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Homophily in Peer Groups†

By Mariagiovanna Baccara and Leeat Yariv*

The focus of this paper is the endogenous formation of peer groups. In 
our model, agents choose peers before making contributions to public 
projects, and they differ in how much they value one project relative 
to another. Thus, the group’s preference composition affects the type 
of contributions made. We characterize stable groups and find that 
they must be sufficiently homogeneous. We also provide conditions 
for some heterogeneity to persist as the group size grows large. In an 
application in which the projects entail information collection and 
sharing within the group, stability requires more similarity among 
extremists than among moderate individuals. (JEL D03, D71, D82, 
D83)

There are many realms in which individuals choose whom they interact with, 
socially and strategically. Individuals choose which Internet forums to partici-

pate in, clubs to join, neighborhoods to live in, schools to go to, and so on. New 
platforms such as online social networks, blogs, etc. allow users to choose their 
peers without any physical or geographical constraint. Interestingly, a vast empiri-
cal literature in sociology suggests consistent patterns of group formation. Indeed, 
individuals exhibit homophily—they tend to associate with those similar to them 
(e.g., in demographics, political opinions, or beliefs).1

While, over the decades, the analysis of strategic interactions across domains has 
received wide attention, theoretically and empirically, the group of players is usu-
ally assumed to be determined exogenously.2 The focus of the current paper is the 
analysis of an extended game in which, first, agents choose their group of peers and, 
second, a strategic interaction takes place. The goal is to understand how the inter-
play between the group formation stage and the strategic interaction stage determine 
the properties of the peer groups that arise in equilibrium.

We study a model in which agents make contributions to two different public proj-
ects, or tasks. The tasks can be metaphors for volunteering, freeware development, 

1 See the literature review for a brief summary of the work on this phenomenon.
2 See below for a description of several exceptions.
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participation in student associations’ activities, and many more. Each agent’s taste is 
characterized by a parameter in ​[ 0, 1 ]​, proxying for how much she cares about one task 
relative to the other. For example, depending on their personal circumstances and demo-
graphic characteristics, agents may vary in how much they value local parks (important 
for families and retirees) as opposed to public transportation (important for employed 
individuals). Similarly, depending on their personal tastes and hobbies, agents might 
differ in how much they care about the local church’s initiatives as opposed to music 
festivals. We assume that each individual can make a contribution to, at most, one task. 
In our model, agents have the possibility of forming groups and what defines a peer 
group is that its members benefit from all contributions made towards the tasks.

For any fixed group of individuals, we characterize the equilibrium task selection, 
a mapping from the composition of tastes of the agents in the group into the volume 
of contributions made toward each task. To capture the notion that new technologies 
allow individuals to connect on platforms that are not bounded by local geography, 
we step back and consider the group of peers as an object of choice. Depending on 
tastes, and foreseeing the amount and the type of contributions made within each 
group, each individual prefers certain peer groups to others.

Stable groups are ones that satisfy natural equilibrium constraints in the group-
formation stage. That is, a group is stable if it is optimal for all its members. Our 
first main result provides a characterization of stable groups. We show that stable 
groups of a fixed size are identified by a partition of the taste parameter range ​[ 0, 1 ]​ 
into subintervals. In particular, a group is stable if and only if there exists an interval 
in this partition that contains the taste parameters of all the group members. This 
result suggests that if each member has some leverage in choosing her peers, stabil-
ity occurs when tastes are sufficiently close.3 Intuitively, a group is stable only when 
all its members agree on the optimal way to allocate the group’s contributions across 
the two tasks, and this occurs when tastes are sufficiently similar.

The growth of online communities and forums, or even the initial introduction 
of e-mail or SMS, allow individuals to connect to one another with greater ease. To 
address the effects of these innovations on socialization patterns, we look at how 
stable groups are affected by arbitrarily increasing group size. We provide condi-
tions under which, as the group size grows large, stability remains consistent with 
groups composed of members of different, although sufficiently close, tastes—that 
is, intervals in the partition do not converge to singletons.

Our baseline notion of stability is a strong one, in that each individual can 
potentially deviate to groups composed of agents with any taste combination. This 
framework fits environments in which the population is very large, such as those 
pertaining to many online communities and social networks. Nonetheless, in smaller 
populations, deviations are restricted by the existing partition of agents into groups. 
We study the case of a small population of agents in Section III. We call a parti-
tion of the population stable if no agent prefers to join a group (an element in the 
partition) different than the one she is in, or to remain by herself. Certainly, the 

3 In fact, new technologies that allow less constrained choices of peers correspond to the emergence of more 
homogeneous groups. For example, Lynd and Lynd (1929) illustrates how the introduction of the automobile 
increased the prominence of clubs and coincided with an increase in peer connections based on common interests.
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grand coalition containing all agents is always stable and is the most efficient stable 
allocation. We show that equilibrium sorting is robust to this environment, and in 
any stable partition similar agents tend to cluster together. Indeed, stable partitions 
are “consecutive,” whenever two types belong to the same partition element, so do 
all types that are ordered between them.

Many social connections (such as Internet forums, information networks, or blogs) 
have information sharing as a driving force. Moreover, information sharing is one of 
the motives behind a much wider class of social ties, such as friendships, collabora-
tions, and many others. In these peer groups, individuals share information on topics 
of interest such as life decisions regarding parenting and retirement, choices concern-
ing consumption goods for different uses (e.g., food and books), hobbies, and so on. 
In Section IV, we focus on a special application of our model in which tasks stand for 
issues over which the group can collect and share information, and agents’ utilities 
differ in the relative weight they put on each issue. For example, children’s educa-
tional prospects are important for younger individuals, while savings are important 
for individuals nearing retirement. Similarly, depending on their personal attitudes, 
individuals may differ in how much they are concerned with the quality of food they 
eat relative to the selection of books they read. In terms of our application, we note 
that relevant information can be collected and shared on all of these issues.

In this application, the intervals identifying stable groups exhibit interesting 
comparative statics. Specifically, these intervals are wider for moderate tastes and 
become narrower as tastes become more extreme. This implies that stability requires 
more similarity for extreme individuals than for moderate ones. Our last result for 
the information-sharing application relates to a small population and provides con-
ditions under which full segregation, a partition into groups that contain only agents 
with the same taste, can arise as a stable allocation. We exploit the comparative stat-
ics developed before to show that, in a similar spirit, segregation is easier to sustain 
for individuals of extreme tastes than of moderate ones.

Related Literature: Lazarsfeld and Merton (1954) coined the term homophily— 
literally meaning “love for the same”—capturing the tendency of socially connected 
individuals to be similar to one another.4 In recent years, there has been a grow-
ing body of work identifying homophily across fields, ranging from economics 
(see, Benhabib, Bisin, and Jackson 2011), to political science (see Huckfeldt and 
Sprague 1995), to sociology (see McPherson, Smith-Lovin, and Cook 2001).

