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Abstract. This paper studies the formation of peer groups entailing the joint

production of public goods. In our model agents choose their peers and have to pay a

connection cost for each member added to the group. After groups are formed, each agent

selects a public project to make a costly contribution to, and all members of the group

experience the benefits of these contributions. Since agents differ in how much they value

one project relative to the other, the group’s preferences affect the generated profile of

public goods. We characterize mutually optimal groups, groups that are optimal for all

their members. When contribution costs are low relative to connection costs, mutually

optimal groups must be suffi ciently homogeneous. As contribution costs increase relative

to connection costs, agents desire more connections, which in turn raises the risk of free

riding. Extreme peers are then more appealing, since they are more willing to contribute,

and polarization arises.
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1. Introduction

Many social interactions entail the joint production of public goods. Clubs, associations, or on-

line groups have members jointly initiate and organize projects and events. For instance, as of

2015, there are more than 22 million Meetup members selecting themselves into over 207, 000

social groups across 181 countries. These groups revolve around commonly planned meet-

ings and volunteering activities.1 Student associations congregate around the organization of

campus events or public service, such as women’s career networking, community outreach,

sexual harassment helplines, etc. Similarly, local communities in geographical neighborhoods

are often the driving force behind activities such as sport tournaments or music festivals, as

well as tasks such as security, gardening, cleaning, etc. and computer programming forums

often entail users contributing to the development or explanation of software.2 Furthermore,

most groups that are focused on a particular activity or hobby (such as biking clubs, food

clubs, and so on) entail contributions to the activity itself as well as to the social interactions

of the group.3

Three elements are central in these types of social interactions. First, individuals are often

in the position to freely choose whom to form a community with. While this is particularly

true in environments like online platforms, in which new technologies effectively eliminate

geographical boundaries, it also applies to local groups —individuals can ex-ante choose which

student association to join within their campus, which neighborhood to live in, etc. Second,

contribution to the production of public goods is costly. Therefore, strategic considerations,

namely the possibility of free riding, come into play. Third, connecting to other individuals

often entails a cost. The marginal cost of an additional connection can display different

dependencies on the group’s size. It could be increasing in group size if groups face congestion

1There are approximately 550, 000 monthly Meetup events. Over 3, 000 of the groups focus
explicitly on public goods in the form of volunteering, see http://www.meetup.com/about/ and
http://volunteering.meetup.com/

2Indeed, many open-source programming resources have substantial voluntary contributions from individ-
uals. A prime example is the development of Linux. For instance, when looking at contributors to the Linux
Kernel since version 2.6.36, approximately 25% of contributions were done by developers who were not paid
for their work, see the "Linux Kernel Development Report," published in 2012 by the Linux Foundation.

3In fact, such activities and hobbies often have several aspects individuals can contribute to. For instance,
in a biking club, contributions can take the form of carrying first-aid kits, participating in a pace line, mapping
new routes, and so on. In a food club, members can contribute to different types of cooking, e.g. baking and
grilling.
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externalities: for example, if a student association grows in size, holding meetings may become

more diffi cult. Other times, adding one connection involves a constant cost, possibly no cost,

up to a fixed capacity: for example, building cooperatives involve fixed membership fees and

are bound by real-estate constraints.

These three elements jointly determine the size and composition of social communities, as

well as their performance in terms of the public goods they ultimately yield. This paper’s goal

is to illustrate how the interplay between public-good production and connection technologies

affects the patterns exhibited by social groups.

We study a model in which agents make costly contributions to two different public projects

or tasks. Each agent’s preferences are characterized by a parameter in [0, 1], measuring how

much she cares about one project relative to the other. For simplicity, we assume that each

individual can make a contribution to at most one project. For example, a university stu-

dent joining an association may have limited time and therefore face a choice of which of the

association’s missions to actively pursue. Before making contributions, agents have the pos-

sibility of forming groups. What defines a peer group is that all its members benefit from the

contributions made within the group towards the public projects. In addition, each individual

in a group has to pay a cost to connect with each other member. We assume that overall

connection costs are increasing and convex in the size of the group. We allow agents to select

the number as well as the types of their peers. We consider a group “mutually optimal” if it

is optimal for all of its members.4

In this general setting, when contribution costs are large compared to connection costs or,

equivalently, connection costs are persistently low, agents desire more connections. However,

such expansion introduces the risk of free-riding. Indeed, there is a risk of individuals joining

a group in order to enjoy the contributions of others, without contributing themselves. More

extreme individuals, ones who care about one of the projects far more than the other, have

greater incentives to contribute to that project. Therefore, introducing group polarization

(i.e., including extremists on both tasks) has the benefit of mitigating the free-rider problem

4This notion is in the spirit of the appoach introduced in Baccara and Yariv (2013), with one important
distinction: in Baccara and Yariv (2013) we fix group size, and we allow agents to choose their group’s
composition only. Here the group size is endogenous and agents are allowed to select both the group size and
their peers’types.
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by weakening the incentive constraints pertaining to project contributions. Mutual optimality

requires both types of extremists to desire connections with one another. Polarized groups are

then mutually optimal only if connection costs are low enough. Whenever connection costs are

positive, no free riding can occur in a mutually optimal group —free riders come at a cost but

provide no benefit. It follows that for small but positive connection costs, mutually optimal

groups are formed only by extremists on both dimensions. Each sub-group of extremists

contributes to the dimension it cares most about. Take the example of student associations

and suppose contribution costs are substantial (due to the time commitment they require),

while connection costs are significant but small (especially relevant after the introduction of

electronic messaging platforms). We then expect all members to actively contribute to one

of the missions of the association. Our results also suggest extremist members , ones very

dedicated to the mission they contribute to, though not necessarily to other missions pursued

by the association.

Since the driving force behind the emergence of mutually optimal polarization is the free-

rider problem, reducing contribution costs plays a similar role to increasing connection costs:

they both alleviate the potential for free riding. Indeed, when contribution costs are small

compared to connection costs, the number of individuals that agents desire to connect to is

relatively small. The resulting groups are then not at risk of free riding. In this case, mutual

optimality entails agents agreeing on how large the group should be, and on how to distribute

optimally contributions across the two tasks. Therefore, mutually optimal groups are fairly

homogenous. They can, however, entail both diversification of projects or specialization:

if members are moderate, the group generates contributions to both projects; if members

are extremists who all care far more about one of the projects, the group specializes and

contributions are all made toward that project.

When contribution costs are relatively low, mutually optimal groups may also entail a mild

degree of polarization. Such groups include two subsets of agents. Each subgroup cares more

about a different task and contributes to that task. Nonetheless, agents in both subsets are

similar enough so that they agree on the group’s size.

In the student association example, suppose contribution costs are not too high (since the

activities the association pursues are not very time demanding to organize), but connection
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costs are substantial (say, when considering associations formed prior to the introduction of

the Internet). In this case, when we see non-trivial contributions to several different missions,

our results indicate that the group is fairly homogeneous and contains moderate members,

individuals who care about all of the missions supported under the umbrella of the association.

Our results yield a set of predictions on the types of agents that cannot be part of any

non-trivial mutually optimal group, one with at least two members. If contribution costs are

large compared to connection costs, our analysis implies that non-extreme individuals cannot

be part of a mutually optimal group when connection costs are positive. Indeed, in this case

moderate individuals would free ride on others were they to join a group. Consequently, no

agent is willing to pay a positive connection cost to associate with them. On the other hand,

when contribution costs are small compared to connection costs, the incentives of moderate

individuals to contribute in mutually optimal groups can be substantial. In this case, the

participation in mutually optimal groups is determined by the magnitude of connection costs.

We show that for suffi ciently small connection costs, individuals of all types are part of non-

trivial mutually optimal groups. For high connection costs, some individuals may prefer to

avoid any prohibitively costly association with others. Therefore, the only mutually optimal

groups such individuals can be part of are singletons.

We demonstrate the implications of two special cases of connection costs. First, we consider

step-function connection costs, which are zero up to a fixed group size, and very high for larger

groups. For such costs, there is a set of moderate taste parameters such that individuals with

those tastes can only be part of mutually optimal groups that are either suffi ciently small (in

which all members have incentives to contribute) or very large (in which the moderate agents

free ride on the extremists in the group, who make all contributions). Second, we consider

linear connection costs. For these costs, we show that for a fixed level of contribution costs, the

homogeneous groups arising for high connection costs are smaller than the polarized groups

arising for low connection costs. That is, there is a positive correlation between group size

and heterogeneity.

Our results provide a taxonomy for mapping different varieties of technological improve-

ments into changes in socialization patterns. A decrease in the contribution cost may occur

with the development of a new technology that makes public good production more effi cient.
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Thus, our results suggest that as public good technologies improve (while connection costs

stay constant), mutually optimal groups exhibit more similarity in tastes. For example, in

residential neighborhoods, which are characterized by fixed capacity constraints, as public

project contributions become cheaper (e.g., communication technologies make event organi-

zation more effi cient), residents would be expected to display increasingly similar preferences.

On the other hand, as connection technologies improve and congestion externalities decrease

(while contribution costs stay constant) the free-rider problem becomes more severe and more

polarization tends to emerge in mutually optimal groups. Naturally, some new technologies

tend to lower both connection and contribution costs. In the academic context, while E-mail

or Skype have significantly reduced connection costs, the introduction of search engines has

cut back on contribution costs. Our analysis provides a framework to assess which force is

the dominant one in affecting the structure of mutually optimal groups.5

Related Literature. This paper has some elements in common with several literature

strands. First, there is a vast literature in economics studying different aspects of public

goods interactions (see, e.g., Ledyard (1995) for a review). This literature has not looked at

how the link between the ex-ante choice of peers and the ex-post public goods production

influences socialization patterns.

A rich literature in urban economics, descending from Tiebout (1956), addresses the link

between neighborhood sorting and public goods. This line of work has addressed, for example,

the effect of improvements in public goods’provision on communities’density and diversity,

the link between the types of public goods chosen to be offered and community sorting, and

so on.6 In this literature, however, the provision of public goods is either exogenous, or set at

the effi cient level given the preferences represented in the group. In addition, the concept of

mutual optimality used is typically a myopic one, in which each individual does not anticipate

5Rosenblat and Mobius (2004) studied coauthored papers in top economics journals between the years 1969-
1999. They showed how the introduction of the Internet in the early 1990’s is linked with a 20% decrease in
the realization of projects with a dissimilar coauthor. These would suggest that the reduction of contribution
costs was dominant with respect to that on connection costs. See also Sproull and Kiesler (1991) for the
impacts of new technologies on social connections.

