section 5, we show that in symmetric games with three or more agents, any symmet-

ric mixed equilibrium can be improved, even when restricting attention to symmetric cor-

related equilibria. This result implies that even when coordination is limited to symmet-

ric recommendations—such as a common policy guideline for firms or a uniform turnout

mobilization effort in elections—improvements remain possible. Only pure-strategy equi-

libria resist such improvements.

Our results extend to games where agents share identical strategic roles, even if full

symmetry does not hold. Specifically, we consider games invariant to a transitive subset

of agent permutations, where each agent can be mapped onto another via some permu-

tation.1 Even in these broader settings, purity remains a necessary condition for non-

improvability whenever more than two agents participate.

Furthermore, we establish that extreme symmetric correlated equilibria in symmet-

ric games can be represented via a simple procedure. When the number of participants

is large, these equilibria can be reformulated in terms of a small set of payoff-irrelevant

states, each generating conditionally independent and identically distributed signals that

guide individual decisions.

Implications In Section 6, we explore implications for incomplete information games

and alternative notions of correlation. Our results connect to the general framework of

Bergemann and Morris (2019), where agents hold private information under common

payoff uncertainty. We show that a Bayesian Nash equilibrium is an extreme point of

1This generalization traces back to Nash (1950) and has been studied in social choice contexts by Bartholdi,
Hann-Caruthers, Josyula, Tamuz, and Yariv (2021).
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the Bayesian correlated equilibrium set if and only if it is pure, reinforcing the necessity

of determinism for non-improvability in broader strategic settings.

We also examine a weaker notion of coarse correlated equilibrium, where agents com-

mit ex-ante to following recommendations generated by an external coordinating device.

This framework captures real-world scenarios like firms entering binding collusive agree-

ments (McAfee and McMillan, 1992) or consumers subscribing to algorithmic recommender

systems. The set of coarse correlated equilibria strictly contains the set of correlated equi-

libria, making extremality within this set an even stronger constraint. Indeed, we show

that, generically, a Nash equilibrium is an extreme point of the coarse correlated equilib-

rium set if and only if it is pure.

Summing up Our findings provide a systematic framework for understanding when cor-

relation can enhance strategic interactions. While Nash equilibria serve as a foundational

concept in game theory, our results show that they often fall short of optimality when

agents randomize. This observation has direct implications for market design, regulatory

policies, and algorithmic decision-making in multi-agent systems. Whether in competitive

markets, voting mechanisms, or algorithmically mediated platforms, correlation provides

a natural tool for improving strategic outcomes. By demonstrating the ubiquity of im-

provable Nash equilibria, this paper underscores the practical and theoretical importance

of correlated strategies in economic and strategic decision-making.

1.1 Related literature

First introduced by Aumann (1974) and Aumann (1987), correlated equilibria have re-

ceived substantial attention in the literature. They are computationally simpler than Nash

equilibria; see Papadimitriou and Roughgarden (2008). Correlated equilibria also offer a

reduced-form way of capturing pre-play communication without explicitly modeling the

communication phase; see Forges (2020). Similarly, they result from a variety of learn-

ing heuristics; see Foster and Vohra (1997), Fudenberg and Levine (1999), and Hart and

Mas-Colell (2000).

While Aumann (1974) presents a 2-agent game of chicken where correlation enhances

utilitarian welfare, Ashlagi, Monderer, and Tennenholtz (2008) explore the potential mag-

nitude of this improvement, primarily focusing on 2×2 games and analyzing the resulting

welfare gains from correlation; see also Bradonjic, Ercal, Meyerson, and Roytman (2014).

Peeters and Potters (1999), Hendrickx, Peeters, and Potters (2002), and Calvó-Armengol

(2006) also study the structure of the correlated equilibrium set of 2× 2 games. However,

general conditions under which correlation improves a given equilibrium have remained

elusive, a gap this paper seeks to address.
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Several studies examine 2-agent games. Cripps (1995), Evangelista and Raghavan

(1996), and Canovas, Hansen, and Jaumard (1999) demonstrate that in 2-agent games,

all Nash equilibria are extreme within the correlated equilibrium set. As we illustrate, 2-

agent games are not representative of the general case. In particular, with more than two

agents, Nash equilibria are not necessarily extreme points of the correlated equilibrium

set, and the degree of randomness in equilibrium profiles serves as a sufficient indicator

of their extremality.2

Correlated equilibria have been analyzed in a variety of specific applications, including

Cournot competition (Gérard-Varet and Moulin, 1978), abatement games (Moulin, Ray,

and Gupta, 2014), quadratic games (Dokka, Moulin, Ray, and SenGupta, 2023), various

auctions (Lopomo, Marx, and Sun, 2011; Feldman, Lucier, and Nisan, 2016; Agranov and

Yariv, 2018; Pavlov, 2023; Ahunbay and Bichler, 2024), and voting (Gerardi and Yariv,

2007). Their empirical relevance has been seen in various experimental settings: for ex-

ample, in voting contexts (Goeree and Yariv, 2011), in bargaining (Agranov and Tergiman,

2014), in auctions (Agranov and Yariv, 2018), and in symmetric bimatrix games (Georga-

los, Ray, and SenGupta, 2020; Friedman, Rabanal, Rud, and Zhao, 2022).3

Technically, our results contribute to the growing literature on extreme-point meth-

ods in economic theory; see, e.g., Manelli and Vincent (2007),Kleiner, Moldovanu, and

Strack (2021), Arieli, Babichenko, Smorodinsky, and Yamashita (2023), Yang and Zente-

fis (2024), Nikzad (2022), Kleiner, Moldovanu, Strack, and Whitmeyer (2024), and Lahr

and Niemeyer (2024). Results in Section 5 rely on recent developments in the study of

finite exchangeable distributions and approximation results of dependent samples with

independent ones. See Diaconis and Freedman (1980), Arratia and Tavaré (1994), Arratia,

Barbour, and Tavaré (2003), and Stam (1978).

2 Model

Consider a game Γ =
(
N, (Ai)i∈N , (ui)i∈N

)
, where N = {1, . . . ,n} is a finite set of agents, Ai is

a finite set of actions of agent i, the function ui : A→R represents the utility of each agent

i, and A =
∏
i∈N Ai is the set of action profiles.

Consider the set CE(Γ ) of correlated equilibria. It consists of all probability distribu-

2One thread of literature considers games where Nash equilibria cannot be improved via correlation. Ney-
man (1997) shows this is the case for games with a continuum of actions and a concave potential. Ui (2008)
extends this result to games that may not admit a potential, but where each agent’s payoff is concave in her
own actions. See also Einy, Haimanko, and Lagziel (2022), Wu (2008), and Jann and Schottmüller (2015)
for specific applications where there is a unique correlated equilibrium, implying non-improvability of the
unique Nash equilibrium.

3Recent work uses simulations to inspect the correlated outcomes generated by certain learning algorithms,
such as those minimizing regret. For example, in the auction context, see Kolumbus and Nisan (2022).
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tions µ ∈ ∆(A) such that for all i ∈N and for all distinct ai , a′i ∈ Ai we have∑
a−i∈A−i

µ(ai , a−i)ui(ai , a−i) ≥
∑

a−i∈A−i

µ(ai , a−i)ui(a
′
i , a−i). (1)

One can interpret µ as the distribution of actions recommended by a mediator, ensuring

that each agent i finds it optimal to follow the recommended action ai , as captured by the

incentive constraint (1).

Correlated equilibria µ that are product distributions—µ = µ1×. . .×µn with µi ∈ ∆(Si)—

form the set of Nash equilibria NASH(Γ ). The set NASH(Γ ) is non-empty (Nash, 1950)

and thus CE(Γ ) is non-empty as well. Since CE(Γ ) is cut from ∆(S) by a finite number of

incentive constraints (6), it is a non-empty convex polytope and can be described as the

convex hull of its extreme points.4

We call a Nash equilibrium extreme if it is an extreme point of the set of correlated

equilibria CE(Γ ). Our main goal is to provide conditions under which Nash equilibria

are extreme. As we show below, when Nash equilibria are not extreme, the agents or the

social planner would potentially have opportunities to improve outcomes via channels of

communication, the use of intermediaries, or the design of mechanisms.

To make general structural insights about extreme Nash equilibria possible, we need to

rule out trivial examples, such as degenerate games where an agent is indifferent across all

actions. We exclude such examples using the classical notion of regularity introduced by

Harsanyi (1973b). In essence, a Nash equilibrium of a game is regular if it remains stable

under small perturbations of payoffs.5

Arguably, only regular equilibria are relevant for economic modeling, which makes

regularity a standard assumption (Van Damme, 1991).6 Furthermore, games with all reg-

ular equilibria are prevalent. We term any game from an open everywhere dense set of

games with the complement having zero Lebesgue measure a generic game. As shown by

Harsanyi (1973b), games where all equilibria are regular are generic. In particular, a small

perturbation of a regular game preserves regularity. For example, if payoffs u are drawn

at random according to some density over R
N×A, the resulting game will be generic with

probability one.

4A point x of a convex setX is called extreme if it cannot be represented as a non-trivial convex combination
of other points from X, i.e., x = αy + (1−α)y′ with α ∈ (0,1) and y,y′ ∈ X can only hold if y = y′ = x.

5A Nash equilibrium ν of a game Γ is regular if the incentive constraints outside the support of ν are not
active, and the conditions of the implicit function theorem are satisfied on the support of ν. This ensures that
the equilibrium weights are smooth functions of payoffs in a small neighborhood of ν. A regular equilibrium
places zero weight on weakly dominated actions.