In general, similarity of connected individuals on malleable traits (such as politi-
cal affiliation, education, etc.) can be rooted in one of two processes: (i) selection, or 
assortative matching, in which similarity begets association, the process modeled in 
this paper; or (ii) socialization or convergence, in which social ties generate similar-
ity. One way to disentangle these processes entails a study of exogenous characteris-
tics, such as height or race (see, Goeree et al. 2010, Marmaros and Sacerdote 2006, 
and Mayer and Puller 2008, who identify significant levels of homophily with 

4 The observation that people connect to those similar to them is, in fact, a rather old one. Aristotle remarked 
in his Rhetoric and Nichomachean Ethics that people “love those who are like themselves.” Plato commented in 
Phaedrus that “similarity begets friendship.”
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respect to these attributes). Another approach is to consider longitudinal data, as 
in Kandel (1978). She studied adolescent friendships and the extent of similarity 
across dyadic connections regarding four attributes (frequency of current marijuana 
use, level of educational aspirations, political orientation, and participation in minor 
delinquency) at several stages of friendship formation and dissolution. Kandel 
(1978) found that observed homophily was the outcome of a significant combina-
tion of both types of processes.

On the theoretical side, several recent papers directly address preferences for sim-
ilarity. Currarini, Jackson, and Pin (2009) assume homophilic behavior and study 
its consequences in a friendship formation model.5 P ̨eski (2008) derives a prefer-
ence for similarity endogenously. He assumes certain properties of preferences over 
friends (complementarities between direct friends and second-degree friends) and 
the possibility of confusing people who are similar to one another. The necessity to 
differentiate friends and enemies as much as possible then leads individuals to form 
friendships with those who are similar.

The underlying idea that the group of players in a strategic situation is, in itself, 
endogenous motivates some of the work on club formation (see, e.g., Ellickson 
et al. 1999 and Wooders, Cartwright, and Selten 2006). The basic model of that 
literature assumes some form of externality across individuals and studies endog-
enous group formation (often in a general equilibrium setup) in the presence of 
these externalities. Our approach differs in that externalities in our setting arise only 
through the public good contributions (specifically, no goods are traded after groups 
are formed). Furthermore, we focus on the characteristics of the emergent groups 
(namely, the distribution of tastes as a function of the environment’s fundamentals).

Several elements of our model are reminiscent of work in other areas. First, the 
idea that agents may choose peer groups that match their preferences is an ongo-
ing theme in the theory of public choice, going back to Tiebout (1956). These 
models define municipalities by the government services and tax rates that they 
offer. Individuals choose a community that maximizes their utility. Nonetheless, 
the strategic interaction that follows and the structure of utilities are very differ-
ent. Furthermore, much of that work is concerned with the efficiency of such pro-
cesses, rather than with the similarity or heterogeneity of equilibrium communities.6 
Second, the notion that agents optimally select those with whom they communicate 
appears also in Calvó-Armengol, De Martí, and Prat (2011). They consider a set of 
connected agents who differ in the accuracy of their exogenously provided private 
information, and are ex ante identical otherwise. In contrast, we characterize the 
endogenous similarity within groups in which all agents freely communicate with 
all others.

Recently, there has been a proliferation of work illustrating the potential explana-
tory power of social connections regarding individual outcomes across contexts, 
covering public goods provision, crime, job search, political alliances, trade, 

5 Bramoullé et al. (2012) study a related model of friendship formation in which agents of the same “group” are 
more likely to meet (and befriend) one another. They characterize the resulting connection characteristics.

6 Regarding this line of research, our results in Section III share some common elements with Greenberg and 
Weber (1986) and Demange (1994). We refer to that section for a comparison between our approach and theirs.
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friendships, and information collection.7 Particularly in view of the vast literature on 
homophily, an important empirical issue in this literature is that correlations between 
behavior and outcomes of individuals and their peers may be driven by common 
unobservables and, therefore, be spurious (see Evans, Oates, and Schwab 1992; and 
Manski 1993, 2000). Understanding similarity patterns is potentially important for 
mitigating such endogeneity problems.

I.  The Model

There is a population of agents. Each agent is characterized by a taste parameter 
t ∈ [0, 1]. The agents are divided into groups of size n ≥ 2.8 A group may consist 
of agents with different parameters. Each agent takes one of two actions, A and B. 
The payoff of an agent U(t, ​k​A​, ​k​B​) depends on his own taste parameter t, and on 
the number of actions A or B taken by all the members of the group, respectively ​
k​A​ and ​k​B​ = n − ​k​A​. We interpret A and B as two tasks to which agents can con-
tribute. Tasks can stand for different public projects, different issues on which to 
collect information, etc. Each agent can select simultaneously which task to make 
one contribution to.9 Throughout the paper, we assume that contributions are free. 
This may fit environments in which a contribution does not entail a substantial effort 
(say, reading different parts of the newspaper), or situations in which some form of 
contribution is par for the course, and individuals face only a choice of what task 
to focus on— e.g., which website to visit while surfing the Internet (those directed 
at child-rearing or those focusing on investment advice), which volunteer groups 
to join, which part of the newspaper to read in the morning (the food section or the 
book reviews), and so on.

For the sake of technical convenience, we will assume that U(t, ​k​A​, ​k​B​) is defined 
over ​[ 0, 1 ]​ × ℝ × ℝ and is twice continuously differentiable with respect to all 

arguments, increasing in ​k​A​ and ​k​B​, and that ​ ​∂​ 2​U
 _ 

∂​k​ A​ 2 ​
 ​ < 0, ​ ​∂​ 2​U

 _ 
∂​k​ B​ 2 ​

 ​ < 0, ​  ​∂​ 2​U
 _ ∂​k​A​∂​k​B​
 ​ ≥ 0, ​ ​∂​ 2​U

 _ ∂t∂​k​A​
 ​ > 0, 

and ​ ​∂​ 2​U
 _ ∂t∂​k​B​
 ​ < 0.10 In words, outcomes improve with additional contributions, but 

exhibit decreasing marginal returns to contributions on either task. Furthermore, 
an increase in contributions toward one task does not reduce the marginal returns 
from contributions to the other task. Last, types are a proxy for how much agents 
care about task A relative to task B, with higher parameter values of t corresponding 

7 This literature is too extensive to survey here. Important work includes Coleman, Katz, and Menzel (1966); 
Conley and Udry (2010); Foster and Rosenzweig (1995); Glaeser, Sacerdote, Scheinkman (1996); Granovetter 
(1995); Katz and Lazarsfeld (1954); and Topa (2001).

8 Assuming that the group size is exogenous captures situations in which agents face a fixed contraint on how 
much time and effort they can invest in communication, or social interactions. While the group size is exogenous 
throughout Section II, it becomes endogenous in the analysis in Section III. We do note that some evidence suggests 
that there is a cognitive cap on the number of active social ties humans can maintain. Projecting from primates, 
Dunbar (1992) estimated this number to be around 150, while more recent work suggests that the number in modern 
times is closer to 300 (see, e.g., McCarty et al. 2000).

9 The analysis of the paper does not change if we assume that each agent can make any fixed number of contri-
butions h ≥ 1.