6For example, it has been empirically documented how improvements in public goods tend to increase
the size of a community (Banzhaf and Walsh, 2008). See also Rhode and Strumpf (2003) and Sethi and
Somanathan (2004).
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changes in the public good offerings when contemplating a deviation to a different community.

As we consider public goods directly contributed by the members of the community, we take

a non-cooperative approach to public goods’ provision. Also, we assume that individuals

anticipate the equilibrium public good provision that will arise upon their deviation to a

different group.7

Several recent papers address preferences for similarity. Currarini, Jackson, and Pin (2009)

assume homophilous behavior and study its consequences in a friendship formation model.

Peski (2008) derives an endogenous preference for similarity by assuming some properties

of preferences on friendship and the possibility of confusing people who are similar to each

other. Kets and Sandroni (2015a,b) suggest theory of mind as a mechanism driving similar

individuals to predict better each other’s actions. While similarity within groups may therefore

be useful for achieving coordination at high rates, it does not always yield the most effi cient

coordination. In particular, both diverse and homogenous groups can be optimal, depending

on the payoffenvironment. Finally, in Baccara and Yariv (2013), we consider a model in which

agents, who differ in howmuch they value one task relative to another, choose their peers before

making free contributions to public tasks. We show that when contributions are free, mutually

optimal groups must be suffi ciently homogeneous. The current paper differs from Baccara

and Yariv (2013) in its main focus: it aims to capture applications such as communities and

neighborhoods in which individuals volunteer costly contributions to public projects. The

difference in focus translates into two important differences between the underlying models

of the two papers. First, in the current paper contributions to public projects are costly

rather than free, thereby generating the potential for free riding. Second, whereas in Baccara

and Yariv (2013) group size is always exogenously given, here we allow agents to select any

number of peers they desire. This allows us to derive predictions on the size of mutually

optimal communities, and on the correlation between size and other group features such as

taste heterogeneity.

7Robbett (2013, 2014) provides observations from an array of experiments that allow individuals with
heterogenous preferences to dynamically move between communities in which a public goods game is later
played, considering different institutions that determine the level and enforcement of individual contributions.
She illustrates how chronic movements between communities may persist, that high connection fees in a
location attract individuals of a particular type, and that voting on public goods provision helps in terms of
utilitarian effi ciency.
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The underlying idea that the group of players in a strategic situation is, in itself, endoge-

nous motivates some of the work on club formation (see, e.g., Ellickson, Grodal, Scotchmer,

and Zame (1999)). The basic model of that literature assumes some form of externality across

individuals and studies endogenous group formation (often in a general equilibrium setup)

in the presence of these externalities. Our paper, by addressing group formation and strate-

gic interaction at the same time, provides a foundation for a class of externalities of this

sort. Furthermore, our analysis allows us to characterize the properties (such as homogeneity,

polarization, etc.) of the endogenous groups.

Finally, the idea that agents’preferences may alleviate incentive constraints in collective

settings with costly contributions appears in some recent mechanism design literature. Indeed,

Che and Kartik (2008) and Gerardi and Yariv (2008) illustrate how a designer may optimally

choose a committee of experts that are more extreme than she in order to achieve more

information revelation and higher quality decisions.

2. The Model

Consider two tasks, A and B. A group consists of multiple agents, and contributions to

tasks are public within each group. For instance, groups can stand for student associations,

neighborhood committees, a collection of friends, etc. In these sorts of groups, members can

contribute in different ways. In student associations, members can contribute to university

social events or community outreach; in neighborhood committees, members can organize

church activities, social events, etc.; in interactions with friends, individuals can get informed

on different joint interests such as new movies or new restaurants.

Specifically, each agent in a group needs to decide which task to contribute to or whether

to forego any contribution. That is, each agent chooses an action v ∈ {A,B,∅}. There are
two production functions, fA and fB, that map contributions into utilities derived from either

task. Suppose that fA and fB are defined over R and are strictly increasing and concave.

Agents differ in how much they care about either task. Thus, the general utility for an agent

of taste t ∈ [0, 1] who is in a group of n agents, kA ≤ n of whom contribute to task A and

kB ≤ n− kA of whom contribute to task B, is given by:

U(t, kA, kB) ≡ tfA(kA) + (1− t)fB(kB).
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The idea behind the assumption that each agent can make at most one contribution is

that each agent has a limited budget of resources to allocate to public projects.8 We assume

that contributing to tasks is costly: making a contribution to either task comes at a cost of

c ≥ 0. The cost c is strictly positive in any context in which contributions require effort. An

agent who decides to forego contributions does not incur any cost.

We assume that in any group of size n ≥ 1 each agent pays a connection cost D(n). We

assume that D(1) = 0, so that an agent incurs no connection costs when remaining alone.

The marginal cost of connecting to an additional individual will play an important role in our

analysis. We denote this marginal cost by d(1) ≡ 0, d(n) ≡ D(n)−D(n− 1) ≥ 0 for all n ≥ 2

and assume d(n) is (weakly) increasing for all n. That is, connection costs are increasing and

convex in the size of the group one is a member of. For presentation simplicity, we will assume

that d(n) 6= c for all n.9 ,10

For any group of size n composed of agents with tastes (t1, ..., tn) , expected payoffs are

ultimately identified by the profile of chosen tasks (x1, ..., xn), where xi ∈ {A,B,∅} is the
action chosen by agent i. We call the induced game the task-selection game. As a tie-

breaking rule, we assume that an agent who is indifferent between tasks A and B makes an A-

contribution, and an agent who is indifferent between contributing and not contributing makes

a contribution (this simplifies the exposition, but is not crucial for our analysis). We focus

on equilibria in pure strategies. As it turns out, given our tie-breaking rule, pure equilibria

exist. Throughout the paper, we assume that the most (utilitarian) effi cient such equilibrium

is selected. As it turns out, there is a simple characterization of an effi cient equilibrium.

Lemma 1 (Existence) For any group of n agents with tastes t1 ≥ t2 ≥ ... ≥ tn, there exists

τA ∈ {0, ..., n} and τB ∈ {1, ..., n+ 1} , τB > τA, such that all agents i ≤ τA making

an A-contribution, all agents i ≥ τB making a B-contribution, and all other agents not

making any contribution, constitutes an effi cient Nash equilibrium of the task-selection

8The analysis of the paper does not change qualitatively if we assume that each agent can make any fixed
number of contributions h ≥ 1.

9This assumption is not crucial for the analysis, but does rule out knife-edge cases in which an agent is
indifferent between adding an additional member to her group and not doing so when that additional member
would make a contribution instead of the agent herself.
10Several important elements distinguish this model from the one presented in Baccara and Yariv (2013).

Most notably, in Baccara and Yariv (2013) contributions are free (c = 0) and, for the most part, group size is
fixed, corresponding to the step-function connection costs case addressed later in Sections 4 and 5.
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game. Furthermore, the volume of A- and B-contributions corresponding to an effi cient

Nash equilibrium outcome is uniquely determined.

Given a group of n agents with tastes t1 ≥ t2 ≥ ... ≥ tn, Lemma 1 allows us to concentrate

on equilibria (x1, ..., xn) identified by two thresholds τA ∈ {0, ..., n} and τB ∈ {1, ..., n+ 1}
such that x1 = ... = xτA = A and xτB = ... = xn = B (in particular, if τA = n, all agents

choose an A-contribution, and if τB = 1, all agents choose a B-contribution). In words,

we focus on equilibria in which any agent choosing task A cares more about that task than

does any agent not choosing any contribution or choosing task B. We call such equilibria

ordered. With our tie-breaking rule, Lemma 1 guarantees that ordered equilibria are the most

utilitarian effi cient among Nash equilibria of the task-selection game (though there may be

other equally effi cient equilibria).

In the proof of Lemma 1 we show that equilibrium outcomes in a group of size n are

ranked according to the volume of contributions made on each task. That is, whenever more

A-contributions are made in one equilibrium relative to another, more B-contributions will be

made as well in that former equilibrium. As a consequence, all agents agree that the effi cient

equilibrium is the most preferred.

It is important to note that task-selection equilibria may involve agents not making contri-

butions. The fact that contributions are costly introduces a free-rider problem. Indeed, in any

equilibrium in which τB > τA + 1, the agents i, τA < i < τB, do not have enough incentives

to make contributions to either task. Of course, if c = 0, the free-rider problem disappears

and all agents contribute in equilibrium (i.e., τB = τA + 1).

We also note that as long as any group of n agents has distinct tastes t1 > t2 > ... > tn,

there is a unique ordered equilibrium. However, if some participants’tastes coincide, there

may be multiple equilibria. This multiplicity takes a simple form —suppose that tj = tj+1 =

... = tj+k for some j, k. If only k′ < k agents with taste tj are to contribute in an ordered

equilibrium, their identity is not pinned down. In this case, any selection of k′ of the k agents

would correspond to an ordered equilibrium. In particular, while the distribution of ordered

equilibrium payoffs is determined uniquely, individual payoffs could vary across equilibria.
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3. Mutually Optimal Groups

Let us consider an extended game composed of two stages. First, each agent of taste t ∈ [0, 1]

can select the size as well as the composition of her peer group.11 Second, the task-selection

game described above is played within the chosen group. As mentioned, we assume that an

ordered equilibrium arises in this stage.

Lemma 1 guarantees that the number of A- and B-contributions are determined uniquely

in any ordered equilibrium of the task-selection game, but there might still be multiple such

ordered equilibria. In principle, when contribution costs are high relative to connection costs,

an extremist agent who contributes in one group might prefer a larger group of identical

extremists, one of size exceeding the maximal possible number of contributions, in the hopes

of having extremists other than herself contribute. In order to circumvent such behavior that

is due to a perceived positive resolution of coordinated contributions, we assume that agents

evaluate groups they do not belong to based on the worst possible payoffthey can obtain in any

equilibrium of the task-selection stage played by the group. This is tantamount to individuals

being pessimistic about the solution to any coordination problem involving a subset of agents

contributing.

Formally, for any group with taste profile t = (t1, ..., tn), let ui(t) denote the minimal

possible payoffagent i receives in any equilibrium, not necessarily ordered, of the task-selection

game. We define mutual optimality in the first stage of the extended game as follows.