6For example, regularity of all equilibria is assumed in classical results on the oddness of Nash equilibria
(Harsanyi, 1973b; Wilson, 1971) or purification (Harsanyi, 1973a; Govindan, Reny, and Robson, 2003).
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Objective
Objective

Figure 1: A non-degenerate objective (left panel) and a degenerate one (right panel)

Extremality and improvability Extreme points play an important role in economic anal-

ysis due to Bauer’s Maximum Principle (see, e.g., Border, 2006, Theorem 7.69). It as-

serts that any linear or convex objective maximized over a convex compact set attains

its maximum at an extreme point; moreover, if the objective is strictly convex, the opti-

mum is unique. In particular, a social planner maximizing any linear or convex objective

W : ∆(S) → R over the set of correlated equilibria can restrict her attention to extreme

points of CE(Γ ). Thus, non-extremality offers a conservative perspective on the improv-

ability of an equilibrium: it can be improved for all objectives in a large class. We now

formalize this idea.

First, consider maximizing a linear objective W—for instance, utilitarian welfare—

over a polytope X that represents the set of feasible outcomes, such as the set of correlated

equilibria. Crucially, linearity here pertains to linearity in probabilities, not in the actions

themselves. In particular, common objectives—such as expected welfare, revenue, or the

likelihood of a given action profile—are linear.

An objective is non-degenerate if it attains a unique optimum over X.7 The left panel

of Figure 1 illustrates a non-degenerate objective, its maximum attained at a unique ex-

treme point of X. The right panel depicts a knife-edge case, where the level hyperplanes

of the objective are parallel to a face of X, and thus the optimum is not unique.

Although the optima of a degenerate objective may include non-extreme points, a small

perturbation of such a degenerate objective suffices to rule out all non-extreme equilibria.

Indeed, consider an ε-perturbed objective Wε(µ) = W (µ) +
∑
a∈A εa · µ(a), where ε ∈ RA is

a vector of small shocks. If shocks ε are taken at random with any absolutely continuous

distribution, none of the non-extreme equilibria is optimal for Wε with probability one.

For example, one can take ε to be uniform on the ball of radius r with an arbitrary r > 0.

In other words, for any small ball in the space of linear objectives, a non-extreme Nash

equilibrium cannot be optimal for all objectives except degenerate ones, which form a

measure-zero set. Accordingly, a designer who is uncertain about the exact weights of her

7An objective can be degenerate with respect to one polytope and non-degenerate with respect to another.
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objective will never choose a non-extreme Nash equilibrium.

More generally, consider a designer with a non-degenerate (weakly) convex objective

W . Convexity of W may capture risk aversion: for example, a regulator may seek to avoid

action profiles triggering bank runs, assigning increasingly high costs to equilibria that

put substantial weight on such outcomes. Suppose a Nash equilibrium ν is non-extreme.

Hence, ν can be represented as αµ + (1 − α)µ′ with α ∈ (0,1) and distinct µ,µ′ ∈ CE(Γ ).

By convexity, we obtain W (ν) ≤ αW (µ) + (1 −α)W (µ′) and, thus, one of µ,µ′ gives at least

as high value to W as ν. Since W has a unique optimum, we conclude that ν cannot be

optimal. Thus, a non-extreme Nash equilibrium is never optimal. The conclusion extends

to quasi-convex objectives since Bauer’s principle admits such a generalization Ball (2023).

Aumann’s example and improvability Consider a version of Aumann (1974)’s classical

example illustrating the power of correlated equilibria. There are two agents, who face the

following game (each entry represents an action profile and contains the corresponding

payoff pair, where the first is the row agent’s payoff and the second is the column’s payoff):

0,0 4,1

1,4 3,3

 (2)

The designer aims to maximize the social welfareW (µ) =
∑
a

(
u1(a)+u2(a)

)
·µ(a) over the set

of all correlated equilibria µ. For this game, the incentive constraints (6) defining the set

of correlated equilibria take an especially simple form: the weight of each action profile

(4,1) or (1,4) must be at least the weight of each of (0,0) or (3,3).

This game has a mixed Nash equilibrium where each agent randomizes uniformly. Its

utilitarian welfare level of 4 can be improved in an incentive-compatible way by reducing

the weight of the (0,0) outcome. In fact, there is a correlated equilibrium in which each

of the non-zero payoff pairs is reached with probability 1/3. Its utilitarian welfare of 16/3

exceeds that of the two pure Nash equilibria (1,4) and (4,1) and is optimal.

Although none of the Nash equilibria are optimal for the utilitarian welfare objective,

they are all extreme and thus non-improvable according to our conservative perspective.

Indeed, for some objectives, these equilibria are maximizers. For instance, if the designer

cares about the total cubed payoffs of agents, the pure asymmetric equilibria become op-

timal. If the objective is to maximize the total weight assigned to the action profiles (0,0)

and (3,3), the mixed Nash equilibrium becomes the unique optimum.

This example underscores the observation that our notion of improvability is demand-

ing, and suggests that Nash equilibria may perhaps rarely, if ever, be non-extreme. As we

will see, this intuition is limited to 2-agent games.
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3 A Characterization of Extreme Nash Equilibria

We show that whether or not a Nash equilibrium is extreme depends on the amount of

randomization agents invoke in their strategies. Roughly speaking, equilibria with sub-

stantial uncertainty over the action profiles implemented cannot be extreme.

Theorem 1. A regular Nash equilibrium is extreme if and only if at most two agents randomize.

Theorem 1 indicates that for any social planner with a strictly convex objective, if three

or more agents randomize at a Nash equilibrium, the outcome can be improved, either by

introducing correlation—by allowing agents to communicate or introducing mediation—

or by selecting an alternative pure or “almost pure” equilibrium when such exist.

For instance, suppose the planner cares about overall agents’ efficiency, but dislikes

uncertainty over outcomes. For example, the welfare may aim at maximizing the sum of

overall efficiency net of the entropy of outcomes. Theorem 1 implies that the resolution

to the trade-off between payoff efficiency and uncertainty is, in many ways, detail free.

Naturally, a dislike of uncertainty would push the social planner to impose limited mixing

by agents. The theorem indicates that, regardless of the number of agents or the payoff
structure, the social planner could always improve upon a Nash equilibrium in which

more than two agents mix.

In games involving two randomizing agents, Theorem 1 asserts that any Nash equi-

librium cannot be improved upon. This echoes Cripps (1995), Evangelista and Ragha-

van (1996), and Canovas et al. (1999), who demonstrated that any Nash equilibrium of a

generic 2-agent game Γ is an extreme point of CE(Γ ).

Theorem 1 also has implications for games with a unique correlated equilibrium. For

example, generic two-agent conflicting-interest (constant-sum) games have this property.

As demonstrated by Viossat (2008), a small enough perturbation of any game with a

unique correlated equilibrium retains the property. Thus, the set of games with a unique

correlated equilibrium is an open set within the set of all games. A unique correlated equi-

librium is necessarily a Nash equilibrium. Theorem 1 provides insights on the structure

of such equilibria.

Corollary 1. If Γ is a game with a unique correlated equilibrium ν, then ν is either a pure Nash
equilibrium or entails precisely two agents mixing.

We emphasize that this corollary requires neither genericity nor regularity assump-

tions. While Theorem 1 implies this result for a dense subset of games within the open set

of games with a unique correlated equilibrium, we can extend the conclusion to the en-

tire set. This follows from the upper hemicontinuity of the Nash correspondence, which,
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combined with the uniqueness of the correlated equilibrium, implies the continuity of the

Nash equilibrium correspondence in this specific setting.

Why are there such stringent restrictions on mixing for equilibria to be non-extreme?

To glean some intuition, consider the case in which n agents each have two actions. If µ is

a correlated equilibrium, it must satisfy the constraints given by (1). There are at most 2n

such constraints: for each agent who is recommended either of the two actions, we need to

ensure that she does not deviate to the other. Each additional constraint adds at most one

element to the support of the extreme distributions. Therefore, the support of any extreme

point of the set of correlated equilibria is bounded by 2n+1. Suppose, now, that ν is a Nash

equilibrium with the n agents mixing. Then, the support of ν contains 2n elements. For ν

to be non-extreme, it must be that 2n ≤ 2n+ 1. In particular, for n > 2, a Nash equilibrium

that involves all agents mixing necessarily has greater support than an extreme point of

the set of correlated equilibria and is, therefore, non-extreme.

The formal proof of the theorem is contained in Appendix 1.1. There, we formulate

a slightly stronger result that also provides a lower bound on the dimension of the face

carrying a non-extreme Nash equilibrium. The dimension of this face grows exponentially

with the number k of randomizing agents and is at least

2k−3 − 1.

The proof relies on two lemmas echoing the simple example above. The first bounds the

support size of any extreme point of the set of correlated equilibria.

Lemma 1. For any game Γ , if a distribution µ ∈ ∆(S) is an extreme point of the set of correlated
equilibria, then∣∣∣suppµ

∣∣∣ ≤ 1 +
∑
i∈N
|Si | ·

(
|Si | − 1

)
. (3)

Lemma 1 suggests that in games between a large number of agents, correlated equilib-

ria have a relatively small support. As an illustration, consider a game involving n agents,

each with two available actions. The lemma indicates that an extreme correlated equilib-

rium puts positive weight on at most n+ 1 strategy profiles, which grows linearly in n. In

contrast, the total number of strategy profiles is 2n, which grows exponentially.

The proof of Lemma 1 generalizes the example above and relies on a basic principle

in linear programming formalized by Winkler (1988). Namely, if µ is an extreme point of

a set of probability measures satisfying linear constraints, and k of those constraints are

binding at µ, then the support of µ cannot exceed k+1. In our setting, the linear constraints

in question are governed by those defining correlated equilibria, and given in Equation 6.
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The second lemma we utilize follows from McKelvey and McLennan (1997). It restricts

the number of actions that agents can use in a regular Nash equilibrium.