10 While the number of agents contributing to either task is, by definition, discrete, the assumption that the utility 
is defined over continuous variables allows us to use calculus and makes the presentation of assumptions and results 
easier. Had we defined utility over integer arguments for the task contributions, we could choose a smoothing of the 
function that would correspond to the utility functions considered here.
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to agents who care more about contributions directed at task A. In particular, these 
assumptions imply that ​ 

​∂​ 2​U(t, k, n − k)
 _ ∂t∂k

  ​ > 0 and U(t, k, n − k) is strictly concave in k.11

A large class of utility functions satisfies the above assumptions. For instance, 
consider two production functions ​f​A​ and ​f​B​ , increasing and concave, that map effort 
into utilities derived from either task. Assume that the general utility for an agent of 
taste t ∈ [0, 1], who is in a group of n agents, ​k​A​ of whom invest their unit of effort 
in dimension A and ​k​B​ = n − ​k​A​ of whom invest their unit of effort in dimension B, 
is given by the weighted average

 	U  (t, ​k​A​, ​k​B​)  ≡  t ​f​A​(​k​A​)  +  (1  −  t) ​f​B​(​k​B​),

which satisfies all assumptions above.12 Another example of utility that satisfies the 
assumptions above is the Cobb-Douglas utility U(t, ​k​A​, ​k​B​) ≡ ​​( ​k​A​ )​​t​(​k​B​​)​1−t​.13

For any group composed of agents with tastes ​( ​t​1​, … , ​t​n​ )​, expected payoffs are 
ultimately identified by the profile of chosen tasks ​( ​x​1​, … , ​x​n​ )​, where ​x​i​ ∈ ​{ A, B }​ 
is the task chosen by agent i. We call the induced game the task-selection game. 
As a tie-breaking rule, we assume that an agent who is indifferent between tasks A 
and B makes an A-contribution (this simplifies the exposition, but is not crucial for 
our analysis). We focus on equilibria in pure strategies. As it turns out, given our 
tie-breaking rule, a pure equilibrium exists and the volume of equilibrium A- and 
B-contributions is determined uniquely, as the following lemma guarantees.

Lemma 1 (Existence and Uniqueness): For any group of n agents with tastes  
​t​1​ ≥ ​t​2​ ≥ ⋯ ≥ ​t​n​, there exists ​k​*​ ∈ ​{ 0, … , n }​ such that all agents i ≤ ​k​*​ selecting 
task A, and all agents i > ​k​*​ selecting task B, is part of a Nash equilibrium of the 
task-selection game. Furthermore, all Nash equilibria of the task-selection game 
entail the same number ​k​*​ of agents selecting task A.

II.  Stable Groups in Infinite Populations

In this section, we consider an extended game composed of two stages. First, for a 
given group size n, each agent of taste t ∈ [0, 1] can choose the tastes of the remaining 

11 Indeed,

	​ 
​∂​ 2​U(t, k, n  −  k)

  __ 
∂t∂k

 ​   = ​ 
​∂​ 2​U(t, k, n  −  k)

  __  
∂t∂​k​A​

 ​   − ​ 
​∂​ 2​U(t, k, n  −  k)

  __  
∂t∂​k​B​

 ​   >  0.

Furthermore,

	​ 
​d​ 2​U(t, k, n  −  k)

  __ 
d​k​ 2​

 ​   = ​ 
​∂​ 2​U(t, k, n  −  k)

  __ 
∂​k​ A​ 2 ​

 ​   + ​ 
​∂​ 2​U(t, k, n  −  k)

  __ 
∂​k​ B​ 2 ​

 ​   −  2 ​ 
​∂​ 2​U(t, k, n  −  k)

  __  
∂​k​A​∂​k​B​

 ​   <  0.

12 In Section IV, we focus on a particular incidence of this family, in which the production functions are  
​f​A​​( ​k​ A​ )​ = 1 − ​ 1 _ 2 ​ ​​( 1 − ​q​A​ )​​ ​k​ A​​ and ​f​B​​( ​k​ B​ )​ = 1 − ​ 1 _ 2 ​ ​​( 1 − ​q​B​ )​​ ​k​ B​​, corresponding to an environment in which contri-
bution to a task translates into the collection of a potentially informative signal.

13 This example requires us to restrict the definitions above to ​k​A​, ​k​B​ ∈ ​ℝ​+​ or, alternatively, to extend the func-
tion to ​[ 0, 1 ]​ × ℝ × ℝ.
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n − 1 agents in her group.14 Second, the task-selection game described above is 
played. Since Lemma 1 guarantees that the equilibrium volume of A-contributions 
is determined uniquely in the task-selection game, the agent’s optimization problem 
in the first stage of this extended game is well defined. We denote the set of optimal 
groups chosen by agent t at the first stage by O(t), each element of which contains t 
as a member. We define stability in the first stage of the extended game as follows.

Definition (Stable Group): A group (​t​1​,…, ​t​n​) is stable if it is optimal for all its 
members—i.e., (​t​1​,…, ​t​n​) ∈ ​ ∩ ​ i=1​ n

  ​O(​t​i​).

In a stable group, each agent maximizes her expected utility given the tastes of 
others in the group, foreseeing the equilibrium played in the task-selection game 
that ensues. This notion of stability is, therefore, a natural equilibrium condition for 
the group-selection stage in an environment that allows individuals to connect in an 
unconstrained way (except for the fixed group size n).

The goal of this section is to analyze the group properties entailed by this stability 
notion. First, denote by ​n​ A​​( t )​ the optimal number of A-contributions an agent with 
taste parameter t would choose out of a total of n available contributions. That is, 
given t ∈ [0, 1], ​n​ A​​( t )​ is the maximal integer k such that

(1) 	  U(t, k, n − k) ≥ U(t, k − 1, n − k + 1)

is satisfied. If (1) is not satisfied for any k, we define ​n​ A​​( t )​ = 0. Let  
​n​ B​(t) ≡ n − ​n​ A​(t). Therefore, ​( ​n​ A​​( t )​, ​n​ B​​( t )​ )​ represents the unconstrained optimal 
allocation of n contributions for an agent of taste t. Our assumptions on the under-
lying utility functions together with the tie-breaking rule assure that U(t, k, n − k) is 
strictly concave in k, and the definition of ​n​ A​(t) indeed corresponds to the (generi-
cally) unique optimal number of A-contributions for an agent of type t. As t increases, 
an agent with taste parameter t cares more about task A and so that agent’s opti-
mal allocation entails more contributions directed at that task. In particular,  
​n​ A​​( t )​ increases with t.15 Furthermore, our assumptions guarantee that ​n​ A​(t) increases 
with the group size n.

Given a group size n, consider the optimal group composition from the point of 
view of an agent with taste parameter t ∈ [0, 1]. Any first-best group for an agent 
with taste parameter t is composed so that ​n​ A​​( t )​ agents make an A-contribution, and ​
n​ B​​( t )​ agents make a B-contribution, therefore achieving the unconstrained optimal 
allocation for an agent of taste t. Groups consisting of all agents sharing the taste 
parameter t are, therefore, optimal. Nonetheless, an optimal group for the agent of 
taste t can also be composed of just the right number of extremists on each side, 
thereby achieving maximal polarization.16

14 For now, we assume that the pool of potential agents to choose from is infinite and that any combination of 
tastes is feasible. In Section III, we restrict the set of agents to a finite population.

15 See the Proof of Proposition 1 in the Appendix for details.
16 See Step 1 of the Proof of Proposition 1 for a characterization of the set of optimal groups, O(t), for any agent 

of taste t.
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Since an agent’s optimal group entails her unconstrained optimal allocation of n 
contributions across the tasks A and B in the task-selection game, in a stable group in 
which all agents optimize on their peers’ tastes, all agents have to agree on the opti-
mal allocation of contributions across the two tasks. In particular, a group formed by 
identical agents is always stable and stable groups always exist in this setting. More 
generally, stable groups are characterized as follows.