Definition (Mutually Optimal Group) A group of n agents is mutually optimal if there

exists an ordered equilibrium in the task-selection game with utility profile (u1, ..., un)

such that for any agent i, for any other group with taste profile t′ = (t′1, ..., t
′
n′) that

includes i, ui ≥ ui(t
′).

In a mutually optimal group, each agent maximizes her expected utility, foreseeing the

equilibrium played in the task-selection game that ensues.12 In relation to agents’pessimistic

11This amounts to assuming that the pool of potential agents to choose from is infinite and that any
combination of tastes is feasible.
12Our notion of mutual optimality here resembles that of stability in Baccara and Yariv (2013). We thank

an anonymous referee for inspiring this label in order to distinguish our solution concept from that used by the
cooperative game theory literature. Indeed, notice that cooperative solutions usually restrict agents’options
by considering only feasible deviations. In our case, this would translate to agents considering the menu of
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beliefs in groups other than their own, two remarks are in order. First, this restriction on

beliefs assures potential deviations are as unappealing as reasonably possible and therefore

makes mutual optimality easier to achieve. Even with this seemingly weak restriction, we will

show that mutually optimal groups exhibit very particular features. Second, our analysis will

show that requiring only extreme agents, those who care suffi ciently much about one of the

two tasks, rather than all agents in a group, to hold such pessimistic beliefs would generate

an identical characterization to the one presented here.13

This notion of mutual optimality is a natural equilibrium condition for the group-selection

stage in an environment that allows individuals in large populations to connect in an uncon-

strained way.14 For example, university students have a wide choice of which association to

join, or to form together with their peers. A student association is then mutually optimal if

all of its active members are satisfied with the set of other participants.

The goal of the rest of this section is to analyze some properties of group composition

entailed by the mutual optimality notion introduced above. The following definitions are

useful for our analysis.

First, denote by mA (n; t) the optimal number of A-contributions an agent with taste

groups that would admit them as members. The notion of mutual optimality does not require us to take a
stand on how groups determine whether to admit a new member. In particular, our mutually optimal groups
would be “stable”under any protocol specifying which groups would be willing to add which types of agents.
13In fact, all our results would remain qualitatively similar were we to assume that agents have more

optimistic beliefs, predicting an equilibrium will be selected uniformly at random from the set of all equilibria
in the task-selection game. That way, coordination on whom should contribute is resolved by randomization.
That is, after committing to their group, if there are m individuals in a group with tastes in some interval
such that each would be willing to contribute up to the k-th unit corresponding to one task, where k ≤ m,
then ultimately k out of the m are chosen randomly to contribute. We maintain our assumption regarding
the agents’pessimism since it simplifies the description of our results (and return to the one modification the
above alternative assumption would imply in Footnote 17).
14In the current paper we do not consider population-wide equilibria. However, one could certainly contem-

plate such a notion. Suppose a population is characterized by a distribution of tastes. One way to think of a
population-equilibrium is to consider partitions of the population into groups such that each individual prefers
her own group to joining any other element of the partition. Whenever the population can be partitioned
into mutually optimal groups, an equilibrium exists. In that respect, our results suggest for which population
distributions the existence of an equilibrium as such is guaranteed. Another way to think of a population-
equilibrium that circumvents any existence issues is to consider partitions of the population into groups such
that each group is either mutually optimal or a singleton. In this case, a population-equilibrium in which all
individuals remain as singletons always exists. Our analysis suggests when other equilibria might arise, ones
with non-trivial mutually optimal groups. We also describe the features of such groups as a function of the
underlying characteristics of the environment.
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parameter t would choose out of a total of n available contributions. That is, given t ∈ [0, 1],

mA(n; t) is the maximal integer h ≤ n such that

U(t, h, n− h) ≥ U(t, h− 1, n− h+ 1) (1)

is satisfied.15 If (1) is not satisfied for any h, we define mA(n; t) = 0. Let mB(n; t) ≡ n −
mA(n; t).

Absent contribution costs, were groups fixed at a size of n, mutually optimal groups would

be comprised of n individuals who all agree on the allocation of contributions to tasks. That

is, mutually optimal groups would take the form of {i1, ..., in}, where ij is of type tj such that
mA(n; tl) = mA(n; tk) for all l, k = 1, .., n. In fact, Baccara and Yariv (2013) focuses precisely

on this case and illustrates that a group is mutually optimal if and only if all taste parameters

in the group belong to the same element of a partition {T nk }nk=0 of the interval [0, 1]. Indeed,

any element T nk in the partition includes all taste parameters of agents who agree on the

optimal allocation of n contributions across the two dimensions. This benchmark case ends

up playing a role in the general characterization of mutually optimal groups we provide below.

Next, for x = A,B, and for any s > 0, let kx(s; t) denote the maximal number of x-

contributions made in a group for which an agent of taste t is willing to acquire an x-

contribution at a cost s. In particular, kx(s; t) is the maximal number of x-contributions,

each costing s, an agent of taste t would be willing to make were she acting on her own and

able to make more than one contribution. Alternatively, kx(s; t) − 1 is the maximal number

of individuals the agent would be willing to connect with at a cost s when she, together with

these individuals, make an x-contribution. Formally, for any s > 0, kA(s; t) is the maximal

integer h such that, no matter how many w B-contributions are acquired,

U(t, h, w)− U(t, h− 1, w) = t [fA(h)− fA(h− 1)] ≥ s. (2)

Similarly, for any s > 0, kB(s; t) is defined as the maximal integer h such that, no matter how

15Under our assumptions on fA and fB , if inequality (1) is satisfied for h, it is satisfied for any h′ < h.
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many w A-contributions are made,

U(t, w, h)− U(t, w, h− 1) = (1− t) [fB(h)− fB(h− 1)] ≥ s. (3)

When s = 0, we denote kA(0; t) = kB(0; t) =∞, corresponding to each agent’s willingness to
acquire a free contribution regardless of the number of contributions already available. For any

t ∈ [0, 1], we define k (s; t) ≡ kA(s; t)+kB(s; t) as the total attainable number of contributions

at a cost s for an agent of taste t. At different points of the analysis, depending on whether

agents consider contributions made by themselves or by other group members, s will stand

for either the contribution cost c, or a connection cost d(l) for some l ≥ 1.

Next, let kAmax(s) be the maximal attainable number of A-contributions at a cost s that

corresponds to agents with the most extreme taste parameter t = 1. That is, kAmax(s) ≡
kA(s; 1). Analogously, kBmax(s) ≡ kB(s; 0). Note that for any s ≥ 0, kA(s; t) is increasing in t

and kB(s; t) is decreasing in t. Taking s = c, kAmax(c) and k
B
max(c) are the maximal number of

A- and B-contributions that can be expected to be made, respectively, in any equilibrium of

the task-selection game.

Finally, let an A-extremist be an agent of taste t such that kA(c; t) = kAmax(c). In words,

A-extremists are agents who are willing to make the maximal number of A-contributions.

Likewise, B-extremists are agents of taste t such that kB(c; t) = kBmax(c). It is easy to see

that A- and B-extremists are agents with “suffi ciently extreme”tastes to be willing to make

the maximal possible number of contributions on the task they care about, and their tastes

lie in two intervals of the form [t, 1] and
[
0, t
]
, respectively.

Our goal is to analyze the properties of mutually optimal groups for general connection

costs D(·). First of all, we note the existence of mutually optimal groups:

Lemma 2 (Existence of Mutually Optimal Groups) For any production functions, con-

tribution cost c, and connection costs D(·), mutually optimal groups exist. That is, there
exist t1, ..., tñ ∈ [0, 1] such that the group composed of ñ individuals with taste profile

(t1, ..., tñ) is mutually optimal.

To see that mutually optimal groups always exist, consider for example a group of iden-

tical individuals of taste t = 1, where members are added up to the point in which, by
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introducing one additional member, either that member does not have incentives to make an

A-contribution any longer, or does have incentives to contribute, but the marginal utility from

her contribution is exceeded by the connection cost required to add her to the group. This

group would be finite as long as c > 0 or d(n) > 0 for some n and infinite otherwise. It is easy

to see that it is mutually optimal. A similar mutually optimal group can be constructed by

considering identical individuals of taste t = 0.When contribution costs and connection costs

are low, non-trivial mutually optimal groups exist. When contribution costs or connection

costs become prohibitively high, the only mutually optimal groups are singletons.

Our goal is to characterize all non-trivial (i.e., containing at least two people) mutually

optimal groups. We show that the structure of mutually optimal groups depends crucially on

the relative size of contribution and connection costs with respect to one another. Denote by

ñ(c) the maximal integer such that d(n) < c.16 If d(n) < c for all n, we denote ñ(c) = ∞.
Therefore, ñ(c) represents a critical size of a group above which connecting to additional

members becomes more costly than contributing.

As c increases, the maximal number of attainable contributions that can conceivably be

made in equilibrium, kAmax(c) + kBmax(c), decreases. Moreover, as c increases, ñ(c) increases as

well. Let c∗ ≡ sup{c | kAmax(c) + kBmax(c) > ñ(c)} and c∗∗ ≡ inf{c | kAmax(c) + kBmax(c) < ñ(c)}.
Therefore, we have:

Lemma 3 (Contribution Costs Thresholds) c∗ and c∗∗ are such that kAmax(c)+kBmax(c) >

ñ(c) for all c ≤ c∗ and kAmax(c) + kBmax(c) < ñ(c) for any c > c∗∗. Moreover, if c∗ 6= c∗∗,

kAmax(c) + kBmax(c) = ñ(c) for any c ∈ (c∗, c∗∗].

The thresholds c∗ and c∗∗ determine the interplay between connection and contribution

costs. If the contribution cost c is above c∗∗, then kAmax(c) + kBmax(c), the maximal volume of

contributions that can be achieved in any group, is strictly lower than ñ(c). Therefore, the

maximal attainable volume of contributions can be achieved before the constraints imposed by

connection costs become binding. The size of mutually optimal groups in this case has to be

smaller than ñ(c). If c is (weakly) below c∗, kAmax(c) + kBmax(c) is above ñ(c). This implies that

when agents consider adding agents to their group to gain more contributions, the constraints

16Recall our assumption that d(n) 6= c for all n. It then follows that d(ñ+ 1) > c.
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imposed by the connection costs will bind before the maximal volume of contributions is

achieved. In this case, the size of mutually optimal groups will be at least ñ(c). Finally,

there could be a region between c∗ and c∗∗, where kAmax(c) + kBmax(c) coincides with ñ(c). In

this region, the constraints associated to connection costs and contribution costs bind for the

same group size.