Lemma 2 (McKelvey and McLennan (1997)). Consider an n-agent game Γ and a regular Nash
equilibrium ν = (ν1,ν2, . . . ,νn). Then, for any agent i,∣∣∣suppνi

∣∣∣− 1 ≤
∑
j,i

(∣∣∣suppνj
∣∣∣− 1

)
. (4)

Lemma 2 links the support size of agents’ strategies, bounding their plausible variabil-

ity.8 For example, in a regular Nash equilibrium, it cannot be that all agents but one use

pure strategies. In general, a regular Nash equilibrium cannot have an agent mixing across

many actions, while all others mix over a far smaller set.

Lemmas 1 and 2 indicate that a regular Nash equilibrium cannot be improved if and

only if both constraints (3) and (4) hold. In the proof of Theorem 1, we use majorization

techniques to show that the combination of the two constraints indeed implies limited

mixing.

Our results have implications for strategic settings where Nash equilibria require sub-

stantial randomization: in such cases, outcomes can be improved if agents coordinate,

either autonomously or through intermediaries. Many real-world applications exhibit

unique Nash equilibria with significant mixing. Consider, for instance, a simplified ver-

sion of the costly voting model of Palfrey and Rosenthal (1983), where two voter groups,

D and R, exist with |D | < |R|. Voters in group D derive a utility of 1 if their preferred can-

didate, d, wins and 0 otherwise, while voters in group R receive utility 1 if r wins and 0

otherwise. Ties are broken randomly, and casting a vote incurs a small cost, c > 0. For in-

termediate values of c, Palfrey and Rosenthal (1983) show that the only Nash equilibrium

entails all voters in one group randomizing between voting and abstaining. By Theorem

1, this mixed-strategy Nash equilibrium is not an extreme point, meaning there exists a

correlated equilibrium that strictly improves outcomes for any non-degenerate objective.

Similar conclusions arise in Bertrand price competition, where identical firms must

randomize prices over a certain range to prevent competitors from systematically under-

cutting them (Vives, 1999). If firms priced predictably, rivals could slightly undercut them

and capture the entire market. Likewise, venture capitalists’ investment decisions ex-

hibit strategic randomness: multiple investors allocate capital across competing startups,

knowing that the probability of a startup’s success depends on total funding received. The

unique mixed equilibrium involves investors randomizing across opportunities to pre-

vent driving down expected returns (Hellmann and Thiele, 2015). If an investor always

8Kreps (1981) obtains a “dual” result: under the same condition on the support of ν, there exist payoffs ui ,
i = 1, . . . ,n, making ν a unique Nash equilibrium.
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funded the same type of startup, competitors could adjust their strategies, maximizing

returns elsewhere. Similar dynamics appear in multi-agent Blotto games, where agents al-

locate resources across battlefields while anticipating their opponents’ allocations (Rober-

son, 2006), as well as in online content moderation, where platforms adjust policies to

maintain engagement while mitigating backlash (Acemoglu, Makhdoumi, Malekian, and

Ozdaglar, 2022). In each case, Nash equilibria involve mixing, but our results show that

strategic correlation can yield strictly better outcomes. Certainly, the line between coor-

dination and collusion is sometimes thin. In that respect, our results provide insights for

regulators into the environments that are more susceptible to collusion.

4 Extremality in Payoff Space

The preceding discussion characterizes extreme equilibria in terms of their structure within

the space of distributions over actions. However, economic analysis often focuses on the

payoffs associated with equilibria, rather than the distributions themselves. We now show

that utilitarian welfare of an equilibrium—the sum of agents’ payoffs—can generically be

improved whenever there is substantial mixing.

For each µ ∈ ∆(A), assign the expected payoff profile u(µ) ∈Rn given by ui(µ) =
∑
aui(a)µ(a).

For any game Γ , let UCE(Γ ) ⊂ R
n be the set of CE payoff profiles in Γ . We say that a Nash

equilibrium ν with payoff vector u(ν) is payoff-extreme if its associated expected pay-

off vector is an extreme point of the set UCE(Γ ) of CE-induced payoff profiles. The set

of extreme points of UCE(Γ ) has some appeal: it contains Pareto efficient and utilitarian

efficient payoff profiles that can be attained via a correlated equilibrium.

The setUCE(Γ ) can be viewed as a linear projection of the convex polytope of correlated

equilibria onto a lower-dimensional space via the mapping µ→ u(µ). Just as the sharpest

edges of a shadow must originate from the sharpest edges of the object casting it, it is well

known that the extreme points of a projection of a convex set are contained within the

projection of the set’s extreme points. In particular, the extreme payoffs in UCE(Γ ) derive

from the extreme points of the correlated equilibrium polytope.

Corollary 2. In a generic game, a Nash equilibrium with more than two agents randomizing is
not payoff-extreme.

Formally, to deduce this corollary from Theorem 1, one needs to make sure that each

extreme point of UCE(Γ ) originates as a projection of a unique extreme point of CE(Γ ). We

verify this in Appendix 1.3 by showing that, in a generic game, all extreme correlated equi-

libria result in different payoff vectors. Consequently, one cannot replace the genericity of

a game with the regularity of a Nash equilibrium in Corollary 2.
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The converse of the corollary does not hold: the projection of an extreme correlated

equilibrium might not be an extreme point in the payoff space. Consequently, pure Nash

equilibria and Nash equilibria with exactly two agents randomizing are not necessarily

payoff-extreme. For example, the mixed Nash equilibrium in Aumann (1974)’s game (2)

described at the end of Section 2 is in the interior of UCE .

Payoff-extremality has important implications for welfare analysis. Applying Bauer’s

Maximum Principle in the space of payoffs, we conclude that if a Nash equilibrium is not

payoff-extreme, there exists a correlated equilibrium that yields a higher value for any

non-degenerate linear objective in the space of payoffs.

As it turns out, utilitarian welfare, and similarly any weighted utilitarian welfare, are

generically non-degenerate. We, therefore, have the following result, echoing Theorem 1.

Proposition 1. In a generic game, the utilitarian welfare of any Nash equilibrium with more
than two agents randomizing can be improved within the set of correlated equilibria.

The proof shows formally that utilitarian welfare is non-degenerate in generic games.

Intuitively, the set of games in which utilitarian welfare is constant on an edge of UCE is

non-generic: those edges would need to be perpendicular to the vector of equal weights.

5 Symmetric Games

Many games considered in the literature exhibit symmetry: an agent’s payoffs depend

only on her actions and the actions others choose, but not on her or others’ identity. Put

differently, permuting the labels of agents and, accordingly, the actions they take, makes

no difference to payoffs; see, for example, Dasgupta and Maskin (1986). We now consider

a generalized notion of symmetric games, discuss the prevalence of symmetric equilibria

that can be improved via analogously symmetric correlated equilibria, and explore the

structure of these beneficial correlated equilibria.

5.1 Generalized Symmetric Games

The standard definition of a symmetric game requires that any permutation of agents

leaves the game unchanged. This definition of symmetry rules out a variety of games

that appear symmetric. For example, consider a voting game between agents 1 through 9

placed on a network as follows:9

9This example resembles an example motivating the study of Bartholdi et al. (2021) on equitable voting
rules.
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Each group of three agents—{1,2,3}, {4,5,6}, and {7,8,9}—forms a “district,” denoted

by D1, D2, and D3, respectively. Every agent selects between two possible actions, a or b.

First, each district’s choice is determined by majority rule: if at least two agents within a

district vote for a, the district selects a; otherwise, it selects b. Then, the overall decision of

the electorate (E) is determined by a second majority rule applied to the districts’ choices:

if at least two districts choose a, the electorate selects a; otherwise, it selects b. Ultimately,

each agent’s utility depends solely on the final electorate’s decision.

This game is symmetric in the sense that no agent is treated differently: each agent has

the same “role” as any other. Nonetheless, it is not symmetric in the usual sense. For ex-

ample, suppose {1, . . . ,5} vote for a and {6, . . . ,9} vote for b (differentiated by shading in the

figure), then the ultimate electorate choice is a. However, if agents 5 and 9 were swapped,

the electorate’s choice would change to b. We now generalize the notion of symmetry.10

Given a set P of permutations, we say that a game Γ and a distribution µ are symmetric

with respect to P , or P -symmetric for short, if they are invariant under all permutations

fromπ ∈ P . That is, for anyπ ∈ P , ui(a) = uπ(i)(aπ(1), . . . , aπ(n)) and µ(a) = µ(aπ(1), . . . , aπ(n)) for

all a ∈ A. Analogously, we say that a welfare function W is P -symmetric if it similarly in-

variant under all permutations in P . That is, for anyπ ∈ P ,W (u1, . . . ,un) =W (uπ(1), . . . ,uπ(n)).

Without loss of generality, we focus on permutation sets P that are subgroups of the group

of all permutations Sn.11

When P = Sn, P -symmetry of a game boils down to the common assumption of game

symmetry. Some interesting cases arise when P , Sn but is transitive, i.e., for any two

agents i and j, there is a permutation π ∈ P such that π(i) = j. For example, suppose

agents are located on a circle: agent i placed between agents i − 1 and i + 1 mod n for

all 2 ≤ i ≤ n, as described in the figure below for n = 8. Suppose agents interact with

their neighbors so that ui(s) = f (si−1, si , si+1) (with s0 = sn and sn+1 = s1). Then, the game

is invariant under the set P of all cyclic permutations π : i → i + k mod n. Similarly, the

example above pertaining to the tree network is also symmetric for a transitive P . The im-

portance of the distinction between fully symmetric and P -symmetric games has recently

10In his seminal treatise on non-cooperative games, Nash (1950) suggests a more general definition of sym-
metry in the spirit of the one we offer.

11That is, for any permutation in P , its inverse is also in P , and the composition of any two permutations in
P is also in P .
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been highlighted by Bartholdi, Hann-Caruthers, Josyula, Tamuz, and Yariv (2021).