Proposition 1 (Equilibrium Sorting): For any group size n, there exists v and  
​v′​, with 0 ≤ ν ≤ ​v′​ ≤ n such that, letting ​T​ k​  n​≡​{ t | ​n​ A​​( t )​ = k }​ for ​v′​ ≤ k ≤ v, then:

	 (i)	 The sets ​​{ ​T​ k​  n​ }​​ k=v​ ​ν​ ′​  ​ are a sorted partition of the interval [0, 1],  
where ​T​ v​  n​ = [0, t ​( v + 1) )​, ​T​ k​  n​ = [t (k), t ​( k + 1) )​, for k = v, … , ​ν′​ − 1, and  
​T​ ​ν​ ′​​  n

 ​ = [t(​ν′​  ), 1];

	 (ii)	 A group comprised of agents with tastes ​( ​t​1​, … , ​t​n​ )​ is stable if and only if 
there exists k = v, … , ​ν′​, such that for all i, ​t​i​ ∈ ​T​ k​  n​. That is, all taste param-
eters in the group belong to the same element of the partition.

Proposition 1 guarantees that stable groups can be formed only by agents whose 
tastes are close enough—namely, they lie in one of the intervals ​T​ k​ n​. Intuitively, con-
sider the optimal number of A-contributions ​n​ A​(t) that each agent of taste t would 
choose. Recall that, since types are a proxy for how much agents care about task 
A relative to task B, ​n​ A​(t) is an increasing function. Each interval in the partition  
{​T​ k​  n​​}​k​ includes all taste parameters of agents who agree on a given optimal allocation 
of contributions, namely all agents for whom ​n​ A​​( t )​ = k for some k. The monotonic-
ity of ​n​ A​(t) guarantees that the set of types satisfying such an equality is an interval.

In order to easily depict this result, and describe some of the results that fol-
low, it is useful to consider a smoothing of ​n​ A​(t). Specifically, whenever there is a 
real number achieving equality within constraint (1), under our assumptions on U 
that number is unique, and we denote it by ​m​ A​(t); If the left- (or right-) hand side 
of constraint (1) is always greater than the right- (or left-) hand side, we denote ​ 
m​ A​(t) = n (or ​m​ A​(t) = 0). In what follows, we will assume that ​m​ A​(t) is differen-
tiable over (0, 1). 17 We get that ​n​ A​​( t )​ = ​⌊ ​m​ A​​( t )​ ⌋​ if ​m​ A​(t) ∈ [0, n], ​n​ A​(t) = 0 if  
​m​ A​(t) < 0, and ​n​ A​(t) = n if ​m​ A​(t) > n. Roughly speaking, ​m​ A​​( t )​ captures the point 
at which the agent is indifferent between staying with her current allocation and shift-
ing one contribution toward the B-task. The function ​m​ A​​( t )​ is depicted in Figure 1 
for a case in which the number of intervals is maximal, i.e., ν = 0 and ​v′​ = n. Each 
interval in the partition {​T​ k​  n​​}​k​ includes all taste parameters of agents who agree on 
a given optimal allocation of contributions. In Figure 1, agreement on the number 
of A-contributions ​n​ A​​( t )​ = k corresponds to the interval of taste parameters that 

17 As mentioned before, this assumption is not restrictive in that for any U defined on discrete contributions, we 
could find an extension of it over the real line that satisfies this constraint. Notice further that whenever there is a 
solution to U​( t, ​m​  A​(t), n − ​m​  A​(t) )​ = U(t, ​m​  A​(t) − 1, n − ​m​  A​(t) + 1), it is unique due to our assumptions on the 
decreasing marginal returns of contributions on each task.
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is projected from [k, k + 1) on the y-axis. That is, the interval of tastes for which  
​m​ A​​( t )​ ∈ [k, k + 1) and ​n​ A​​( t )​ = k.

A. Group Size

Many recent technologies, such as e-mail, instant messaging, online networks, 
etc., allow individuals to connect to one another with greater ease. It has been empir-
ically observed that larger groups tend to be characterized by an increased degree of 
similarity.18 In light of this evidence, we now look at how stable groups are affected 
by arbitrarily increasing group size.19

Consider first the Cobb-Douglas example, where U(t, ​k​A​, ​k​B​) ≡ ​​( ​k​A​ )​​t​(​k​B​​)​1−t​. It is 
straightforward to see that the optimal number of A-contributions for an individual 
of type t is given by ​n​ A​(t) ∈ ​{ ​⌊ nt ⌋​, ​⌈ nt ⌉​ }​. In particular, as n grows, the intervals of 
agent types that agree on the allocation of contributions shrink at a rate of 1/n. That 
is, stable groups become asymptotically homogeneous. As it turns out, this is not 
always the case.

As before, we denote by ​​{ ​T​ k​ n​ }​​ k=0​ 
ν  ​ the partition of the unit interval into subintervals 

defining stability. Since each stable interval is a projection of the function ​n​A​(t) on 
the x axis, the “flatter” is that function, the larger are the projected intervals. It is 
therefore intuitive to presume that the behavior of the intervals ​​{ ​T​ k​ n​ }​​ k=0​ 

ν  ​ as n diverges 

18 See, for instance, Currarini, Jackson, and Pin (2009) and references therein.
19 Note that the comparative statics with respect to group size n are fully isomorphic to a comparative statics exer-

cise in which the group size is fixed, but we increase the number of contributions that each agent makes from 1 to any 
h ≥ 1. In this case, group stability requires all agents in the group to agree on how to allocate n × h contributions.
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is linked to the behavior of the slope of ​m​ A​(t), the continuous approximation of ​n​ A​(t),  
as suggested by Figure 1.

As it turns out, the intervals in which the slope of ​m​ A​(t) is bounded above, as n 
increases, remain of substantial size and do not converge to singletons. This guaran-
tees that some degree of heterogeneity persists in stable groups as n diverges.

Proposition 2 (Large n): Suppose there exists ​[ a, b ]​ ⊂ ​[ 0, 1 ]​ in which ​ 
d​m​  A​(t)
 _ 

dt
  ​ is 

uniformly bounded for all n. Then, there exists L such that ​| ​{ k | ​T​ k​ n​ ∩ ​[ a, b ]​ ≠ ⌀ }​ |​ ≤ L 
for all n.

Intuitively, from Figure 1, whenever the slope of ​m​ A​(t) is bounded by M over an 
interval ​[ a, b ]​, the image of ​[ a, b ]​ corresponds to an interval on the y-axis of size 
at most M(b − a). Now, stable groups are determined according to the projection 
of intervals between integers on the y-axis via ​m​ A​(t) on the type-axis. Therefore, 
the number of stable groups agents with taste parameters in ​[ a, b ]​ can belong to 
is at most the number of such intervals (those between integers on the y-axis) that  
​m​ A​​( ​[ a, b ]​ )​ intersects, which is bounded.