In what follows, we divide our analysis into the case of high contribution costs (c > c∗∗)

and low contribution costs (c ≤ c∗).

4. High Contribution Costs

In this section we consider high contribution costs c satisfying c ≥ c∗. The main message of

this section is that when contribution costs are high, mutually optimal groups always contain

extremist agents who achieve the maximal attainable contributions on the task they care most

about.

We start by focusing on c > c∗∗, which implies through Lemma 3 that kAmax(c) + kBmax(c) <

ñ(c). The corresponding non-trivial mutually optimal groups are characterized in the following

proposition:

Proposition 1 ( High c —Mutually Optimal Groups) If c > c∗∗, non-trivial mutually

optimal groups take one of the following forms:

1. A polarized group with kAmax(c) A-extremists, each with a taste t satisfying

kB(d
(
kAmax(c) + kBmax(c)

)
; t) ≥ kBmax(c)

and kBmax(c) B-extremists, each with a taste t satisfying

kA(d
(
kAmax(c) + kBmax(c)

)
; t) ≥ kAmax(c).

2. A group with kxmax(c) x-extremists, each with a taste of t satisfying

ky(d(kxmax(c) + 1); t) = 0, y 6= x.
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The first part of Proposition 1 describes mutually optimal groups in which the number

of contributions gathered in the task-selection phase is maximized. When c is large, the

maximal number of contributions in the task-selection phase is small. Therefore, forming

a group that would allow for the maximal number of contributions entails connecting to a

fairly small number of individuals, corresponding to low connection costs. The only way to

achieve this volume of contributions is to have a group in which at least kAmax(c) agents are

A-extremists and at least kBmax(c) agents are B-extremists. To make this group mutually op-

timal, it is necessary for the extremists on both sides to be willing to pay the connection costs

required to obtain contributions on both dimensions. This is possible only if participating

in a group with kAmax(c) + kBmax(c) members is suffi ciently cheap (i.e., d
(
kAmax(c) + kBmax(c)

)
is

lower than the marginal benefit an extremist on one dimension receives from the last contri-

bution made toward each task). By the definition of ñ(c) and since kAmax(c) + kBmax(c) ≤ ñ(c),

we have d
(
kAmax(c) + kBmax(c)

)
≤ d (ñ(c)) < c, which guarantees that an extremist would not

want to reduce the number of members contributing to the task she contributes to. We

also need to assure that an extremist, say an A-extremist of type t, does not want to re-

duce the number of B-extremists in the group. The connection costs saved by reducing

one B-extremist are given by d
(
kAmax(c) + kBmax(c)

)
. Therefore, we need to assure that the

A-extremist of type t is willing to invest in at least kBmax(c) B-contributions when the cost

of each such contribution is effectively d
(
kAmax(c) + kBmax(c)

)
. This is tantamount to the re-

striction kB(d
(
kAmax(c) + kBmax(c)

)
; t) ≥ kBmax(c). Similar arguments generate the analogous

restriction on the tastes of B-extremists in such polarized groups. Notice that this restriction

is easier to satisfy when connection costs are low relative to contribution costs.

In the second part of Proposition 1 we describe groups in which all agents have the same,

extreme, taste parameter. This is a knife-edge case in which the maximal attainable number

of contributions is collected toward the task all agents care about and agents’preferences are

so extreme that no one desires contributions toward the other task.17

17Some aspects of Proposition 1 depend on the assumption that agents hold pessimistic beliefs regarding
equilibrium outcomes in other groups. Under the alternative assumption that any coordination problem is
resolved randomly, for part (1) of Proposition 1 to hold we would need an additional condition guaranteeing
that the benefit of adding members in excess of kAmax(c) + k

B
max(c) to a polarized group (to decrease the

probability of contributing) is overwhelmed by the cost of connecting with them. The groups described in
part (2) of Proposition 1 would still be mutually optimal, and possibly contain more than kxmax(c) individuals.
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In the Appendix, we also show that, in fact, the groups identified by the proposition

are the only possible non-trivial mutually optimal groups for c > c∗∗. Nonetheless, when

contribution and connection costs are suffi ciently high, some moderate agents may prefer to

remain singletons and not contribute to either task. In other words, trivial groups composed

of one moderate individual may constitute mutually optimal groups.

If c∗ 6= c∗∗ and c ∈ (c∗, c∗∗], whenever either kxmax(c) > 1 for x = A,B, or the connection

cost function d(n) is strictly positive for any n ≥ 2, the groups described in Proposition 1 are

still the only mutually optimal ones. However, if d(n) is a step-function (as discussed later

in this section), and kxmax(c) = 1 for some x, say A, the full characterization of the mutually

optimal groups includes additional types of groups consisting of kBmax(c) agents on the t = 0

extreme and one moderate agent. Since the full characterization of mutually optimal groups

for this case involves some minor technical subtleties without adding qualitative novelties, we

refer the interested reader to Proposition 1A presented in the Appendix.

Notice that absent connection costs, a positive contribution cost would imply that for

suffi ciently large group sizes, some individuals will ultimately not contribute. Such groups

can be mutually optimal as long as the free-riding individuals come at no cost. Free riding

cannot occur in mutually optimal groups whenever connection costs are strictly positive.18 In

fact, as long as any member in addition to those who necessarily contribute comes at a cost,

there will be no free riding in mutually optimal groups. We therefore have the following:

Corollary (High c —No Free Riding) Whenever c > c∗ and d (kxmax(c) + 1) > 0 for x =

A,B, there is no free riding in any non-trivial mutually optimal group.

An important implication of Proposition 1 and the corollary is the fact that, if contribution

costs are large enough, and as long as connection costs are strictly positive, non-extreme

individuals cannot be part of any non-trivial mutually optimal group. The only way moderate

18Formally, consider any ordered equilibrium in which there are kA A-contributions, kB B-contributions,
and k∅ > 0 individuals who do not contribute. Consider one of the individuals of type t∗ who contributes. If
U(t∗, kA, kB − 1) > U(t∗, kA − 1, kB), that individual would prefer a group composed of kA agents of type t∗
and kB agents with taste t = 0, in which there is a unique equilibrium with kA A-contributions and kB B-
contributions and fewer members overall. Similarly, if U(t∗, kA−1, kB) > U(t∗, kA, kB−1), a group composed
of kA agents of taste t = 1 and kB agents of taste t∗ would be preferable. If U(t∗, kA, kB−1) = U(t∗, kA−1, kB),
the individual would prefer a group of kA + kB agents of type t∗.
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individuals can be part of a non-trivial mutually optimal group (and act as free riders) is when

there are no connection costs, at least up to a suffi ciently large group size.

Special Cases: Step-function and Linear Connection Costs

One special case of connection costs corresponds to settings in which, up to a certain

capacity, group membership is free. For instance, social friendships may not come at a net

cost; however, there is a cap on how many friends one can maintain effectively given time

constraints (see, e.g., Dunbar (1992)). Formally, such settings correspond to step-function

connection costs: d(n) = 0 for all n ≤ n∗ and d(n) =∞ for n > n∗.19 In this case ñ(c) = n∗

and c∗ ≡ sup{c | kAmax(c) + kBmax(c) > n∗}.
In this setting, the restrictions of point (1) of Proposition 1 are automatically satisfied

since d
(
kAmax(c) + kBmax(c)

)
= 0 when c > c∗ and any group of at most n∗ members containing

kAmax(c) A-extremists and kBmax(c) B-extremists is mutually optimal. On the other hand, the

conditions for mutually optimal groups with homogeneous contributions described in point

(2) of Proposition 1 are harsher. Indeed, for c > c∗, d (kxmax(c)) = 0 for x = A,B and

kB(d(kAmax(c)); t) = 0 if and only if t = 1. Similarly, kA(d(kBmax(c)); t) = 0 if and only if t = 0.

Therefore, mutually optimal groups with homogenous contributions contain only the polar

extremists: either at least kAmax(c) individuals of type t = 1 or at least kBmax(c) individuals of

type t = 0.

Notice also that when c is very high, any group of n∗ individuals must contain individuals

that ultimately do not contribute, which can be sustained since free-riding members come at

no cost (in contrast with the restrictions of Corollary 1 above).

Another special case of connection costs is that of linear connection costs, whereby

D(n) = (n − 1)d and marginal connection costs are fixed, d(n) = d for all n ≥ 2. Such

19Alternatively, we could also assume that d(n) = M for all n > n∗ for suffi ciently large M . Furthermore,
our analysis would carry through were we to assume D(n) = 0 for all n ≤ n∗ and D(n) = M for all n > n∗

for suffi ciently large M. This is why we slightly abuse labeling and refer to the case analyzed as that of “step-
function connection costs.” In addition, consider the connection cost function D(1) = 0, D(n) = D for all
n ≤ n∗, and D(n) = ∞ for all n > n∗. That is, being in a group involves a fixed membership fee D, and
groups have a maximal fixed size n∗. In this case, for the groups we characterize to remain mutually optimal,
one needs to guarantee that the gap between the total utility individuals obtain from being in the group and
the utility they obtain by themselves is greater than D. As it turns out, any mutually optimal group for D = 0
is also mutually optimal for suffi ciently small D > 0, unless it involves at least two individuals of which only
one contributes.
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costs correspond to environments in which connection costs do not depend on the number of

individuals. Let c̄ = sup{c | kAmax(c) + kBmax(c) ≥ 1}. Then, c∗ = min{d, c̄}. Suppose that d is
not prohibitively high, so that kAmax(d) + kBmax(d) ≥ 1. In this case, c∗ = d and as long as the

cost of a contribution surpasses the cost of adding a member to the group (c > d), non-trivial

mutually optimal groups are composed of extremists. Furthermore, since connection costs are

strictly positive for any non-trivial groups, mutually optimal groups will never exhibit free

riding in the task-selection stage.

The linear connection cost case allows us to address the analogy between high contribution

cost c and low connection cost d. If a new technology (for example, E-mail, online platforms

for social groups, etc.) makes connection costs decrease relative to contribution costs, agents

would like to connect with more people. As described above, the risk of free riding becomes

more severe, and reconciled by selecting extremist agents as peers.