1
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Let P be a subgroup of Sn and consider a P -symmetric n-agent game Γ with n ≥ 3. Let

ν be a regular symmetric mixed Nash equilibrium. Under the conditions of Theorem 1, ν

cannot be an extreme point of the set of correlated equilibria and, thus, improvable. What

if P -symmetry is desirable in and of itself? We handle this question next.

5.2 Improvement via Symmetric Correlated Equilibria

A designer may want to treat agents symmetrically and favor equity over any other objec-

tive. Furthermore, if the objective is P -symmetric—e.g., the social (utilitarian) welfare—its

optimum can be achieved via P -symmetric correlated equilibria. For a Nash equilibrium,

symmetry with respect to a transitive P is equivalent to symmetry with respect to P = Sn.

We now study when a symmetric Nash equilibrium can be improved within the set of

correlated equilibria respecting the symmetry of the game.

Theorem 2. For P -symmetric n-agent game with transitive P , a regular symmetric Nash equi-
librium is an extreme point of the set of P -symmetric correlated equilibria if and only if n = 2 or
it is pure.

Theorem 2 implies that any mixing in a regular symmetric equilibrium can be im-

proved, even when maintaining equity considerations. For example, firms participating

in Bertrand price competition, or venture capital investment firms are often similar to

one another and the equilibria discussed at the end of Section 3 are therefore symmetric

and improvable, even when insisting on symmetric play. Likewise, symmetric equilibria

in war of attrition games or public good games often involve mixing and are therefore

improvable.

More formally, Bauer’s principle implies that the value of a generic P -symmetric linear

objective can be strictly improved. We note that the restriction to P -symmetric correlated

equilibria in Theorem 2 is important. If the condition of the theorem pertained to gen-

eral correlated equilibria, we would be able to improve a generic linear objective but not
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necessarily those respecting the symmetry of the game.12

To gain some intuition for the proof, consider the case of P = Sn. First, regularity allows

us to only consider actions that feature strictly positive weight in agents’ strategies.13

Second, notice that any symmetric correlated equilibrium corresponds to an exchange-

able distribution. If each agent places positive weight on m pure actions, each of the m

actions has to generate at least as high a payoff as the remaining m − 1 actions, yielding

m(m − 1) incentive constraints. Relying, again, on Winkler (1988), we show that an ex-

treme point of the set of symmetric correlated equilibria can be represented as a convex

combination of at most

m(m− 1) + 1

extreme exchangeable distributions, where m is the number of actions of each agent.

Last, we show that any symmetric Nash equilibrium corresponds to a mixture of at

least
(n+m−1
m−1

)
extreme exchangeable distributions. With at least three agents, for anym > 1,

we have that(
n+m− 1
m− 1

)
> m(m+ 1) + 1

and the result follows. To handle P -symmetry, the proof generalizes the notion of ex-

changeability to P -exchangeability of a finite set of random variables, where the joint dis-

tribution is invariant to variable permutations from P .

5.3 The Structure of Beneficial Correlated Equilibria

We now focus on P = Sn and show that extreme symmetric correlated equilibria take a

very particular form, regardless of the underlying game’s details.

Proposition 2. Any extreme correlated equilibrium of a fully symmetric game Γ with n agents
and m actions a1, . . . , am can be obtained from a fixed collection of M ≤ m(m − 1) + 1 urns each
with n balls marked with actions, as follows:

• An urn is chosen at random according to some distribution p ∈ ∆M . Agents do not know
which urn has been chosen.

• Agents {1, . . . ,n} approach the urn sequentially and draw balls without replacement.

• Each agent takes an action corresponding to her ball’s label.
12Similarly to generic games, by a generic linear objective we mean the one from an open everywhere dense

set with a zero-measure complement.
13For this to hold without loss of generality, we only need that incentive constraints outside of the support

of agents’ strategies are not active.
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Intuitively, as already argued, an extreme point of the set of symmetric correlated equi-

libria can be represented as a convex combination of at most

m(m− 1) + 1

extreme exchangeable distributions. Each extreme exchangeable distribution is then rep-

resented as an urn. Sampling without replacement from an urn allows us to generate an

arbitrary symmetric distribution over action profiles.

The proposition provides a simple parametrization of correlated equilibria, particu-

larly convenient when the number of actions is small. For example, if m = 2, we only need

M = 3 urns. The composition of each urn is determined by a single number: the fraction

of balls marked a1 in the urn. A distribution p over three urns adds 2 more parameters.

As a result, all extreme symmetric correlated equilibria form a 5-parametric family. More

generally, we need (m2 + 1)(m− 1) parameters. Importantly, this number does not depend

on the number of agents n, while describing an arbitrary distribution over actions requires

mn − 1 parameters—an exponentially growing quantity in n.

Proposition 2 implies further simplification when the number of agents is large relative

to the number of available actions. In that case, the joint distributions corresponding to

draws with and without replacement become close to one another.14

Formally, a distribution of ξ1, ξ2, . . . ,ξn is ε-close to a mixture of i.i.d. distributions

if, for any k = 1, . . . ,n, the total variation distance between the joint distribution of any k

random variables ξi1 , . . . ,ξik and the closest mixture of i.i.d. distributions is at most ε · k.

The approximation results of Diaconis and Freedman (1980) imply the following corollary.

Corollary 3. Any fully symmetric correlated equilibrium µ of a fully symmetric game Γ with n
agents, each having m strategies, is ε-close to a mixture of i.i.d. distribution with

ε =
2m
n
.

Thus, in symmetric games where the number of agents is large relative to the number

of actions, the set of correlated equilibria can be approximated via the following simple

procedure. Pick a set of states Θ, a prior distribution p ∈ ∆(Θ), a set of signals S, and a

family of distributions νθ ∈ ∆(S) for each θ ∈ Θ. The correlated profile is then generated

as follows. The state θ is realized according to the distribution p, and independent and

identically distributed signals si ∼ νθ are then privately released to each agent i. Agents,

knowing the distributions over states and signals, best reply to their observed signals. That

is, symmetric correlated equilibria are close to Bayesian Nash equilibria of a game obtained

14This phenomenon underlies the famous De Finetti theorem, which states that extreme exchangeable dis-
tributions over an infinite product space T × T × ... are distributions of i.i.d. T -valued random variables (Dia-
conis and Freedman, 1980).
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after adding a payoff-irrelevant random state variable θ with conditionally independent

and identically distributed private signals.

6 Implications for Incomplete Information Games and Coarse

Correlated Equilibria

This section illustrates implications of our techniques to two other settings. First, we con-

sider incomplete information games and extremality within the set of Bayesian correlated

equilibria. Then, we look at a relaxation of correlated equilibria, namely coarse correlated

equilibria, which result from various learning dynamics.

6.1 Bayesian Correlated Equilibria

Here, we outline the implications of our analysis for strategic environments with payoff
uncertainty. Recall the general framework of Bergemann and Morris (2019) allowing for

common payoff uncertainty and private information. The common uncertainty is repre-

sented by a state variable θ from a set of states Θ. Each agent i has private information

represented by a type ti from a finite set Ti . We denote the set of type profiles by T = ×i∈NTi
and the joint distribution over states and types by π ∈ ∆(Θ×T ). Each agent i’s payoff is de-

termined by the action profile a ∈ A, the state θ, and the type profile t. Consequently, agent

i’s utility function is defined as vi : A×Θ × T → R. This constitutes a game of incomplete

information, which we denote by G = (N, (Ai)i∈N ,Θ, (Ti)i∈N ,π, (vi)i∈N ).

A joint distribution ψ ∈ ∆(A×Θ × T ) is a Bayesian correlated equilibrium (BCE) if its

marginal on Θ × T coincides with π and the following obedience conditions are satisfied∑
a−i∈A−i , θ∈Θ, t−i∈T−i

ψ(a,θ, t)vi(a,θ, t) ≥
∑

a−i∈A−i , θ∈Θ, t−i∈T−i

ψ(a,θ, t)vi(a
′
i , a−i ,θ, t) (5)

for each i ∈ N , ti ∈ Ti , ai ∈ Ai , and a′i ∈ Ai . This condition ensures that no agent of any

type can gain by unilaterally deviating from a recommended action ai to an alternative

action a′i , given the posterior belief induced by the recommendation and their private type.

A BCE ψ is a Bayesian Nash equilibrium if θ,a1, . . . , an are all independent conditional on

the profile realized types t = (t1, . . . , tn). A Bayesian Nash equilibrium can be identified

with a profile of functions σi : Ti → ∆(Ai) according to which each agent i randomizes her

action given her realized type. Such an equilibrium is pure if each σi always outputs a

pure strategy.

Proposition 3. For a generic game with incomplete information, such that at least one of the
following conditions holds:
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• non-trivial common payoff uncertainty: |Θ| ≥ 2, or

• non-trivial private information: |Ti | ≥ 2 for at least 3 agents,

a Bayesian Nash equilibrium is an extreme point of BCE if and only if it is pure.

The requirement that the game is generic implies, in particular, that π has full support:

individual types provide noisy information about the environment. The proof appears in

Appendix 1.5 and follows the same lines as that of Theorem 1. It builds on an incomplete

information extension of Lemmas 1 and 2. The proof uses the genericity of π to guarantee

full support. Consequently, instead of assuming that the game is generic, one can assume

that a full-support π is fixed and utilities u are generic.

6.2 Coarse Correlated Equilibria

We now consider the larger set of coarse correlated equilibria and show that any ran-

domness in a Nash equilibrium renders it improvable within the set of coarse correlated

equilibria.