In terms of fundamentals, using the definition of ​m​ A​(t) and the Implicit Function 
Theorem, we get

(2) ​ 
d​m​ A​(t)
 _ 

dt
 ​   =

  ​ 
​ 
∂U(t, ​m​  A​, n − ​m​  A​)

  __ 
∂t

  ​  −  ​ 
∂U(t, ​m​  A​ − 1, n − ​m​  A​ + 1)

   __  
∂t

  ​
     ______       

− ​ 
∂U(t, ​m​  A​, n − ​m​  A​)

  __ 
∂​k​A​

 ​  + ​ 
∂U(t, ​m​  A​, n − ​m​  A​)

  __ 
∂​k​B​

 ​  + ​ 
∂U(t, ​m​  A​ − 1, n − ​m​  A​ + 1)

   __  
∂​k​A​

 ​  − ​ 
∂U(t, ​m​  A​ − 1, n − ​m​  A​ + 1)

   __  
∂​k​B​

 ​

 ​ .

From (2), it is immediate to translate the condition of Proposition 3 into condi-

tions on the underlying utilities. For instance, whenever the two tasks are indepen-

dent, so that ​ 
​∂​ 2​U(t, ​k​A​, ​k​B​)
 _ ∂​k​A​∂​k​B​

  ​ = 0, and all other second derivatives are uniformly bounded 

away from 0 for all n, the condition is satisfied.20 The information-sharing appli-
cation presented in Section IV represents one example in which the condition is 
satisfied.

20 When tasks are independent, from the Mean-Value Theorem, (2) translates into

 	​  
d​m​  A​(t)
 _ dt  ​  = ​ 

​  ​∂​ 2​U _ 
∂t∂​k​B​

 ​  − ​   ​∂​ 2​U _ 
∂t∂​k​A​

 ​

  __  
​ ​∂​ 2​U _ 
∂​k​ A​ 2 ​

 ​  + ​  ​∂​ 2​U _ 
∂​k​ B​ 2 ​

 ​

  ​ ,

where derivatives are evaluated at numbers between 0 and n. When the nominator is bounded, and the denominator 

is bounded away from 0, ​ d​m​ A​ _ dt  ​ is bounded as well. In particular, the condition of Proposition 3 ties to the asymptotic 
curvature of the underlying utility.
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III.  Stable Groups in Finite Populations

Thus far, our notion of stability has imposed no restrictions on the groups avail-
able for the agents to join. Indeed, agents contemplate all possible combinations 
of tastes when choosing their optimal peer group. This is a good description for 
very large (strictly speaking, infinite) populations, and allows us to derive a clean 
characterization of stable groups in different contexts. However, when a finite popu-
lation of agents is partitioned into groups, there is a restricted set of groups that is 
conceivably available to an agent. In this section, we study partitions of agents into 
groups that are endogenously stable. That is, we look for partitions of the population 
into groups such that no feasible deviation of an agent to a different existing group 
(or to a singleton), is profitable.

Suppose, then, that there is a finite set of agents N = ​{ 1, … , l }​. Let  
T = {​t​1​, … , ​t​r​} be the set of tastes represented in N, and denote by ​N​i​ ⊆ N the set 
of agents with taste ​t​i​, ​| ​N​i​ |​ = ​m​i​ for i = 1, … , r. Thus, N = ​∪​ i=1​ r

  ​​N​i​ and, without 
loss of generality, we assume ​t​1​ > ⋯ > ​t​r​ . In analogy with our baseline setup, 
the extended game that the agents in the set N play consists of two stages. First, 
the population N is partitioned into groups. Let  = {​G​1​, … , ​G​s​} be the resulting 
partition of N.21 Importantly, here we do not exogenously fix the size of the groups 
composing the partition . The second stage of the game coincides with the task-
selection game described in Section I.

Within each group ​G​i​, a task-selection equilibrium corresponds to the description 
in Lemma 1. To complete the analysis of this game, we can focus on the group-
formation stage. We define stability in this setting as follows.

Definition (Stable Partition): A partition  = {​G​1​, ..​G​s​} is stable if there exist 
no ​G​i​, ​G​j​ ∈  and a ∈ ​G​i​ such that agent a prefers either the group ​G​j​ ∪ ​{ a }​ or  
the singleton ​{ a }​ to ​G​i​.

This notion of a stable partition is reminiscent of the notion of the core, which 
also requires a type of group stability. Nonetheless, there are several important dis-
tinctions. First, the setup is different—cooperative games normally specify group 
values, rather than individual values within groups that are derived endogenously 
from a strategic interaction. Second, cooperative solutions (e.g., the core) are more 
restrictive in that they allow for arbitrary group deviations, not only unilateral ones. 
Thus, if we take a group’s value to be the sum of its members’ expected utilities, 
the set of stable groups we look at corresponds to a superset of the core, which in 
this setting corresponds to the grand coalition only. Finally, the core identifies stable 
allocations of resources, rather than a characterization of the emerging partitions 
themselves. Since adding a member to a group is costless, and a new group member 
provides more contributions in the task-selection stage, groups always benefit from 

21 So that ​G​i​ ∩ ​G​j​ = ⌀ for all i ≠ j and ​∪​ i=1​ s  ​ ​G​i​ = N.
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adding more members. Thus, we do not have to attend to any issues pertaining to the 
willingness of a group to accept a new member.22

Certainly, the grand coalition  = ​{ N }​ is always a stable partition and, in fact, 
it is the welfare-maximizing partition.23 In what follows, we study the stability of 
other partitions. In particular, Proposition 3 addresses two properties of any stable 
partition. Namely, agents of similar tastes cluster together, and all agents sharing 
the same taste must be contained in the same group.

Proposition 3 (Consecutive and Minimal Groups): In any stable partition ,

	 (i)	 All groups are consecutive, i.e., if ​t​i​ > ​t​j​ > ​t​h​, and two agents with tastes ​t​i​ 
and ​t​h​ are in a group G ∈  then any agent with taste ​t​j​ must be in G as well;

	 (ii)	 All agents with the same taste are contained in the same group, i.e., for each ​
t​i​, there exists a unique G ∈  such that ​N​i​ ⊆ G.

Point (i) of Proposition 3 is a sorting result in the spirit of Proposition 1: in any 
stable partition, groups are characterized by individuals that are similar enough in 
taste.24 Point (ii) of Proposition 3 implies that the maximal number of groups con-
tained in a stable partition is bounded by the total number r of different taste param-
eters in the population. Intuitively, consider the first part of the Proposition. If the 
agent of type ​t​j​ prefers a different group ​G′​ than the group G containing agents of 
types ​t​i​ and ​t​h​, then G must involve the collection of either more contributions to 
task A or more contributions to task B relative to ​G′​ (or else the ​t​j​ -type agent would 
benefit by switching to G). Suppose more contributions are directed at task A in G. 
Since the agent of type ​t​h​ cares even more than the ​t​j​ -type agent about task A, and 
her switch to ​G′​ would assure an even greater overall contribution volume (in ​G′​ 
augmented with her participation), the ​t​h​-type agent cannot be optimizing.

The intuition for point (ii) of Proposition 3 is similar. Suppose that two agents 
a and ​a′​ with the same taste parameter ​t​i​ belong to two different groups G and ​G′​,  
respectively. Consider the agent a of taste parameter ​t​i​ in G. Since  is stable, this 
agent must prefer to stay in G rather than being in ​G′​ ∪ {a}. However, since a and ​
a′​ have the same tastes, and a shift of agent ​a′​ to group G would entail even more 
contributions made, this implies that agent ​a′​ must prefer being in G ∪ {​a′​ } rather 
than in ​G′​, which contradicts the stability of .