Finally, in comparing these two special cases, we observe that step-function connection

costs generate a greater collection of mutually optimal groups that exhibit polarization, in-

cluding ones in which some, potentially moderate, individuals do not ultimately contribute

to either task. In contrast, settings with linear connection costs exhibit a richer set of ho-

mogenous mutually optimal groups that generate contributions only on one task, containing

extremists on either side (whereas step-function connection costs lead to homogenous mutually

optimal groups that are comprised only of the polar extremists).

5. Low Contribution Costs

As contribution costs decrease, there is less danger of free riding. Accounting for connection

costs, it becomes more likely that individuals will want to limit their group size without achiev-

ing the maximal attainable volume of contributions. In contrast with the previous section,

in this case mutually optimal groups can be composed of contributing moderate members,

and the focus shifts to the allocation of these contributions across tasks. In particular, more

homogeneous groups, in which members agree on the allocation of contributions to tasks,

are likely to emerge as mutually optimal. The following Proposition characterizes mutually

optimal groups in the c ≤ c∗ case.
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Proposition 2 (Low c —Mutually Optimal Groups) If c ≤ c∗, non-trivial mutually op-

timal groups take one of the following forms:

1. (Homogeneous groups) For any n there exists a collection of disjoint intervals

{T nl }
h
l=1 in [0, 1] such that n agents of types t1, ..., tn form a mutually optimal group

if and only if, for some l = 1, .., h, ti ∈ T nl for all i = 1, .., n.

2. (Mildly polarized groups) A group of n ≤ ñ(c) members such that nA agents

have tastes in an interval IA, while nB = n− nA agents have tastes in an interval
IB, where IA ∩ IB = ∅.

Intuitively, in any mutually optimal group members agree on the desirable number of

participants. In addition, when contribution costs are suffi ciently low relative to the connection

costs, if agents are willing to pay the cost of connection, they are certainly willing to pay the

cost of contribution in their group. Therefore, agents choose a group that implements their

preferred allocation of contributions. It is useful to think of the extreme case in which there

are no contribution costs, c = 0. In that case, any mutually optimal group must be of the sort

described in Section 3: for any size n of the group (determined by the connection costs), a

group is mutually optimal if and only if all taste parameters in the group belong to the same

element of a partition {T nk }nk=0 of the interval [0, 1]. These two restrictions together —all agents

agreeing on the size of the group and all agents agreeing on the allocation of contributions

within the group —imply the homogeneity of mutually optimal groups as described in part (1)

of Proposition 2. Part (2) of the proposition is more of a knife-edge case. It considers situations

in which some agents cannot attain their optimal allocation of contributions because of the

constraints imposed by the contribution costs. For example, A-extremists can implement at

most kAmax(c) A-contributions. However, at the group selection phase, it is the connection

costs d(n) that govern the number of participants in the group and even A-extremists (ones

for whom t < 1) may be willing to invest in some agents who will contribute to the B task.

We now illustrate the formal construction of mutually optimal groups pertaining to point

(1) of Proposition 2. We start by introducing the following Lemma. Recall that for any

t ∈ [0, 1], we define k (s; t) ≡ kA(s; t)+kB(s; t) as the total attainable number of contributions
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Figure 1: Homogeneous Mutually Optimal Groups (Small c)

at cost s for an agent of taste t. Also, recall that mx(n; t) represents the optimal number of

contributions that an individual of taste t would like to allocate to task x = A,B out of a

total of n contributions.

Lemma 4 (Low c —Individual Incentives and Group Size) If n ≤ k(c; t), mx(n; t) ≤
kx(c; t) for x = A,B.

Lemma 4 links the size constraint of the group and the personal incentives to make con-

tributions of an individual of taste t. As long as group size is suffi ciently small (relative to

the total attainable number of contributions for an agent of taste t), the agent engages in

contributing when her unconstrained optimal allocation of contributions is implemented. To

see why this is the case, suppose that mA(n; t) + mB(n; t) = n ≤ k(c; t) but, for instance,

mA(n; t) > kA(c; t). Then, it must be the case that mB(n; t) < kB(c; t). Since mA(n; t) and

mB(n; t) represent the unconstrained optimal allocation, they are selected in a way that (ap-

proximately) equates the marginal returns from contributions toward each task. However,

since mB(n; t) < kB(c; t), the marginal benefit from the mB(n; t)-th B-contribution is greater

than c. Thus, the marginal benefit from themA(n; t)-th A-contribution should be greater than

c as well, in contradiction to mA(n; t) > kA(c; t).
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Figure 1 is useful in providing the construction of the groups described in point (1) of

Proposition 2. Formally, denote by KA(s; t) and KB(s; t) the real numbers achieving equal-

ity within the constraints (2) and (3), respectively. For x = A,B, kx(s; t) = bKx(s; t)c if
Kx(s; t) ≥ 0 and kx(s; t) = 0 if Kx(s; t) < 0 (by construction, Kx(s; t) < kxmax(s) + 1 for

x = A,B). If fx(0) − fx(−1) < s, Kx(s; t) = 0. If fx(h) − fx(h − 1) > s for all h, we de-

note Kx(s; t) = kx(s; t) = ∞. The number Kx (s; t) captures the point at which an agent of

taste t equates the marginal return from an x-contribution to the cost s. The total attain-

able number of contributions for an agent of taste t, or k(s; t), is then approximated by the

function L(s; t) = max
{
KA(s; t), 0

}
+ max

{
KB(s; t), 0

}
. Note that for any given t, L(s; t) is

decreasing in s.

Figure 1 depicts the function L(c; t), which, roughly speaking, describes the number of

contributions an individual of type t would be willing to acquire at a cost c (were she allowed

to make multiple contributions).20 Moreover, for n > ñ(c), Figure 1 depicts L(d(n); t) which,

by definition of ñ(c), is below L(c; t). In what follows, we consider only the case of groups of

size n > ñ(c), and we describe the construction of homogenous mutually optimal groups of

size n ≤ ñ(c) in the Appendix.

Consider first the free contribution case, c = 0. Since there is no free-rider problem, the

marginal values of contributions determine the optimal group size for each individual of type t.

For any n > ñ(c), mutual optimality requires the agents in a group to (approximately) equalize

the marginal utilities of the contributions to each other, as well as to the connection cost

d(n). Let t and t be taste parameters that achieve the maximum and minimum of L(d(n); t),

respectively. If n ∈
{
k(d(n); t), ..., k(d(n); t)

}
, there is a set of taste parameters T n such

that all agents with tastes t ∈ T n desire a total of n = k(d(n); t) members in their group.

Graphically, looking at Figure 1, T n is derived from projecting the integers n−1 and n on the

y-axis onto the x-axis via L(d(n); t). By construction, any two agents with tastes t, t′ ∈ T n

agree that the optimal group size is n.

20In general, the maximum could be achieved by more than one t. For the concavity of L(c; t) portrayed in
Figure 1, it is suffi cient to assume that f ′′′x ≤ 0 for x = A,B and c is suffi ciently low. As c increases, extreme
agents are willing to make a contribution only on the dimension they care most about, and L(c; t) becomes
piece-wise concave when f ′′′x ≤ 0 for x = A,B, as we discuss below.
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Now, recall that when groups are of a fixed size n and contributions are free, c = 0, a

group is mutually optimal if and only if all taste parameters in the group belong to the same

element of a partition {T nk }nk=0 of the interval [0, 1]. This is because any two agents with tastes

t, t′ belonging to the same element T nk of the partition agree on the optimal allocation of the

n contributions across the two tasks. Therefore, whenever T nk ≡ T nk ∩ T n 6= ∅, any n agents
whose types are selected from T nk agree on both the group size and the optimal allocation

of contributions across the two tasks, and is therefore mutually optimal. It is easy to see

that the same construction can be used to characterize mutually optimal groups for positive

contribution costs c as long as n > ñ(c). Indeed, since k (c; t) ≥ k (d(n); t) for all t, for any

individual in T nk , the condition of Lemma 4 is met, guaranteeing that individual incentives to
make contributions are satisfied.

Notice that for high connection costs, L(d(2); t) < 2 and non-trivial homogenous mutually

optimal groups cease to exist. That is, when connection costs are suffi ciently high, the intervals

described in the first part of Proposition 2 are empty.

Next, we focus our attention on the mildly polarized groups described in part (2) of

Proposition 2. For simplicity of exposition, we illustrate here the construction of mildly

polarized groups that involve a subgroup of extremists. We describe the construction of any

mildly polarized group, which in general involves additional conditions to achieve mutual

optimality, in the Appendix.21

In particular, we construct mutually optimal groups of size n ≤ ñ(c) comprised of a

subgroup of A-extremists that make kAmax(c) A-contributions, and a sub-group of n− kAmax(c)
more moderate individuals, who all make B-contributions. An analogous construction holds

for groups with kBmax(c) extremists and n− kBmax(c) more moderate individuals.
Formally, assume that kAmax(c) agents are chosen such that: (i) they are A-extremists (i.e.,

kA (c; t) = kAmax(c)); (ii) their optimal allocation of contributions requires at least k
A
max(c)

21The extreme polarization appearing for high c (part (1) of Proposition 1) is not mutually optimal for
smaller contribution costs c. To see why, consider a polarized group in which kAmax(c) agents are A-extremists
(and their optimal groups entail kAmax(c) A-contributions), and k

B
max(c) agents are B-extremists (and their

optimal groups entail kBmax(c) B-contributions). Clearly, when ñ(c) < k
A
max(c) + k

B
max(c), the connection costs

are too high for these agents to be in their optimal group. Indeed, the last contributions on both tasks yield,
by definition of kxmax(c), a marginal utility of (slightly) less than c to an x-extremist. Therefore, say, an
A-extremist cannot be willing to pay d(kAmax(c) + k

B
max(c)) > d(ñ(c)) > c to acquire the last B-contribution.
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contributions to the A-task, and (iii) they are willing to pay the connection costs to acquire

kAmax(c) A-contributions and n− kAmax(c) B-contributions. To capture these requirements, we
define:

WA =
{
t | kA(d(n); t) ≥ kA (c; t) = kAmax(c), m

A(n; t) ≥ kAmax(c), and k
B (d(n); t) = n− kAmax(c)

}
.