Correlated equilibria rely on ex-post incentive constraints, meaning that each agent

finds it optimal to follow the recommended action conditional on receiving that recom-

mendation. The notion of coarse correlated equilibria, introduced by Moulin and Vial

(1978), relaxes this requirement by imposing only ex-ante incentive constraints. Coarse

correlated equilibria capture strategic settings where agents decide whether to commit

to a correlating device before receiving any specific recommendation. This is akin to an

agent deciding whether to opt-in to a recommendation system, such as those employed by

platforms like Facebook or Google for ad targeting, where the alternative is to turn off per-

sonalized recommendations. Alternatively, it speaks to agents’ incentives to join collusive

agreements (for example, see McAfee and McMillan, 1992). Coarse correlated equilib-

ria also represent the set of outcomes achievable by arbitrary no-regret learning dynamics

(Hart and Mas-Colell, 2001).

Formally, a distribution µ ∈ ∆(A) is a coarse correlated equilibrium (CCE) in a game

Γ = (N, (Ai)i∈N , (ui)i∈N ) if∑
a∈A

ui(a)µ(a) ≥max
a′i∈Ai

∑
a∈A

ui(a
′
i , a−i)µ(a) (6)

for all i ∈N . Each agent faces a single individual rationality constraint: the expected payoff
from the correlated strategy must be at least as high as the best deterministic deviation.

We now investigate the extremality of Nash equilibria within the larger set of coarse

correlated equilibria. Naturally, extremality is then more demanding. As an analog of

Theorem 1, we establish the following result.
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Proposition 4. In a generic game, a Nash equilibrium is an extreme point of the set of coarse
correlated equilibria if and only if it is pure.

As in Theorem 1, the genericity assumption can be replaced by the assumption of regu-

larity of the Nash equilibrium under consideration. The proof of Proposition 4 is contained

in Appendix 1.6. It mirrors that of Theorem 1.

Proposition 4 demonstrates a stark contrast between correlated and coarse correlated

equilibria. While mixed Nash equilibria can be extreme points of CE(Γ ) when two agents

randomize, they can never be extreme points of CCE(Γ ) in generic games. This result

implies that in a generic game, any mixed regular Nash equilibrium can be improved,

for any non-degenerate objective, by moving to some coarse correlated equilibrium. This

is consistent with the prevalence of examples in the literature, primarily focused on 2-

agent games, where Nash equilibria are improvable via coarse correlated equilibria but not

correlated equilibria (e.g, Moulin and Vial, 1978; Gérard-Varet and Moulin, 1978; Moulin

et al., 2014; Dokka et al., 2023).
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1 Appendix: Proofs

1.1 Proof of Theorem 1

We prove the following theorem, which generalizes Theorem 1.

Theorem 3. Consider a regular Nash equilibrium with k agents randomizing their actions.
This equilibrium is an extreme point of the correlated equilibrium polytope if and only if k ≤ 2.
For k ≥ 3, the equilibrium lies in the interior of a face of dimension higher or equal to

2k−3 − 1. (7)

The dimension of the face containing a Nash equilibrium represents the number of

linearly independent perturbations that preserve the incentive constraints—essentially,

the directions in which potential improvements can occur.

The proof also contains a characterization of equilibria for small dimensions. For ex-

ample, a Nash equilibrium is in the interior of a face of dimension 1 if either exactly 3

agents randomize over 2 actions each, or two agents randomize over two actions and one

over three. Interestingly, no Nash equilibrium can be in the interior of a face of dimen-

sion 2. Faces of dimension 3 only contain equilibria where two agents randomize over 3

actions, and one randomizes over 2, or those where one agent randomizes over 4 actions,

one over 3, and one over 2.

Our first step is proving the following extended version of Lemma 1, which bounds the

support of a correlated equilibrium belonging to the interior of a face of dimension d ≥ 0.

Lemma 1 focusing on extreme correlated equilibria corresponds to d = 0.

Lemma 3. For any game Γ , if a distribution µ ∈ ∆(S) belongs to the interior of a face of dimen-
sion d of the set of correlated equilibria, then∣∣∣suppµ

∣∣∣ ≤ 1 + d +
∑
i∈N
|Si | ·

(
|Si | − 1

)
. (8)

Proof of Lemma 1. The set of correlated equilibria is cut from the simplex of all probability

measures ∆(S) by incentive constraints taking the form of linear inequalities (6). By Theo-

rem 2.1 of Winkler (1988), if µ is an extreme point of a set of probability measures under

linear constraints, then |suppµ| cannot exceed k + 1, where k is the number of constraints

active at µ.

First, consider the case of d = 0, i.e., extreme µ. For each agent i, there are |Ai | · (|Ai | −1)

incentive constraints since for each recommended action ai ∈ Ai , we need to rule out each

deviation a′i ∈ Ai \ {ai}. Applying Winkler’s theorem, we obtain (8) with d = 0.

Now, suppose d > 1. We impose additional d independent linear constraints on the

set of correlated equilibria so that µ becomes an extreme point of the constrained set.
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Winkler’s theorem implies (8).

Proof of Theorem 1. We first show that if ν is a regular Nash equilibrium, where at most

two agents randomize their actions, then ν is an extreme point of CE(Γ ).

First, consider pure ν. Any point mass is the extreme point of the set of probability

measures. Thus ν is an extreme point of ∆(S) and thus of CE(Γ ) ⊂ ∆(S).

Now, suppose that agents i, j ∈N randomize and the rest of agents k ∈N \{i, j} play pure

actions. Towards a contradiction, assume that ν is represented as a convex combination

of correlated equilibria λµ+ (1 −λ)µ′ with λ ∈ (0,1) and µ , µ′. Let νi,j = νi × νj , µi,j , and

µ′i,j be the marginals of ν, µ, and µ′ on Si × Sj . We get νi,j = µ{i,j} + (1 − λ)µ′{i,j}, where

µ{i,j} , µ
′
{i,j} since otherwise µ would be equal to µ′ as all the agents except for i and j play

pure actions. Consider the 2-agent game Γ{i,j} obtained from Γ by replacing all the agents

k ∈ N \ {i, j} with dummies taking actions played in ν. The distribution νi,j is a regular

Nash equilibrium of Γ{i,j}.

By the results of Cripps (1995), Evangelista and Raghavan (1996), and Canovas et al.

(1999), any regular Nash equilibrium of a 2-agent game is an extreme point of its set

of correlated equilibria. Therefore, νi,j is an extreme point of CE(Γ{i,j}). However, we

represented νi,j as a non-trivial convex combination of correlated equilibria µ{i,j} and µ′{i,j}.

This contradiction implies that a regular Nash equilibrium with two agents mixing their

actions is an extreme point of CE(Γ ).

In the opposite direction, we need to prove that if a regular Nash equilibrium ν =

ν1 × . . . × νn of an n-agent game Γ is an extreme point of CE(Γ ), then ν at most two agents

randomize. It is enough to prove this claim assuming that suppνi = Si for any i since

the incentive constraints are strict outside of the support, by definition of a regular Nash

equilibrium; see Harsanyi (1973b).

Denote mi = |Si | = |suppνi | and assume without loss of generality that agents are enu-

merated so that mi ≥ mi+1. Lemma 8 and 2 imply that numbers m1, . . . ,mn satisfy the

following conditions m1 · . . . ·mn ≤ 1 +
∑n
j=1mj · (mj − 1)

mi − 1 ≤
∑
j,i(mj − 1), i = 1, . . . ,n

(9)

By Proposition 5 formulated and proved below, these inequalities imply m1 = m2 and

mi = 1 for i ≥ 3. Denote the common value of m1 and m2 by m. We conclude that ν is pure

for m = 1 and two agents randomize for m > 1.

Finally, suppose that k agents randomize at ν and let d be the dimension of a face to

the interior of which ν belongs. Now, Lemmas 8 and 2 result in the following version of
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system (9) m1 · . . . ·mn ≤ 1 + d +
∑n
j=1mj · (mj − 1)

mi − 1 ≤
∑
j,i(mj − 1), i = 1, . . . ,n

(10)

By Proposition 5, inequalities (10) can only only be satisfied if k ≤ 3 + log2(1 + d) which

implies (7).

For small d, formulas (14) from Proposition 5 provide the structure of solutions. For

example, the only sequences solving this system for d = 1 but not for d = 0 are of the form

(2,2,2,1, . . . ,1) (three agents all randomizing over 2 actions) and (3,2,2,1, . . . ,1) (one agent

randomize over 3 actions and two agents randomize over two). For d = 2, there are no

Nash equilibria as there are no solutions with d = 2 that would not also satisfy the system

with smaller d. For d = 3, we get two solutions: (3,3,2,1, . . . ,1) (two agents randomize

over 3 actions and one randomizes over 2) and (4,3,2,1, . . . ,1) (one agent randomize over

4 actions, one over 3, and one over 2).

1.2 Analysis of solutions to system (9)

In the following proposition, we consider a class of systems that contains (9) and, addi-

tionally, allows for the slack of size of Q in the right-hand side of the first inequality

n∏
i=1

mi ≤
n∑
i=1

mi · (mi − 1) +Q and (11)

m1 − 1 ≤
n∑
i=2

(mi − 1) (12)

It will also be convenient to drop all mi = 1 and only consider the part of the sequence

m1,m2, . . . that corresponds to mi ≥ 2.

Proposition 5. Let (m1, . . . ,mn) be a non-increasing sequence of n ≥ 2 integers such that each
mi ≥ 2 and inequalities (11) and (12) are satisfied with some integer Q ≥ 1. Then, the length of
the sequence satisfies the following bound:

n ≤ 3 + log2Q. (13)
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If 1 ≤Q ≤ 9, the sequence must take one of the following forms:

Q ≥ 1 : (m,m) for some m ≥ 1

Q ≥ 2 : (2,2,2), (3,2,2)

Q ≥ 4 : (3,3,2), (4,3,2)

Q ≥ 6 : (4,4,2), (5,4,2)

Q ≥ 8 : (5,5,2), (6,5,2)

(14)

We will need a lemma showing that any solution (m1, . . . ,mn) to (11) and (12) can be

used to define a new solution of a particularly simple form.