IV.  Information Sharing in Groups

We now consider a particular application of our model to environments in which 
contributions provide access to information. Specifically, suppose there are two 

22 See Bogomolnaia et al. (2007) for a study of environments in which stability is affected by the willingness of 
group members to accept an individual migrating from another group to their own.

23 This is in contrast with the underlying assumption in Demange (1994), who studies a similar question in a setup 
where the grand coalition generates inefficient outcomes and, unlike here, any collection of agents can jointly deviate.

24 The notion of “consecutive groups” is reminiscent of the one adopted by Greenberg and Weber (1986) in the 
context of characterizing the core in Tiebout multi-jurisdictional economies.
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issues at stake: α and β, each taking a value in ​{ 0, 1 }​. The values of α and β are 
determined independently at the outset of the game. We assume that each issue 
I ∈ {α, β} has equal probability of receiving the value 0 or 1.25 Issues can stand for 
many problems, ranging from choices of the best food shop and bookstore, to select-
ing physicians in two different areas of expertise (say, a dentist and a pediatrician).

The agent’s goal is to match her actions with the realized issues. The taste param-
eter t measures how much an agent’s utility is affected by making the right decision 
on each issue.26 The utility the agent derives is the sum of two components. If she 
makes the right decision on issue α, she receives a payoff of t (and 0 otherwise); 
if she makes the right decision on issue β, she receives a payoff of 1 − t (and 0 
otherwise). For example, all agents benefit by choosing a superior supermarket and 
a superior bookstore, but, depending on their consumption patterns, they may differ 
in how much one affects their utility with respect to the other. Similarly, agents may 
be affected differently by the selection of an able dentist relative to a pediatrician 
depending on their age, health, and family status.

Contributing to a task in this setting translates into the collection of information. 
In other words, prior to making a decision, each agent can select simultaneously one 
of two information sources, A or B, corresponding to the two issues. Information 
source A (a contribution to task A) provides the realized issue α with probability ​
q​A​ > 0. That is, upon choosing information source A, the agent observes a signal 
s ∈ {0, 1,⌀} according to

 	​  Pr ​ 
 
 ​  
 ​​( s  =  α )​  = ​ q​A​,   ​ Pr ​ 

 
 ​  
 ​​( s  =  ⌀ )​  =  1  − ​ q​A​.

Similarly, information source B (a contribution to task B) provides the realized issue 
β with probability ​q​B​ > 0.

If ​k​ A​ contributions are made toward task A (i.e., ​k​ A​ A-signals are collected), the 
probability of making the right decision on that issue is given by ​[ 1 − ​ 1 _ 2 ​​​( 1 − ​q​A​ )​​​k​  A​​ ]​.  
Similarly for issue B. The resulting utility for an individual in a group in which ​k​  A​ 
contributions are made toward task A and ​k​ B​ contributions are made toward task B 
is given by

(3) 	U (t, ​k​ A​, ​k​ B​)  ≡  t​[ 1  − ​  1 _ 
2
 ​ ​​( 1  − ​ q​A​ )​​​k​ A​​ ]​  +  (1  −  t)​[ 1  − ​  1 _ 

2
 ​ ​​( 1  − ​ q​B​ )​​​k​ B​​ ]​, 

which satisfies all of our assumptions.

A. Information Sharing in Infinite Populations

The stability concept for the infinite population case, introduced in Section II, is 
a natural equilibrium condition in an environment that allows individuals to connect 
in an unconstrained way, such as online forums, information networks, blogs, etc.

25 The entire analysis can be extended directly to asymmetric priors.
26 While in this setting the issues are common value (so, the right decision for all agents is identical), our 

analysis would follow the same lines if agents had different opinions on what is the right decision conditional 
on the realized issue.
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An agent’s optimal group entails her unconstrained optimal allocation of n sig-
nals across the sources A and B being selected in the task-selection, or information-
collection game. Thus, in a stable group in which all agents optimize on their peers’ 
tastes, all agents have to agree on the optimal allocation of signals across the two 
sources. In this setting, extreme agents (with taste parameters t = 0 or t = 1) prefer 
all signals to be collected on the issue they care about. Proposition 1 then implies 
that for any group size n, there exists a partition ​​{ ​T  ​ k​ n​ }​​ k=0​ 

n
  ​ of the interval [0, 1], where  

​T  ​ 0​  n​ = [0, t(1)), ​T  ​ k​  n​ = [t(k), t(k + 1)), for k = 1, … , n − 1, and ​T  ​ n​  n​ = [t(n), 1] such 
that a group comprised of agents with tastes ​( ​t​1​, … , ​t​n​ )​ is stable if and only if all taste 
parameters in the group belong to the same element of the partition. That is, the num-
ber of intervals characterizing stable groups is maximal. In the information-sharing 
application, the following Proposition further describes the partition {​T  ​ k​  n​​}​ k=1​ n−1​.

Proposition 4 (Information Sharing—Stable Groups): In the information-
sharing case, the length of the intervals {​T​ k​  n​​}​ k=1​ n−1​ is increasing for k = 1, … ​  k ​ and 
decreasing for k = ​  k ​, … , n − 1, where ​  k ​ is such that ​ 1 _ 2 ​ ∈ ​T  ​ ​  k ​​ 

n
 ​ or ​ 1 _ 2 ​ ∈ ​T  ​ ​  k ​+1​ 

n
  ​. Thus, 

the intervals {​T​ k​ n​​}​ k=1​ n−1​ are narrower for extreme tastes, and wider for moderate 
tastes.27

The length of the intervals {​T  ​ k​ n​​}​ k=0​ n
  ​ provides a proxy for equilibrium homoph-

ily: the narrower an interval is, the closer the agents’ tastes have to be in order for 
them to form a stable group. Proposition 4 addresses how the intervals’ lengths are 
affected by the proximity of the intervals to the extreme tastes. In particular, the 
proposition implies that stability requires more similarity for extreme individuals 
than for moderate ones. We note that the comparative statics of Proposition 4 is tied 
to the particular notion of distance implied by the linearity of the utility function 
we consider. From an empirical perspective, we view this specification as a natural 
one to consider as it would be the one directly obtained from a linear estimation of 
the utility as a function of the different issues. After a normalization with respect 
to overall preference intensity, the coefficient obtained in such an estimation would 
correspond to our parameter t.

In order to see the intuition underlying this result, consider the function ​m​A​(t), 
which approximates the optimal number of A-signals for an agent of taste t. Observe 
that by raising t above ​ 1 _ 2 ​, the relative value of an A-signal increases since the agent 
cares more about issue α than issue β. However, a countervailing force is in effect. 
Indeed, when the optimal number of A-signals increases with t (and the optimal 
number of B-signals decreases), the marginal return of an A-signal relative to a 
B-signal decreases. For the sake of simple intuition, let us focus on the symmetric 
case ​q​A​ = ​q​B​ ≡ q. From the definition of ​m​A​(t) and equations (1) and (3), after some 
manipulations, we get that in this environment ​m​A​(t) satisfies

(4) 	​    t _ 
1 − t

 ​  = ​ 
​q​B​(1 − ​q​B​​)​n−​m​  A​(t)​

  __  
​q​A​(1 − ​q​A​​)​​m​  A​(t)−1​

 ​  =  (1  −  q​)​n−2​m​  A​(t)+1​.