Let kAmax(c) agents in the group have taste parameters in the interval W
A. By construction,

these agents are in an optimal group whenever the number of A- and B-contributions made

is kAmax(c) and n− kAmax(c), respectively.
We choose the remaining n−kAmax(c) agents to satisfy two conditions: (i) they care enough

about task B to make B-contributions; and (ii) they care enough about task A so that

their optimal groups involves kAmax(c) A-contributions (they may desire more than k
A
max(c) A-

contributions and be willing to pay the corresponding connection costs for those, but foresee

the constraints imposed by contribution costs at the task-selection stage and optimally choose

kAmax(c) individuals who are to contribute to the A-task). Formally,

ZB =
{
t | kB(d(n); t) ≥ kB (c; t) = n− kAmax(c) and kA (d(n); t) ≥ kAmax(c)

}
.

If n < ñ(c), for kAmax(c) agents from WA and n − kAmax(c) agents from ZB to form a

mutually optimal group, ZB must contain only A-extremists.22 For any taste t in WA for

which kB(c; t) < kB(d(n); t), t /∈ ZB. In particular, any kAmax(c) agents from IA ≡ WA ∩{
t | kB(c; t) < n− kAmax(c)

}
and n − kAmax(c) agents from IB ≡ ZB ∩

{
t | kA(c; t) = kAmax(c)

}
would constitute a mutually optimal group. By construction, IA and IB are disjoint intervals.

If n = ñ(c), for kAmax(c) agents from WA and n − kAmax(c) agents from ZB to form a

mutually optimal group, agents in ZB need not be A-extremists. Following our discussion

above, any group of kAmax(c) agents from IA ≡ WA and n − kBmax(c) agents from IB ≡ ZB ∩{
t | kA(c; t) < kAmax(c)

}
is mutually optimal. In addition, any group of kAmax(c) agents from

IA ≡ WA∩
{
t | kB(c; t) < n− kAmax(c)

}
and n − kBmax(c) agents from IB ≡ ZB is mutually

optimal as well. These satisfy the conditions of the proposition.

22Otherwise, any moderate agent on both dimensions in ZB would prefer implementing any equilibrium in
a group with kAmax(c) agents of taste t = 1 and n− kAmax(c) other agents of taste t = 0.
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In the Appendix we show that there cannot be mildly polarized groups of size n > ñ(c),

and we also show that the type of groups described in Proposition 2 are the only groups that

could be mutually optimal when c is low.

Three remarks are in order. First, with regard to the Corollary of Section 4, it follows

from our discussion that a similar result holds for c ≤ c∗. As long as d(kxmax(c) + 1) > 0 for

x = A,B, non-trivial mutually optimal groups do not contain free riding agents.

Second, from the construction of the mutually optimal groups described in Proposition

2, it is apparent that for suffi ciently high contribution costs some types may not belong to

any non-trivial mutually optimal group. To see this, suppose that for some t ∈ [0, 1] we have

L(d(n); t) = 0 for any n. That is, individuals of type t are not willing to incur connection costs

in order to associate with others. Clearly, such individuals cannot be part of any non-trivial

mutually optimal group. We come back to the description of the set of types that cannot be

part of any non-trivial mutually optimal group in the discussion of the linear connection costs

case below.

Finally, the results in this section suggest that when innovation improves public good pro-

duction relative to connection technologies, we should observe more homogeneity in mutually

optimal groups. Take residential neighborhoods or cooperatives for example, in which con-

nection is limited by inflexible real estate constraints. In such communities, as public good

contributions become cheaper (for example, because of the introduction of carpool lanes that

reduce the costs of driving neighbors’kids to different activities or communication technolo-

gies that allow effi cient event organization, etc.), residents will tend to appear more aligned in

their preferences over the allocation of contributions across public goods (for example, soccer

tournaments, block parties, religious events, etc.).

Special Cases: Step-function and Linear Connection Costs

Consider now the special case of step-function connection cost introduced in the previous

section. Using the same notation as before, ñ(c) = n∗ and the condition c < c∗ is equivalent

to n∗ < kAmax(c) + kBmax(c). In this setting, mutually optimal groups never entail more than

n∗ individuals, as that would be prohibitively costly through the connection costs. The con-

struction above implies that part (1) of Proposition 2 takes the following form. If there is a
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set T such that n∗ ≤ k (c; t) for all t ∈ T, then, for any k = 0, ..., n∗ for which T ∩ T n∗k 6= ∅, a
homogeneous group comprised of any n∗ agents of tastes in T ∩ T n∗k is mutually optimal.

In this setting, raising the group size n∗ is analogous to increasing contribution costs in

its effect on free-riding incentives. A consequence of our results in the last two sections is

then that there is a set of moderate taste parameters such that individuals with those tastes

can only be part of mutually optimal groups that are either suffi ciently small (in which all

members have incentives to contribute) or large (in which the moderate agents free ride on

the extremists in the group, who make all contributions).

Consider now settings in which connection costs are linear. Suppose, as before, that d,the

(fixed) marginal connection cost, is not prohibitively high, so that kAmax(d) + kBmax(d) ≥ 1.

The condition of Proposition 2 is then c < d. This setting is useful for illustrating the effects

of increasing connection costs. For suffi ciently small d, the function L(d; t) takes the shape

depicted in Figure 1, and, by the construction described above, for any t ∈ [0, 1] it is always

possible to find a non-trivial mutually optimal group that includes individuals of type t as

members. As d increases, extreme agents would like to add contributions only on the task

they care most about. For such situations, larger groups correspond to members with either

moderate or extreme tastes. Panel (a) of Figure 2 corresponds to a case in which L(d; t)

becomes piece-wise concave as d increases.23 Still, panel (a) of Figure 2 describes a scenario

in which individuals of any type t ∈ [0, 1] are included in mutually optimal groups.

As connection costs increase even more, there may be a range of moderate types who do

not wish to have any contributions acquired in their group and L(d; t) can exhibit a dip for a

range of moderate tastes (see panel (b) of Figure 2). In that case, whenever L(d; t) is positive

for some t, either kA(d; t) = 0 or kB(d; t) = 0.We therefore deduce that when connection costs

are very high, the homogenous mutually optimal groups correspond to extremists willing to

have only contributions on one dimension made in the group. In addition, panel (b) of Figure

2 illustrates that there is a set of types t ∈ [0, 1] for which L(d; t) = 0. Since these types are

not willing to pay any connection costs, the only mutually optimal groups they can belong to

are singletons.

23Formally, it is suffi cient to assume that f ′′′x (·) ≤ 0 for L(d; t) to be piece-wise concave.
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Figure 2: Homogeneous Mutually Optimal Groups: The Effect of Increasing d

To conclude, note that the analysis of the linear connection cost case in the last two sections

yields implications on the correlation between group size and composition. In particular, when

d is low in relation to c, the analysis of the previous section shows that polarized mutually

optimal groups emerge, and they include kAmax(c) + kBmax(c) members. On the other hand, as

d increases, the analysis in this section applies: mutually optimal groups are mildly polarized

or homogeneous and include a number of members always lower than kAmax(c) + kBmax(c). As d

increases even more, L(d; t) shifts down (see Figure 1), and the size of these groups decreases,

until they gradually disappear (see Panel (b) in Figure 2). Therefore, our results imply a

positive correlation between group size and heterogeneity in the linear case: homogeneous

groups tend to be smaller than polarized ones.

6. Conclusions

In this paper we address the properties of mutually optimal communities when individuals,

who have different tastes, contribute to costly public projects shared with other members of

their groups. If contributions to public projects are costly relative to the cost of connecting

with other individuals, mutually optimal communities are composed of extreme individuals

from both sides of the spectrum. If contributions to public projects are cheap compared to

connection costs, mutually optimal groups are formed by individuals who are fairly similar in
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tastes.24 Our results suggest that improvements in public project technologies tend to increase

homogeneity, while improvements in connection technologies tend to increase heterogeneity in

mutually optimal groups.

24We note that replicating our analysis in a continuous contributions setting would leave the main messages
of the paper unchanged, but make the results somewhat starker. Suppose contribution costs are small, and
can be distributed continuously across the two tasks. Mutually optimal groups are formed by agents who
agree on the group size and the optimal allocation of contributions across the two tasks, and therefore must
share exactly the same taste; They are perfectly homogeneous. If contribution costs are large and can be
continuously distributed, mutually optimal groups will again be polarized: they will consist of extremists of
taste t = 0 or t = 1 only.
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7. Appendix

Proof of Lemma 1. Let t1 ≥ ... ≥ tn. Each agent has to decide whether to acquire an

A-contribution, a B-contribution, or forgo contributing.

To construct an effi cient equilibrium in the task-selection game, let µA be the maximal

integer h such that th[fA(h) − fA(h − 1)] ≥ c (this is inequality (2) in the text). Similarly,

let µB be the minimal integer h such that (1 − th)[fB(n − h + 1) − fB(n − h)] ≥ c (this is

inequality (3) in the text). First, consider the case in which µA + 1 ≥ µB, so that all agents

could be induced to make contributions. We first construct an equilibrium entailing all agents

making contributions. We consider an equilibrium as proposed by the Lemma’s claim, so that

τA = τB − 1 ≡ τ ∗. Note that if an agent of taste t prefers making an A-contribution over

a B-contribution, so would any agent of taste t′ > t. Similarly, if an agent of taste t prefers

making a B-contribution, so would any agent of taste t′ < t. In such an equilibrium, the

agent with the lowest taste parameter who chooses an A-contribution is the agent with taste

tτ∗ . From our tie-breaking rule, it follows that the threshold τ ∗ is determined as the maximal

τ ∈ {1, ..., n} for which agent τ weakly prefers an A-contribution over a B-contribution, or for
which

U(tτ , τ , n− τ) ≥ U(tτ , τ − 1, n− τ + 1)

is satisfied. This inequality is constraint (1) for taste tτ . If (1) is not satisfied for any agent

in the group (i.e., U(t1, 0, n) > U(t1, 1, n − 1)), then τA = τ ∗ = 0 and τB = 1 defines an

equilibrium. In order to show that choosing τ ∗ = 0 if (1) is not satisfied for any positive

integer and τ ∗ as the maximal integer between 1 and n satisfying (1) otherwise defines an

equilibrium all that remains to be shown is that incentives to make contributions are satisfied.

Notice that for any agent τ ≤ τ ∗,

U(tτ , τ , n− τ)− U(tτ , τ − 1, n− τ + 1) = [U(tτ , τ , n− τ)− U(tτ , τ − 1, n− τ)]

−[U(tτ , τ − 1, n− τ + 1)− U(tτ , τ − 1, n− τ)] ≥ 0

and so, the incentives to make aA-contribution are greater than those to make aB-contribution.