Lemma 4. Let (m1, . . . ,mn) be a non-increasing sequence of integers numbers mi ≥ 2 satisfy-
ing (11) and (12). Let m = m1 and S =

∑n
i=1(mi − 1). Represent S = k · (m − 1) + (r − 1) with

r ∈ {1,2, . . . ,m1 − 1}. Then

(m,. . . ,m︸   ︷︷   ︸
k times

, r) (15)

also satisfies (11) and (12).

While we keep the proof an elementary application of convexity, it admits a majoriza-

tion theory interpretation. In essence, the result is deduced from the monotonicity of∑n
i=1 xi · (xi − 1)−

∏n
i=1 xi in the majorization order, a property known as Schur convexity.

Proof of Lemma 4. For the new sequence, both sides of (12) are identical to the original one.

Thus (12) holds for the new sequence. To check (11), we relax the integrality constraint

and denote by Lm,S the set of all sequences (x1,x2, . . . ,xn) ∈ Rn with x1 = m, 1 ≤ xi ≤ m for

i ≥ 2, and
∑n
i=1(xi − 1) = S. Old and new sequence belongs to Lm,s. By the quasi-convexity

of
∑n
i=1 xi · (xi − 1)−

∏n
i=1 xi on Lm,S , the maximum of this expression over Lm,S is attained

at an extreme point. All such extreme points coincide with (m,. . . ,m,r,1, . . . ,1) up to a

permutation of x2, . . . ,xn. Thus, the difference between the right-hand side and the left-

hand side in (11) can only increase when the old sequence is replaced with the new one.

We conclude that both (11) and (12) hold for the new sequence.

Proof of Proposition 5. We first prove inequality (13) on the length of a sequence in terms

of Q. Consider sequences of the form (m,. . . ,m,r), where m is repeated k ≥ 3 times. In-

equality (11) reads as follows

mk · r ≤ k ·m(m− 1) + r(r − 1) +Q. (16)

Since mk · (r − 1) ≥ r(r − 1), we get

mk ≤ k ·m(m− 1) +Q
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and thus

mk
(
1− k · (m− 1)

mk−1

)
≤Q.

The ratio k · (m− 1)/mk−1 is decreasing in m and in k. Thus, it attains the maximal value of

3/4 for k = 3 and m = 2. Hence, mk ≤ 4Q. The right-hand side of (16) can be bounded as

follows:

k ·m(m− 1) + r(r − 1) +Q ≤ (k + 1) ·m(m− 1) +Q

≤ k + 1
k
·mk +Q ≤ k + 1

k
· 5Q+Q

≤ 4
3
· 5Q+Q ≤ 8Q.

Now consider a sequence (m1, . . . ,mn) with mi ≥ 2 satisfying (11) and (12). Let (m,. . . ,m,r)

with m repeated k ≥ 3 times be the associated sequence of the form (15). Since the right-

hand side of (11) for (m,. . . ,m,r) is at least as big as for (m1, . . . ,mn), we get

n∏
i=1

mi ≤ 8Q.

Since mi ≥ 2,

n ≤ log2 8Q = 3 + log2Q.

Thus inequality (13) is established for any (m1, . . . ,mn) corresponding to (m,. . . ,m,r) with

k ≥ 3. By (12), k ≥ 2 and thus it remains to consider the case of k = 2. For k = 2, we get

n∏
i=1

mi ≤ 2 ·m(m− 1) + r(r − 1) +Q.

The inequality n ≤ 3 + log2Q trivially holds for n = 3 and thus we assume n ≥ 4. By (12),∑n
i=2(mi − 1) ≥m1 − 1. Hence, for n ≥ 4 we get

n∏
i=1

mi ≥m · (m− 2) · 2 · 2 = 4m(m− 2).

Plugging this in, we obtain

4m(m− 2) ≤ 2 ·m(m− 1) + r(r − 1) +Q

or

m2 − 3m− 2 ≤Q.
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Since m2 − 3m− 2 = (m− 2)2 +m− 6, we get m ≤ 2 +
√
Q+ 6. Thus,

n∏
i=1

mi ≤ 2 ·m(m− 1) + r(r − 1) +Q ≤ 2m2 − 5m+ 2 +Q

≤ 2(m2 − 3m− 2) +m+ 6 +Q ≤ 2Q+m+ 6 +Q

≤ 3Q+ 8 +
√
Q+ 6 = 8Q+ (8 +

√
Q+ 6− 5Q)

For Q ≥ 3, we get
∏n
i=1mi ≤ 8Q and thus n ≤ 3 + log2Q. The remaining case of Q ≤ 2 will

be considered in detail below. Thus inequality (13) is proved.

We now characterize the solutions for small values of Q. As before, we start with

sequences of the form (m,. . . ,m,r). Note thatmk(r−1) < r(r−1) and so inequality (16) gives

mk < k ·m · (m− 1) +Q = k ·m2 + (Q − k ·m)

or

m2
(
mk−2 − k

)
< Q − km.

The left-hand side is non-negative if k ≥ 3 and m ≥ 3. For such k and m, for the inequality

to hold, we must have Q−km > 0 and thus Q ≥ 10. We conclude that for Q ≤ 9, i.e., Q from

the statement of the proposition, we must have either k = 2 or k = 3 and m = 2. We now

analyze these two cases separately.

We first consider the case of k = 3 and m = 2, i.e., the sequence (2,2,2). By plugging it

into (11), we conclude that this sequence is a solution for Q ≥ 2. There are no sequences

(m1, . . . ,mn) associated to (2,2,2) except for (2,2,2) itself.

We now consider the case of k = 2. Plugging k = 2 into (16), we get

m2(r − 2) ≤ r(r − 1) + (Q − 2 ·m).

Suppose r ≥ 4. The left-hand side is at least 2m2, while the right-hand side is at most

m2 +Q. Hence, m2 ≤Q and so m ≤ 4 for Q ≤ 16. Since r ≤m−1, we conclude that there are

no solutions with r ≥ 4.

Suppose r = 3. We get m2 ≤ 6 +Q − 2m. For Q ≤ 9, we get m2 ≤ 15 and so it remains to

check m ∈ {2,3}. None of these values are compatible with r = 3.

Suppose r = 2. Inequality (16) takes the form

0 ≤ 2 +Q − 2m.

For Q ≤ 9, it implies m ≤ 5. Since r = 2, we must have m ≥ 3. Plugging m ∈ {3,4,5}
into (16), we obtain that the following sequences are solutions: (3,3,2) for Q ≥ 4, (4,4,2)

forQ ≥ 6, and (5,5,2) forQ ≥ 8. Now consider sequences (m1, . . . ,mn) that can be associated
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with these families of solutions. For (3,3,2), there is only one such sequence (3,2,2,2)

which becomes a solution for Q ≥ 12. For (4,4,2), we need to check (4,3,3), (4,3,2,2), and

(4,2,2,2,2), which become solutions for Q ≥ 12, Q ≥ 26, and Q ≥ 44, respectively. For

(5,5,2), we obtain the following sequences (5,4,3), (5,4,2,2), (5,3,3,2), (5,3,2,2,2), and

(5,2,2,2,2,2) none of which are solutions for Q ≤ 9.

Finally, we are left with sequences of the form (m,m), which are solutions for anyQ ≥ 1

and m ≥ 2. It remains to consider sequences (m1, . . . ,mn) that are associated with (m,m).

We get

n∏
i=1

mi ≤ 2 ·m(m− 1) +Q

since the right-hand side of (11) cannot decrease when (m1, . . . ,mn) is replaced with (m,m).

If m1 =m2, then (m1, . . . ,mn) coincides with (m,m) and thus we focus on the case where

m2 =m− δ with integer δ ≥ 1. By quasi-convexity of the product,

n∏
i=2

mi ≥ (m− δ)(1 + δ)

and so we obtain
n∏
i=1

mi ≥m · (m− δ) · (1 + δ).

Putting the pieces together, we conclude that the following inequality holds

m · (m− δ) · (1 + δ) ≤ 2m · (m− 1) +Q.

Without loss of generality, m− δ ≥ 1 + δ, i.e., δ ≤ (m− 1)/2.

Suppose δ ≥ 4. Then the left-hand side is at least m · m+1
2 · 5 and thus

m2 ≤ 2Q.

Since δ ≤ (m− 1)/2 and δ ≥ 4, there are no solutions unless Q ≥ 41.

Suppose δ = 3 and so m ≥ 7. We get

4m(m− 3) ≤ 2m(m− 1) +Q.

Equivalently,

2m2 − 10m ≤Q.
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The left-hand side satisfies

2m2 − 10m ≥ 2(m− 3)2 − 18

and thus

m ≤ 3 +

√
Q+ 18

2
,

which is incompatible with m ≥ 7 unless Q ≥ 14.

Suppose δ = 2 and so m ≥ 5. We obtain

3m(m− 2) ≤ 2m(m− 1) +Q

or (m− 2)2 ≤Q+ 4 and thus

m ≤ 2 +
√
Q+ 4

For Q ≤ 11, we get m ≤ 5. Thus m = 5. The corresponding sequences take the form (5,3,3)

and (5,3,2,2), which become solutions for Q ≥ 13 and Q ≥ 30, respectively.

Suppose δ = 1 and so m ≥ 3. The sequence (m1, . . . ,mn) takes the form (m,m − 1,2).

Plugging it into (11), we get

2m(m− 1) ≤m(m− 1) + (m− 1)(m− 2) + 2 +Q

and thus (m,m− 1,2) is a solution for any

m ≤ 2 +
Q
2
.

For Q ≤ 9, we get the following values m ∈ {3,4,5,6} starting from Q equal to 2,4,6,8,

respectively.