27 In the Appendix, we show that, under mild conditions on ​q​α​, ​q​β​ , and n, this result extends to the entire 
sequence {​T​ k​  n​​}​ k=0​ 

n  ​. For example, ​( 1 − ​q​α​ )​ ​( 1 − ​q​β​ )​ < 1/2 and n high enough, are sufficient to guarantee this.
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Both sides of condition (4) are increasing in t, the left-hand side capturing the 
first, direct effect of an increase in t, and the right-hand side representing the mar-
ginal return of a B-signal relative to an A-signal. Defining the function correspond-
ing to the right-hand side of condition (4) as M(k) ≡ (1 − q​)​n−2k+1​, it is easy to see 

that ​ 
M(k + 1)
 _ 

M(k)  ​ is equal to a constant, namely, (1 − q​)​−2​. Thus, the right-hand side of 

condition (4) increases at a constant rate in ​m​ A​(t). On the other hand, the left-hand 
side of (4) increases at increasing rates in t when t > 1/2. This implies that, as t 
increases, ​m​ A​(t) has to increase at increasing rates to satisfy (4). In other words, ​m​ A​(t)  
must be convex for t > 1/2 and concave for t < 1/2. This induced shape of ​m​ A​​( t )​ 
implies the property described in Proposition 4 directly.28, 29

From an empirical point of view, these results are important for understanding 
the link between group composition and extremism of opinions. Some of the recent 
social psychology literature (see Myers 2007) suggests that more homogeneous 
groups tend to exhibit far more extreme opinions than heterogeneous ones following 
group interactions. While the social psychology literature focuses on mechanisms 
by which group dynamics generates extremism, our results imply that it is important 
to account for the way these groups are created to begin with. Specifically, the com-
parative statics we identify indicate that more extreme individuals would be more 
likely to form homogeneous groups in the first place.

As we did in Section IIA in the general case, we now look at how stable groups are 
affected by arbitrarily increasing group size in the information-sharing context. As it 
turns out, we can use the results of Proposition 2 directly. In fact, in the information-
sharing environment, ​ 

d​m​ A​(t)
 _ 

dt
  ​ is bounded above 0 for any interval ​[ a, b ]​ ⊂ (0, 1). 30 

For agents with extreme types, the optimal contribution to a task is close to the num-
ber of group participants n and so, as n increases, the function ​m​A​(t) defined above 
asymptotes at t = 0 and t = 1. We call the stable groups that choose all signals from 
the same source (i.e., have taste parameters in either ​T​ 0​ n​ or in ​T​ n​ n​) extreme stable 
groups. We call all other stable groups non-extreme stable groups. Proposition 2 
implies that non-extreme stable groups do not converge to singletons. This is not the 
case for extreme stable groups. These groups contain agents for whom the optimal 
allocation of n signals is a corner solution, which does not equalize the marginal 
utility of signals. As the number of signals n increases, more agents whose tastes are 
not at the extremes of the interval [0, 1] tend to reach interior solutions. We therefore 
get the following corollary.31

28 The reason why the extreme intervals can generally follow a different pattern is explained as follows. The 
extreme intervals collect all the taste parameters t such that the problem of the optimal allocation of signals across 
the two sources has a corner solution. Then, for example, for a given ​q​B​, if both ​q​A​ and n are very low, there is a 
wide range of ts for which it is optimal to get n B-signals. In order for the pattern to carry through for the extreme 
intervals, the signal accuracies and the group size need to be sufficiently large.

29 These intuitions can be easily generalized. While here we assume a particular signal generation process, when 
the marginal return of a signal does not decrease “too quickly,” the comparative statics described in Proposition 4 hold.

30 Indeed, in this setting,

 	​  
d​m​  A​​( t )​

 _ dt  ​  =  − ​  1  ___   
t​( 1  −  t )​  ln ​[ ​( 1  − ​ q​α​ )​ ​( 1  − ​ q​β​ )​ ]​ ​ ,

which implies that ​m​  A​​( t )​ shifts upward in a parallel way as n grows large.
31 We include a formal proof of part (ii) of Corollary 1 in the Appendix.
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Corollary 1 (Information Sharing—Large n):

	 (i)	 For any ​[ a, b ]​ ⊂ (0, 1), there exists L such that ​| ​{ k | ​T​ k​ n​ ∩ ​[ a, b ]​ ≠ ⌀ }​ |​ ≤ L 
for all n.

	 (ii)	 If two agents both belong to an extreme stable group of size n, then they both 
belong to an extreme stable group of any smaller size ​n′​ < n.

It is interesting to compare the results of the corollary with the empirical obser-
vations suggesting more homophily in larger groups cited in Section IIA. Since we 
indeed find that, as n increases, the extreme intervals tend to break down into an 
increasing number of smaller intervals, our result does not necessarily contradict 
this evidence. Instead, it qualifies it. The corollary highlights the fact that the loca-
tion within the taste spectrum may play an important role in identifying these sort of 
comparative statics: the tendency of larger groups to display more similarity should 
be stronger for extreme taste parameters than for moderate ones.

B. Information Sharing in Finite Populations

We now move to the stability concept associated with a finite population 
introduced in Section  III. As before, we assume there is a finite set of agents  
N = ​{ 1, … , l }​. Let T = {​t​1​, … , ​t​r​} be the set of tastes represented in N, and denote 
by ​N​i​ ⊆ N the set of agents with taste ​t​i​, ​| ​N​i​ |​ = ​m​i​ for i = 1, … , r.

We define the fully segregated partition to be the partition in which each set 
is formed only by agents of the same type, the partition  = ​{ ​N​1​, ​N​2​, … , ​N​r​ }​. 
Since Proposition 3 guarantees that agents of the same type cannot be divided 
across different groups in any stable partition, we can conclude that the fully 
segregated partition is the least efficient partition that could conceivably be 
stable. In order for the segregated partition to be stable, two types of restric-
tions need to hold. First, the different types need to be sufficiently dispersed, so 
that any agent a deviating to a homogeneous group composed of different-type  
individuals would find the allocation of contributions in the group far from her 
optimal allocation. Second, the number of agents of each type needs to be com-
parable: if ​m​i​ > > ​m​j​ , agents of type ​t​j​ would have stronger incentives to join ​
N​i​ in order to benefit from the volume of contributions made in that group. To 
focus on the first issue (identifying taste distributions that allow for segrega-
tion) and simplify our exposition, from now on we assume that ​| ​N​i​ |​ = m for all 
i = 1, … , r (we discuss the implications of relaxing this assumption at the end 
of this section).

The complete characterization of the necessary and sufficient conditions for the 
fully segregated partition to be stable in the information-sharing application directly 
exploits the characterization of the stable groups via the sequence {​T​ k​  n​​}​ k=0​ n

  ​ developed 
in Propositions 1 and 4. In more detail, consider an agent a with taste parameter  
​t​i​ ∈ {​t​1​, … , ​t​r​}. In the fully segregated partition, such an agent belongs to the group  
​N​i​. To show stability, we need to consider all possible deviations of agent a to any set ​ 
N​j​ ∪ {a}, j ≠ i. Since ​| ​N​i​ |​ = m for all i = 1, … , r, checking that deviations to the 
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groups closest in tastes, ​N​i−1​ ∪ {a} and ​N​i+1​ ∪ {a}, are not profitable is sufficient.32 
Thus, requiring a deviation from ​N​i​ to ​N​i+1​ ∪ {a} not to be profitable allows us to 
identify an upper bound for ​t​i+1​ for segregation to be stable. Similarly, requiring a 
deviation from ​N​i​ to ​N​i−1​ ∪ {a} not to be profitable allows us to identify a lower 
bound for ​t​i−1​ for segregation to be stable. Such bounds can be used to define an 
interval ​​i​ around each ​t​i​ such that full segregation is stable if and only if for any 
i ≠ j, ​t​j​ ∉ ​​i​. That is, ​t​i​ and ​t​j​ are sufficiently far from each other.