Similarly, for agents τ > τ ∗, the incentives to make a B-contribution are greater than those

to make a A-contribution. Since µA + 1 ≥ µB, it follows that the identified profile constitutes

an equilibrium.
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Consider now the case in which µA + 1 < µB, and define τA ≡ µA and τB ≡ µB. From

our definitions of µA and µB, in order to illustrate that the suggested profile constitutes an

equilibrium, all that remains to be shown is that an agent making a contribution x = A,B

does not prefer to make a contribution y 6= x when all other agents follow the profile. Indeed,

suppose that i ≤ τA < τB and observe that

U(ti, τ
A, n− τB + 1)− c ≥ U(ti, τ

A − 1, n− τB + 1) > U(ti, τ
A − 1, n− τB + 2)− c,

where the first inequality follows from inequality (2), and the second from the fact that

µA + 1 < µB. Thus, an agent of taste ti does not profit from deviating to a choice of a

B-contribution instead of an A-contribution. An analogous argument holds for i ≥ µB > µA.

Suppose now that there are two equilibria, one of which entails kA A-contributions and

kB B-contributions and one that entails k̃A A-contributions and k̃B B-contributions. We now

show that either kA ≤ k̃A and kB ≤ k̃B or kA ≥ k̃A and kB ≥ k̃B. Suppose, for instance,

that kA > k̃A and kB < k̃B. This implies that there is an agent with taste ti that in the first

equilibrium makes an A-contribution, and in the second equilibrium makes no contribution or

a B-contribution. However, notice that for any such ti

U(ti, k
A, kB)− U(ti, k

A − 1, kB) ≤ U(ti, k̃
A + 1, k̃B)− U(ti, k̃

A, k̃B) and

U(ti, k
A, kB)− U(ti, k

A − 1, kB + 1) ≤ U(ti, k̃
A + 1, k̃B − 1)− U(ti, k̃

A, k̃B),

in contradiction to ti using a best response in both equilibria. Other cases are shown similarly.

Since the equilibrium identified above establishes the maximal volume of contributions, it

follows that it is also the most effi cient. �

Proof of Lemma 2. Let k̂Amax be the maximal integer h ≥ 2 such that, no matter how many

w B-contributions are acquired,

U(1, h, w)− U(1, h− 1, w) = [fA(h)− fA(h− 1)] ≥ d(h),

and let k̂Amax = 1 if there is no such h. Define k̂Bmax in the same way. If min
{
kAmax(c), k̂

A
max

}
≥ 2,

in a group withmin
{
kAmax(c), k̂

A
max

}
agents of taste t = 1, all members are willing to both make
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A-contributions and pay the connection costs required to be members. Also, it is immediate to

see that these agents are not willing to add additional members to the group. Therefore, such

a group is mutually optimal. If min
{
kAmax(c), k̂

A
max

}
= 1 a mutually optimal group is formed

by a single individual with taste t = 1 who will make one A-contribution, and if kAmax(c) = 0,

a mutually optimal group is formed by a single individual with taste t = 1 who will not

contribute. A similar construction applies to mutually optimal groups in which contributions

are made only toward task B. �

Proof of Proposition 1. We first show that the groups identified in the proposition are

mutually optimal. Consider first the polarized groups of part (1). Since the group achieves

the maximal attainable contributions, no individual desires the addition of an agent. For an

A-extremist, the benefit of reducing the number of A-extremists by one when there are no

free-rider is:

d
(
kAmax(c) + kBmax(c)

)
≤ d (ñ) < c.

Since thisA-extremist is willing to make anA-contribution at a cost of c, she is certainly willing

to pay d(ñ) to get the additional A-contribution. The benefit for an A-extremist of type t

from reducing the number of B-extremists if there are no free riders is d
(
kAmax(c) + kBmax(c)

)
.

Therefore, as long as she would be willing to make the kBmax(c)’th B-contribution when the

cost is d
(
kAmax(c) + kBmax(c)

)
, such a reduction would not be beneficial. Therefore, we get the

restriction:

kB(d
(
kAmax(c) + kBmax(c)

)
; t) ≥ kBmax(c).

In addition, an A-extremist who is making an A-contribution in the task-selection stage

cannot benefit by adding additional A-extremists to the group or joining a different group with

an identical profile of contributions —in the worst equilibrium, she will still be contributing.

Similar arguments follow for any member who is a B-extremist.

Following the discussion in the text, when d (ñ+ 1) = 0, there could be free riders, in

addition to the kAmax(c) A-extremists and k
B
max(c) B-extremists.

Consider now the homogenous groups described in part (2) of Proposition 1. As before,

none of the A-extremists would desire the addition of members of any type. Furthermore, since

d
(
kAmax(c) + kBmax(c)

)
≤ d (ñ) < c, eliminating any member of the group would not be beneficial
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either. Analogous arguments pertain to homogeneous groups formed by B-extremists.

We now show that there are no non-trivial mutually optimal groups other than those

specified in the proposition. The arguments above suggest that an x-extremist is in a mutually

optimal group only if there are precisely kxmax(c)− 1 other x-extremists in the group as well,

x = A,B. Therefore, any potentially mutually optimal group other than those specified would

include an agent who is not an extremist while kAmax(c) + kBmax(c) ≥ 1. Suppose there exists

such a non-trivial mutually optimal group and consider any ordered equilibrium in that group.

If no one contributes, any group member would benefit by switching to a group with one

extremist who is willing to contribute. Consider now an ordered equilibrium in which at least

one non-extremist member contributes, say an agent of taste t, who contributes to task A.

Let k̃A < kAmax(c) be the number of A-contributions and k̃
B ≤ kBmax(c) be the number of B-

contributions. We first show that for the group to be mutually optimal, it must be the case

that k̃A = kA(t; c) and k̃B ≥ kB(t; c). Suppose otherwise. If k̃A > kA(t; c), the agent cannot be

contributing. If k̃A < kA(t; c), the agent would benefit by shifting to a group in which there

are kA(t; c)− 1 agents with taste t = 1 and k̃B agents with taste t = 0 since

d(k̃A + k̃B) ≤ d
(
kAmax(c) + kBmax(c)

)
≤ d (ñ(c)) < c.

If k̃B < kB(t; c), the agent would similarly benefit by shifting to a group with kA(t; c) − 1

agents of taste t = 1 and kB(t; c) agents of taste t = 0. Assume then that k̃A = kA(t; c) and

k̃B ≥ kB(t; c) and consider a shift to a group in which there are kA(t; c) agents of taste t = 1

and k̃B agents of taste t = 0. This would, again, come at an additional connection cost that

is bounded by d
(
kAmax(c) + kBmax(c)

)
≤ d (ñ(c)) < c.25 In this group, all equilibria would entail

our agent not contributing and attaining the same profile of contributions. �

Proposition 1A If c∗ 6= c∗∗ and c ∈ (c∗, c∗∗], mutually optimal groups take one of the

following forms:

25The assumption that d(n) 6= c for all n plays a role here. Indeed, suppose kAmax(c) + kBmax(c) = ñ− 1 and
d(ñ) = c. The agent would then be indifferent between adding an A-extremist and contributing herself and
we could get mutually optimal groups composed of kA(c; t) + kB(c; t) individuals of type t.
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1. A polarized group with kAmax(c) A-extremists, each with a taste t satisfying

kB(d
(
kAmax(c) + kBmax(c)

)
; t) ≥ kBmax(c)

and kBmax(c) B-extremists, each with a taste t satisfying

kA(d
(
kAmax(c) + kBmax(c)

)
; t) ≥ kAmax(c).

2. A group with kxmax(c) x-extremists, each with a taste of t satisfying

ky(d(kxmax(c) + 1); t) = 0, x 6= y.

3. If kAmax(c) = 1, d(1 + kBmax(c)) = 0, and d(2 + kBmax(c)) = M for suffi ciently large

M, then kBmax(c) agents of taste 0, and one moderate agent of taste t ∈ (0, 1), such

that kA(c; t) = 0, kB(c; t) < kBmax(c), and

U(t, 0, kBmax(c)) ≥ U(t, 1, kBmax(c)− 1).

Similarly if kBmax(c) = 1.

Proof of Proposition 1A. The analysis in Proposition 1 carries through as long as kAmax(c) >

1, kBmax(c) > 1, and the classes of groups in points (1) and (2) then comprise all of the

mutually optimal groups. Regarding the groups described in point (3), consider t for which

kA(c; t) = 0. The group consisting of an agent of type t and kBmax(c) agents of taste 0 is mutually

optimal, since the agent with non-extreme taste parameter t does not have enough incentives

to contribute to one task, even when she is the first to do that. Furthermore, the restriction

on t assures that the agent would not benefit from swapping one of the B-extremists for an

A-extremist. Since, kB(c; t) < kBmax(c), the unique equilibrium in such a group would generate

U(t, 1, kBmax(c)− 1). Moreover, the remaining agents have an extreme taste parameter, so have

no incentive to make contributions other than to the task they care most about. In addition,

since d(n) = 0 for all n ≤ 1+kBmax(c), they pay no additional connection costs for the presence



Choosing Peers: Homophily and Polarization in Groups 34

of the moderate agent. However, for large enoughM, no agent in the group desires additional

members of any type. The arguments used for the proof of Proposition 1 suggest that the set

of mutually optimal groups described in Proposition 1A is exhaustive.�

Proof of Lemma 4. Suppose that mA(n; t) > kA(c; t). Then, it must be the case that

mB(n; t) < kB(c; t) (otherwise, n = mA(n; t)+mB(n; t) > kA(c; t)+kB(c; t) = k(c; t), contrary

to our assumption). That is, kB(c; t) ≥ mB(n; t) + 1. In particular,

(1− t)
[
fB(mB(n; t) + 1)− fB(mB(n; t))

]
≥ c.