1.3 Proofs Pertaining to Extremality in Payoff Space

First, we formulate and prove a lemma showing that, in a generic game, all extreme cor-

related equilibria correspond to distinct points in the payoff space. This technical result

is needed to make sure that a preimage of an extreme point in the payoff space can only

originate from an extreme point in the space of action distributions and thus deduce Corol-

lary 2 from Theorem 1. Next, we prove Proposition 1.

Lemma 5. In a generic game, no two correlated equilibria result in the same payoff to an agent.

Proof. We fix sets of agents N = {1, . . . ,n} and actions A1, . . . ,An and consider a game Γ =(
N, (Ai)i∈N , (ui)i∈N

)
. We show that for an open set of utilities u ∈ RN×A of full measure,

any two extreme points of CE(Γ ) result in different payoffs to each agent.
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Extreme points of CE(Γ ) are basic feasible solutions of the corresponding system of

inequalities. Thus, any extreme point µ is uniquely determined by the set of equalities

formed by active constraints. In other words, there exist subsets S ⊆ A (the support of µ)

and a set IC ⊆ ∪i∈N {i}×Ai×Ai (active incentive constraints) such that µ is a unique solution

to the following system of equations
∑
a−i
µ(ai , a−i)

(
ui(ai , a−i)−ui(a′i , a−i)

)
= 0, (i,ai , a′i) ∈ IC

µ(a) = 0, a ∈ A \ S∑
aµ(a) = 1

(17)

The uniqueness of the solution means that there are exactly |A| linearly independent equa-

tions on the |A| coordinates of µ ∈ R
A, i.e., without loss of generality we can assume

that |IC| = |A| − |S | − 1 and the matrix of the system is non-degenerate. Denoting this

|A|× |A|matrix byMu,S,IC and the vector on the right-hand side by e, we rewrite the system

as Mu,S,IC ·µ = e. Since the solution exists and is unique, the determinant detMu,S,IC must

be non-zero.

Suppose that there are two distinct extreme points µ and µ′ of the set of correlated

equilibria such that agent j’s expected payoff is the same: uj(µ) = uj(µ′). Let (S,IC) and

(S ′ , IC′) be the active constraints at µ and µ′, respectively, chosen so that detMu,S,IC , 0

and detMu,S ′ ,IC′ , 0. We conclude that the following system on (µ,µ′) ∈ R
A ×RA has a

unique solution:
Mu,S,IC ·µ+ 0 ·µ′ = e

0 ·µ+Mu,S ′ ,IC′ ·µ′ = e

uj ·µ−uj ·µ′ = 0

(18)

This is a system of 2|A|+ 1 equations on 2|A| unknowns. It can only have a unique solution

if the equations are linearly dependent, i.e., the determinant of the augmented matrix is

zero

det


Mu,S,IC 0 e

0 Mu,S ′ ,IC′ e

uj −uj 0

 = 0.

This identity can be seen as an algebraic equation on u ∈ RN×A and thus defines a closed

zero-measure subset of RN×A. Taking the complement of the union of these subsets over

all distinct pairs of (S,IC) and (S ′ , IC′) and agents j, we get an open set of full measure

such that for any u from this set, no distinct extreme points can result in the same utility

for any agent j.
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We now prove Proposition 1. Recall that, linear objectives in the payoff space have a

particularly simple structure:

Wα(µ) =
∑
i∈N

αi
∑
s∈S

ui(s)µ(s),

where αi are the weights assigned to each agent’s utility. In other words, any linear objec-

tive is a weighted welfare function. The case where α1 = · · · = αn = 1 corresponds to the

standard utilitarian welfare, which is the sum of the agents’ utilities.

Proof of Proposition 1. To deduce this result from Corollary 2, we need to show that util-

itarian welfare W is a non-degenerate objective over the polytope of CE payoff profiles

UCE(Γ ) for a generic game. Consider a generic game Γ with utilities ui . For generic weights

α, the objective Wα is non-degenerate. Consider a new game Γ ′ with u′i = αiui . In Γ ′, the

utilitarian welfare W ′ is equal to Wα in Γ . Since Wα is non-degenerate by assumption, and

the set of correlated equilibria is invariant to positive affine transformations of individual

utilities, the utilitarian welfare function is non-degenerate in the generic game Γ ′.

1.4 Proofs Pertaining to Symmetric Games

We start with some preliminary analysis necessary for the proof of Theorem 2.

Let T = {1, . . . ,m} denote a finite set. We will need the following definition generalizing

the notion of an exchangeable distribution. For a subgroup P of permutations of {1, . . . ,n},
a distribution µ over an n-fold product space T n ≡ T × . . . × T is called P -exchangeable if

for any element (t1, . . . , tn) ∈ T n and any permutation π ∈ P , we have

µ(t1, . . . , tn) = µ(tπ(1), . . . , tπ(n)).

The classical notion of exchangeability corresponds to the case when P is the set of all

permutations.

The set of P -exchangeable distributions is a convex set. Furthermore, any P -symmetric

correlated equilibrium is a P -exchangeable distribution.

Lemma 6. If µ is an extreme point of the set of symmetric P -correlated equilibria with transitive
P , then µ can be represented as a convex combination of at most

m(m− 1) + 1

extreme P -exchangeable distributions, where m is the number of actions of each agent.

The set of exchangeable distributions is universal in that it only depends on the number

of agents and actions in the game, but not on their associated payoffs.
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Proof of Lemma 6. To check that a P -exchangeable distribution is a correlated equilibrium

of a P -symmetric game, it suffices to check the incentive constraints for a single agent since

any two agents are equivalent up to relabeling determined by a permutation within P .

For a single agent, there are m(m − 1) incentive constraints. The result then follows from

Winkler (1988).

Extreme points of P -exchangeable distributions Exchangeable distributions are often

considered on an infinite product space TZ. In this case, de Finetti’s Theorem translates

exchangeable observations to conditionally independent observations relative to some la-

tent variable. Extreme points are then i.i.d. distributions. For a finite product space, the

set of extreme exchangeable distributions has a different structure established by Diaconis

and Freedman (1980). We generalize their result to the case of P -exchangeability.

Lemma 7. Denote by δ(t1,...,tn) the distribution that places unit mass on the profile (t1, . . . , tn).
Any distribution µ over T n is an extreme point of P -exchangeable distributions if and only if it
can be represented as

µ =
1
|P |

∑
π∈P

δ(tπ(1),...,tπ(n)). (19)

Proof. It is immediate that any such µ is an extreme point. We show that such distributions

cover the set of extreme points. It suffices to demonstrate that any P -symmetric τ is in the

convex hull of such distributions. To see that, we can write τ =
∑

(t1,...,tn) τ(t1, . . . , tn) ·δ(t1,...,tn)

and then average both sides of this identity over all π ∈ P .

Extreme exchangeable distributions may have different supports because not all terms

in the sum in (19) are distinct. For example, suppose n = 3, T = {a,b}, and P = S3.

Then, there are four extreme exchangeable distributions δ(a,a,a),
1
3

(
δ(a,a,b) + δ(a,b,a) + δ(b,a,a)

)
,

1
3

(
δ(a,b,b) + δ(b,a,b) + δ(b,b,a)

)
, and δ(b,b,b).

Let ∆m,n be the discrete simplex of dimension m and size n, which consists of all non-

negative integer vectors (k1, . . . , km) such that k1 + . . . + km = n. For each t = (t1, . . . , tn),

we can assign the frequency vector f (t) in ∆m,n that counts the number of times each

j ∈ T = {1, . . . ,m} appears in t. That is,

f (t)j = |{i : ti = j}|.

Since an extreme exchangeable distribution µ is obtained via symmetrization of some t =

(t1, . . . , tn), we define a frequency vector as the frequency vector f (t).
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The total number of different frequency vectors is given by:15

|∆m,n| =
(
n+m− 1
m− 1

)
. (20)

For P = Sn, there is a natural bijection between extreme exchangeable distributions and

∆m,n and thus equality (20) provides the total number of extreme exchangeable distribu-

tions. For a general P , the number of extreme exchangeable distributions is bounded from

below by |∆m,n|.

Lemma 8. Consider a product distribution τ = ν × . . . × ν over T n with full support. If τ is
represented as a mixture of extreme P -exchangeable distributions, then at least(

n+m− 1
m− 1

)
of them must enter the mixture with a positive weight.

Proof of Lemma 8. Sample t = (t1, . . . , tn) from τ . Consider the frequency vector f (t). Since

τ is a full-support product distribution, this random vector takes all the values in ∆m,n

with positive probability. Now, suppose that τ is represented as a mixture of extreme

P -exchangeable distributions so that all distributions corresponding to a particular fre-

quency vector f0 enter the mixture with zero weight. Thus f0 must be absent from real-

izations of f (t). This contradiction implies that for each element of ∆m,n, there must be an

extreme exchangeable distribution with a positive weight. Thus, the total number of such

distributions is at least |∆m,n| given by (20).

Proof of Theorem 2. Regularity of ν allows us to drop actions that are assigned zero weight.

So, we can assume, without loss of generality, that each of the m actions of each agent has

positive weight. By Lemma 6, the set of P -symmetric correlated equilibria is a convex

hull of at most m(m− 1) + 1 extreme P -exchangeable distributions. On the other hand, by

Lemma 8, we need at least
(n+m−1
m−1

)
extreme P -exchangeable distributions to represent ν as

a mixture.

Thus, ν is not an extreme point of the set of P -symmetric equilibria if(
n+m− 1
m− 1

)
> m(m− 1) + 1. (21)

Consider the case of n ≥ 3 and m ≥ 2 and show that such Nash equilibria cannot be

extreme. We need to demonstrate that (21) is satisfied for any such n and m. The left-hand
15This can be derived by what is often referred to as the Stars and Bars Lemma in combinatorics. Namely,

one can think of n items to be split into m separate buckets. If the items are thought of as stars on a line,
the buckets can be represented by m− 1 bars that are interspersed among the stars and partition them into m
subsets. Our derivation is then equivalent to identifying the number of choices of these m− 1 locations out of
n+m− 1 possibilities.
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side is monotone-increasing in n, and thus, it is enough to consider the case of n = 3. We

obtain(
m+ 2
m− 1

)
> m(m− 1) + 1,

or, equivalently,

(m+ 2)(m+ 1)m
6

> m(m− 1) + 1.

Elementary computations show that this inequality holds for all m ≥ 2.

Form = 1 and any n, the Nash equilibrium is pure and is thus an extreme point. Indeed,

it maximizes the expected value of an objective that equals 1 on the corresponding action

profile and 0 otherwise.

For n = 2, any regular Nash equilibrium is an extreme point within the set of all corre-

lated equilibria by Theorem 1 and is thus necessarily an extreme point of the smaller set

of P -symmetric correlated equilibria.

Proof of Proposition 2. For P = Sn, extreme exchangeable distributions from Lemma 7 can

be described via urns as the proposition claims. Indeed, µ of the form (19) corresponds to

an urn with n balls marked with elements of A and a random draw without replacement.

Combining this observation with Lemma 6, we obtain the proposition’s result.

1.5 Proofs Pertaining to Bayesian Correlated Equilibria

Proof of Proposition 3. Consider a game Γ with incomplete information and a pure Bayesian

Nash equilibrium ψ that assigns a single realization a = (a1, . . . , an) for each realization of

(θ,t). Accordingly, it is an extreme point of the set of all distributions ∆(A ×Θ × T ) that

have marginal π on Θ ×T . Since the set of BCEs is a subset of this set of distributions, ψ is

an extreme BCE.

Now consider a mixed Bayesian Nash equilibrium ψ, where agent i randomizes her

actions according to σi : Ti → ∆(Ai). To show that it cannot be an extreme point of the

BCE set, we find an appropriate generalization of the bounds from Lemmas 1 and 2 to the

incomplete information setting.

We first extend Lemma 1. Since genericity implies that π has full support, we conclude

that the support of ψ contains |Θ| ·
∏
i∈N

(∑
ti∈Ti |suppσi(ti)|

)
elements.

By the genericity of Γ , the incentive constraints outside of the support can be assumed

to be inactive: an agent i of type ti would be strictly worse by playing ai outside of
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suppσi(ti).16 Thus, it is enough to demonstrate that ψ is not an extreme point in an aux-

iliary game where agent i of type ti only has actions from σi(ti) available. Such an agent

faces |σi(ti)| · (|σi(ti)| − 1) incentive constraints in a correlated equilibrium. Additionally, ψ

satisfies the requirement that its marginal on Θ×T equals π which amounts to |Θ|
∏
i |Ti |−1

constraints. By Winkler (1988)’s theorem, for ψ to be an extreme point, we must have

|Θ| ·
∏
i∈N

∑
ti∈Ti

|suppσi(ti)|

 ≤ |Θ|∏
i∈N
|Ti |+

∑
i∈N

∑
ti∈Ti

|σi(ti)| · (|σi(ti)| − 1). (22)

Denote

mi = 1 +
∑
ti∈Ti

(|suppσi(ti)| − 1) ,

which can be seen as the effective number of actions over which i randomizes if we factor

out randomness in ti . By the convexity of f (x) = x(x − 1), we can only increase the right-

hand side of (22) by replacing
∑
ti∈Ti |σi(ti)| · (|σi(ti)| − 1) with mi(mi − 1). We obtain

|Θ| ·
∏
i∈N

(mi + (|Ti | − 1)) ≤ |Θ| ·
∏
i∈N
|Ti |+

∑
i∈N

mi(mi − 1), (23)

which is a necessary condition for ψ to be an extreme BCE.

We now complement bound (23) with the one showing that no mi can be much big-

ger than the other. Indeed, for σi to be an equilibrium strategy of agent i, she must be

indifferent between all the actions from suppσ (ti) conditional on each ti ∈ Ti . Treating

these indifferences as algebraic equations on strategies of other agents (σj )j∈N\{i}, we ob-

tain
∑
ti∈Ti (|suppσ (ti)| − 1) = mi − 1 conditions on

∑
j,i(mj − 1) variables. Since ui can be

chosen arbitrarily as a function of (ai , ti), all these conditions are independent in a generic

game and thus can only be satisfied if the number of conditions does not exceed the num-

ber of variables. We conclude that the following inequality must hold for all agents i:

mi − 1 ≤
∑
j,i

(mj − 1), (24)

generalizing Lemma 2.

Combining (23) and (24), we obtain that for ψ to be an extreme point of BCE, the

16Indeed, if there is a tie, we can lower ui arbitrarily outside of the support, which preserves the equilibrium.
Therefore, there are no ties on a dense set of games. Its complement is a closed nowhere dense algebraic set
and so has zero measure. We conclude that the set itself is open and everywhere dense. Thus, such games are
generic.
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following system must have an integer solution (m1, . . . ,mn) with mi ≥ 1 for all i: |Θ| ·
∏
i∈N (mi + (|Ti | − 1)) ≤ |Θ| ·

∏
i∈N |Ti |+

∑n
i=1mi · (mi − 1)

mi − 1 ≤
∑
j,i(mj − 1), i = 1, . . . ,n

(25)

Without loss of generality, we assume that m1 ≥ m2 ≥ . . . ≥ mn. For |Θ| = 1 and |Ti | = 1 for

all i, this system matches the one from the proof of Theorem 1.

By a simple induction argument contained in Lemma 9,∏
i∈N

(mi + (|Ti | − 1)) ≥
∏
i∈N

mi +
∏
i∈N
|Ti | − 1

and thus, we obtain a system
∏
i∈N mi ≤ 2 + 1

|Θ|
∑n
i=1mi · (mi − 1)

mi − 1 ≤
∑
j,i(mj − 1), i = 1, . . . ,n

(26)

Note that any solution to this system remains a solution if we plug in |Θ| = 1. From Propo-

sition 5, we know that all such solutions take one of three forms

(m1, . . . ,mn) =


(m,m,1,1, . . . ,1) with m ≥ 1

(2,2,2,1, . . . ,1)

(3,2,2,1, . . . ,1)

(27)

Plugging this back to (26), we conclude that for |Θ| ≥ 2, none of these sequences work,

other than the first one with m = 1.

Now consider the case of |Θ| = 1 and assume that there are at least three agents j such

that |Tj | ≥ 2. Plugging the candidate solutions (27) into the top inequality of (25), one gets

(m+ |T1| − 1)(m+ |T2| − 1) ≤ |T1||T2|+
2
|Tj |
·m(m− 1),

where |Tj | ≥ 2 is the size of the type space of one of the non-randomizing agents. By

decreasing |T1| and |T2| we relax the inequality, but even for |T1| = |T2| = 1, the inequality

can only hold if m = 1. The second and the third candidate solutions in (27) are also easily

ruled out.

Lemma 9. Let n ∈N and xi , yi ∈N, 1 ≤ i ≤ n. Then

n∏
i=1

(xi + yi − 1) ≥
n∏
i=1

xi +
n∏
i=1

yi − 1.

Proof. We proceed by induction on n. For n = 1, the inequality is an equality:

x1 + y1 − 1 = x1 + y1 − 1.
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Assume the claim holds for some n− 1 and deduce it for n. Define

A =
n−1∏
i=1

xi , B =
n−1∏
i=1

yi , P =
n−1∏
i=1

(xi + yi − 1),

so that by the induction hypothesis,

P ≥ A+B− 1.

For n, we have

n∏
i=1

(xi + yi − 1) = P (xn + yn − 1)

and need to show

P (xn + yn − 1) ≥ Axn +Byn − 1.

Since P ≥ A+B− 1, it suffices to prove that

(A+B− 1)(xn + yn − 1) ≥ Axn +Byn − 1.

A straightforward expansion yields

(A+B− 1)(xn + yn − 1) = Axn +Ayn +Bxn +Byn − xn − yn −A−B+ 1.

Thus, it is enough to verify that

(A− 1)yn + (B− 1)xn − (xn + yn)− (A+B) + 2 ≥ 0.

Noting that xn, yn ≥ 1, we have

xn(B− 1) ≥ B− 1 and yn(A− 1) ≥ A− 1,

so that

xn(B− 1) + yn(A− 1) ≥ (B− 1) + (A− 1) = A+B− 2.

Thus, the desired inequality follows.

1.6 Proofs Pertaining to Coarse Correlated Equilibria

Proof of Proposition 4. Consider a Nash equilibrium µ of a game Γ . If µ is pure, it is trivially

an extreme point of CCE(Γ ), as point masses are extreme in ∆(A) and CCE(Γ ) ⊂ ∆(A).

Conversely, suppose µ is an extreme point of CCE(Γ ). The polytope CCE(Γ ) is defined

by n linear incentive constraints within the simplex ∆(A). Thus, by Theorem 2.1 of Winkler
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(1988), any extreme point µ of CCE(Γ ) satisfies

|suppµ| ≤ 1 +n (28)

Now, suppose for the sake of contradiction that µ is a mixed Nash equilibrium with k ≥ 2

agents randomizing. By regularity, the incentive constraints of non-mixing agents are

slack, and so these agents are irrelevant to the question of extremality. Hence, without loss

of generality, we can restrict attention to the game involving only k randomizing agents.

Since µ is a Nash equilibrium, its support must contain at least 2k action profiles. However,

from (28), we have |suppµ| ≤ 1 + k. This leads to the inequality 2k ≤ 1 + k, which is false

for all k ≥ 2. Thus, µ cannot be a mixed Nash equilibrium, and we conclude that µ must

be pure.
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