Simple manipulations of the definitions of mA(n; t) and mB(n; t) imply

t
[
fA(mA(n; t))− fA(mA(n; t)− 1)

]
≥ (1− t)

[
fB(mB(n; t) + 1)− fB(mB(n; t))

]
≥ c

and kA (c; t) ≥ mA(n; t), which contradicts our hypothesis. Identical arguments follow if

mB(n; t) > kB (c; t) . �

Proof of Proposition 2. We first describe the construction of homogeneous groups described

in part (1) of the proposition when n = ñ(c) and n < ñ(c). For n = ñ(c) a construction similar

to that discussed in the text for the case of n < ñ(c) holds. However, since d(ñ(c)) < c, we

need to make sure that any agent within the set T nk ∩ T n 6= ∅ constructed as above is willing
to make a contribution. That is, we consider intervals defined as:

T nk ≡ {t ∈ T nk ∩ T n 6= ∅ | k(c; t) ≥ ñ(c)} .

If n < ñ(c) any non-trivial mutually optimal group must contain extremists. Suppose

otherwise, so that fewer than kAmax(c) A-contributions and fewer than k
B
max(c) B-contributions

are made. If no one makes a contribution in every ordered equilibrium, any member would

benefit from exchanging one of the other members with some extremist. For any ordered

equilibrium in which there are k̃A A-contributions and k̃B B-contributions, pick an agent of

type t who makes, say, an A-contribution. That agent would benefit from switching to a group
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with n−k̃B+1 agents of type t = 1 and k̃B agents of type t = 0. Indeed, if kA(c; t) > k̃A the new

group is guaranteed to generate an additional A-contribution at connection cost lower than

c in any equilibrium. If kA(c; t) = k̃A, then there would be a unique equilibrium in the new

group entailing the same profile of contributions, in which our agent is not contributing. Since

d(n+1) < c this would be beneficial. Suppose then that the agent with taste t is an extremist,

say an A-extremist. Since d(n+ 1) < c, it must be the case that in some ordered equilibrium,

the volume of A-contributions is kA(c; t) = kAmax(c). Since ñ(c) < kAmax(c) + kBmax(c), it follows

that in the equilibrium under consideration, the volume k̃B of B-contributions is strictly lower

than kBmax(c). Therefore, either all n agents are of type t = 1 and d(n) = 0 or all members

have taste parameters in the set

T A =
{
t | kA(c; t) = kAmax(c), k

B(c; t) = kB(d(n); t) = n− kAmax(c)
}
,

which is an interval in [0, 1]. Notice that from Lemma 4, any t ∈ T A satisfies kx(c; t) = mx(n; t)

for x = A,B. In a group of n members with tastes in T A, for any agent, the addition of
either A- or B-extremists would lead her to make an A-contribution in her worst equilibrium.

While any agent could switch to a group in which more B-contributions are made, such a

switch would be prohibitively costly. Groups as described are therefore mutually optimal. An

analogous construction holds for small groups containing B-extremists.

We now turn to the mildly polarized groups described in part (2) of the proposition.

We first show that there are no mildly polarized groups as described in the text containing

n > ñ(c) members. Indeed, consider groups as such with kAmax(c) A-extremist members.

When n > ñ(c), we have kx(d(n); t) ≤ kx(c; t) for x = A,B. Therefore, for any t ∈ WA,

kA(d(n); t) = kA(c; t) = kAmax(c) and k
B(c; t) ≥ kB(d(n); t) = n − kAmax(c). For any t ∈ ZB,

kA(d(n); t) = kA(c; t) = kAmax(c) and kB(d(n); t) = kB (c; t) = n − kAmax(c). In particular,

ZB ⊂ WA. Furthermore, any t ∈ WA \ ZB and t′ ∈ ZB satisfy t < t′. Thus, in a group

of kAmax(c) agents from WA \ ZB and n − kAmax(c) agents from ZB, any ordinal equilibrium

would entail at least some of the agents from ZB making A-contributions, and some agents

from WA \ ZB making B-contributions in contradiction to our construction. It follows that

there are no mildly polarized groups including kAmax(c) A-extremists for n > ñ(c). A similar
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argument applies to mildly polarized groups including kBmax(c) B-extremists.

We now describe the general construction of mildly polarized groups. In contrast with the

homogeneous groups described in part (1) of Proposition 2, in these groups at least some of

the agents are not implementing their optimal allocation of contributions across the two tasks.

Let n be the total size of the mutually optimal group and select nA < n agents from the set

of types WA such that t ∈ WA if and only if the following conditions are satisfied:

(i) mA(n; t) > nA

(ii) kA (c; t) = nA

(iii) kB (c; t) < n− nA − 1

(iv) kA (d(n); t) ≥ nA

(v) kB (d(n); t) ≥ n− nA

(vi) U(t, nA, n− nA)− c > U(t, nA, n− nA)− d(n+ 1) and nA < kAmax(c)

or nA = kAmax(c)

(vii) (1− t)
[
fB(n− nA + 1)− fB(n− nA)

]
< d(n+ 1)

(viii) U(t, nA, n− nA)− c ≥
≥ max

k̃x x-contributions, x=A,B, with agent
of taste t choosing v∈{A,B,∅} is a worst
equilibrium for the agent in a group with

l≤kAmax(c) A-extremists, n−1−l≤kBmax(c) B-extremists

U(t, k̃A, k̃B)− c(1A(v) + 1B(v)),

where (i) guarantees that agents in WA are not implementing their optimal allocation, (ii)

guarantees that if they add another A-contribution they themselves would not have incentives

to contribute, (iii) guarantees that they are not willing to make a B-contribution were one

member of the other subgroup to make an A-contribution rather than a B-contribution (in

particular, they are not B-extremists), (iv) guarantees that they are willing to connect with

all other A-contributing members, (v) guarantees that they are willing to connect with the

B-contributing members, (vi) guarantees that they do not benefit from switching to a group

with nA + 1 A-extremists26, (vii) guarantees that they are not willing to add a B-extremist

to the group, and (viii) assures that they prefer being in this group over any other group of

the same size with feasible contributions (1x stands for the indicator function with respect to

26As discussed in the text, the worst equilibrium in such a group would be beneficial for an agent only if
she herself is not an A-extremist.
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x) and the worst equilibrium being selected.27

Note that conditions (ii)-(v) imply together that c > d(n), or n ≤ ñ(c). Moreover, (vi)

simplifies to c < d(n+1), or n+1 > ñ(c) whenever there are moderate agents inWA, in which

case n = ñ(c). Since the analysis in the text covered the case of mildly polarized groups with

extremists, we consider here the case ofWA comprised of moderates. By construction, all types

t satisfying all the constraints above must belong to an interval —that is, WA =
[
tA, t̄A

]
. The

remaining ñ(c) − nA agents are the ones who make B-contributions. Notice that a mutually
optimal group containing both A-extremists and B-extremists cannot be smaller than ñ(c).

It follows from the discussion above and in the text that n = ñ(c). These agents making

B-contributions could be selected in two ways: they could be implementing a suboptimal

allocation of contributions across the two dimensions analogous to the A-contributors (in that

case, their types must belong to the corresponding set WB as above with the labels of A and

B substituted in the constraints), or they could be implementing their optimal allocation. In

the latter case, they are selected from the set ZB of types t such that the following conditions

are satisfied:

(i) mA(ñ(c); t) = nA

(ii) kB (c; t) ≥ ñ(c)− nA

(iii) kA (d(ñ(c)); t) ≥ nA

(iv) kB (d(ñ(c)); t) ≥ ñ(c)− nA

(v) t
[
fA(nA + 1)− fA(nA)

]
< d(ñ(c) + 1)

(vi) (1− t)
[
fB(ñ(c)− nA + 1)− fB(ñ(c)− nA)

]
< d(ñ(c) + 1),

where (i) guarantees that these agents are implementing their optimal allocation, (ii) guaran-

tees that they are all willing to make B-contributions, (iii) guarantees that they are willing

to connect with all members of the other subgroup, (iv) guarantees that they are willing to

connect with all members of their own subgroup, (v) guarantees that they are not willing

to add an A-extremist to the group, and (vi) guarantees that they are not willing to add a

27Suppose the agent contemplates a switch to a group with k̃x x-extremists, x = A,B, where k̃A+ k̃B = n−1.
If kx(c; t) ≥ kx + 1 for some x = A,B, k̃x + 1 x-contributions and k̃y y-contributions would constitue an
equilibrium for x = A,B, y 6= x. If kx(c; t) ≤ kx for both x = A,B, there would be k̃x x-contributions and k̃y
y-contributions with the agent contributing only if k(c; t) = kx = kxmax for some x.
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B-extremist to the group. Note that (iv) is automatically guaranteed since c > d(ñ(c)), and

that by construction all types t satisfying all the constraints above must belong to an interval

—that is, ZB =
[
tB, t̄B

]
.

An analogous construction holds for a switch in labels of A and B above.

We now show that the classes of groups described in the proposition are the only ones that

are mutually optimal when c < c∗. First, notice that in any mutually optimal group of size n

all individuals must agree on the optimal size of the group.

For any mutually optimal group of size n and any member of type t such that kx(c; t) ≥
mx(n; t) for x = A,B, the optimal allocation of contributions for that member is possible and

must be accomplished. Our discussion of the proof of the first part of the proposition in the

main body of the text illustrates that the corresponding homogeneous groups we describe are

the only potentially mutually optimal ones.

Suppose that a group of size n is mutually optimal and contains a member of type t such

that, without loss of generality, kA(c; t) < mA(n; t). For c < c∗, it must be the case that

kAmax(c) + kBmax(c) ≥ n. Furthermore, the agent herself must be contributing to some task x in

some ordered equilibrium, unless the group consists of agents who are all of taste t = 0 or all

of taste t = 1 and there are no connection costs required to maintain the group.

Assume first that kB(c; t) < mB(n; t). Since mA(n; t) +mB(n; t) = n ≤ kAmax(c) + kBmax(c),

there must be an x = A,B such that kxmax(c) ≥ mx(n; t). Then, it must be the case that the

individual makes the kx(c; t)’th x-contribution and there are n−kx(c; t) y-contributions made
and the construction above implies that the mutually optimal group is mildly polarized.

Assume now that kB(c; t) ≥ mB(n; t). There are then two cases to consider. Consider

first the case kAmax(c) ≥ mA(n; t). In that case, the agent can generate her optimal alloca-

tion by joining a group with mA(n; t) A-extremists and mB(n; t) individuals of type t (that

include herself). If kAmax(c) < mA(n; t), the agent would be optimizing by choosing kAmax(c)

A-extremists and n− kAmax(c) agents to contribute to the B-task, which corresponds to mildly
polarized groups described in the text.

From our construction it follows that the set of groups described in Proposition 2 is

exhaustive. �
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