The idea that agents in other groups have sufficiently different tastes is then cap-
tured by them agreeing (among their cohesive groups of m agents) on very different 
allocations of signals. In particular, it can be shown that the intervals ​​i​ correspond 
to unions of the original intervals in the sequence {​T  ​ k​  m​​}​ k=0​ m

  ​. Figure 2 illustrates 
graphically the structure of the intervals ​​i​ and ​​i+1​ as unions of sets of the original 
sequence {​T  ​ k​  m​​}​ k=0​ m

  ​.
We now turn to the robustness of the basic comparative statics obtained in 

Section IVA. Recall that the main insight from Proposition 4 was that similarity in 
stable groups is stronger for extreme than for moderate tastes.33 In the same spirit, in 
the finite population case we show that segregation is easier to achieve for extreme 
types than for moderate ones. Intuitively, suppose that agent a has taste parameter ​
t​i​, and consider a deviation from the group ​N​i​ to ​N​i+1​ ∪ {a}. From Proposition 4, 
we know that the intervals {​T​ k​  m​​}​ k=0​ m

  ​, each containing all the ts that correspond to the 
same optimal allocation of m signals, are narrower for extreme taste parameters and 
wider for moderate taste parameters. Thus, for a given distance between ​t​i​ and ​t​i+1​,  

32 We have to consider just one potential deviation for agents with extreme tastes ​t​1​ and ​t​r​ .
33 In order to ease the description of our results, we assume that the sufficient conditions for the full sequence 

{​T​ k​  m​​}​ k=0​ 
m  ​ to follow the pattern described in Proposition 4 are met. These conditions are formally derived in the 

Appendix. They amount to ​q​A​, ​q​B​, and m being high enough.
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the disagreement between agent a and the agents in ​N​i+1​ is stronger if ​t​i​ and ​t​i+1​ are 
taste parameters closer to the extremes than if they are moderate. In other words, 
the intervals {​​i​ } follow a similar pattern described in Section IVA for the interval 
sequence {​T​ k​  m​​}​ k=0​ m

  ​.
This implies that, in information-sharing environments, moderate individuals can 

be quite heterogeneous without segregation emerging, whereas extremists can be 
less heterogeneous in comparison and still allow for multiple small and homoge-
neous groups. In particular, in the case of a finite population uniformly distributed on 
equidistant points on the interval [0, 1], the most segregated stable partition that can 
emerge will tend to display large, heterogeneous groups of moderate agents and mul-
tiple, smaller groups of extremists. Proposition 5 formalizes the above discussion.

Proposition 5 (Information Sharing—Stable Segregation): For any ​t​i​ ∈ T there 
exists an interval ​​i​ such that full segregation is a stable partition if and only if for 
any ​t​i​, ​t​j​ ∈ T, ​t​i​ and ​t​j​ are sufficiently far from each other: ​t​j​ ∉ ​​i​. Furthermore, full 
segregation is easier to sustain as stable for extreme tastes than for moderate tastes: 
there exists i such that the intervals ​​1​, ​​2​, … , ​​i​ are increasing in length; similarly, 
there exists j such that the intervals ​​j​, ​​j+1​, … , ​​s​ are decreasing in length.

To conclude this section, we address the implications of relaxing the assumption 
that ​| ​N​i​ |​ = m for all i, and allowing for the sets of agents sharing the same taste 
parameter to be of different sizes. Note that agents of the same taste will always want 
to be in the same group, following the lines of Proposition 1 above. Now, the larger 
the number of individuals of a particular taste parameter is, the more appealing the 
group that contains these individuals becomes (by the sheer volume of information 
they collect). Therefore, in order to achieve stable segregation, the other agents need 
to be further away in terms of their preferences. So, the band around a particular 
type that guarantees segregation increases in width with the number of agents of 
that type. This result can be applied to derive straightforward comparative statics 
with respect to the population distribution. For example, consider two cumulative 
distributions over tastes in the population G and ​G′​, such that G is a mean-preserving 
spread of ​G′​. In this case, the most segregated partition corresponding to ​G′​ will be 
characterized by larger and more heterogeneous groups of moderates, and smaller 
and more fractioned groups of extremists relative to the most segregated partition 
corresponding to G.

V.  Conclusion

The model developed in this paper addresses the properties of peer groups that 
arise in equilibrium when individuals have different tastes and make contributions 
to public projects. There are three main results that emerge from our analysis. First, 
sorting arises in equilibrium—stable groups are composed of individuals that are 
sufficiently similar in tastes. Second, stable groups may remain heterogeneous even 
when the population grows—in particular, they do not necessarily become so refined 
that they contain only one type of individual. Finally, when the population is small, 
it is natural to consider stable partitions of the population into groups. We show that 



Vol. 5 No. 3� 87baccara and yariv: homophily in peer groups

stable partitions are “consecutive,” whenever two types belong to the same partition 
element, so do all types that are ordered between them.

The model can naturally be applied to an information-sharing environment, in 
which members of a group share privately collected information. In this setting, 
the similarity observed among members of stable groups is more pronounced for 
extreme agents than for moderate ones. Furthermore, in small populations, full seg-
regation is easier to achieve for agents with extreme tastes than for agents with 
moderate ones.

Our basic model can be investigated further in several directions. Throughout 
the analysis we assume that contributions are free, and, for the infinite population 
case, we assume that group size is exogenously fixed (this last assumption allows 
us to isolate one aspect of choice, that of groups’ composition). There are then two 
natural directions in which the analysis can be extended. The first has to do with the 
implications of introducing contribution costs. When contribution costs are low, the 
characterization of stable groups should coincide with the characterization we pro-
vide here. However, as contribution costs become large, agents of extremely differ-
ent tastes could coexist in stable groups since this heterogeneity provides stronger 
incentives to contribute and mitigates the free-rider problem. This would suggest 
that, as technologies improve, stable groups exhibit more similarity in tastes. The 
second direction has to do with the correlation between group composition and 
group size. For instance, if each individual member incurred a connection cost (that 
depended on the number of her connections), one could extend our stability concept 
to make the size of groups a second object of choice. Namely, individuals would 
choose optimally both the type and the number of their connections.

Appendix

Proof of Lemma 1: 

Since ​ ​∂​ 2​U
 _ ∂t∂​k​A​
 ​ > 0 and ​ ​∂​ 2​U

 _ ∂t∂​k​B​
 ​ < 0, if an agent of taste t prefers making an A-contribution 

over a B-contribution, so would any agent of taste ​t′​ > t. Similarly, if an agent of 
taste t prefers making a B-contribution, so would any agent of taste ​t′​ < t. Let ​k​*​ be 
defined as the maximal k ∈ {0, 1, … , n} for which agent k weakly prefers making an 
A-contribution over a B-contribution. That is, the maximal k ∈ ​{ 0, 1, … , n }​ for which

(5) 	  U(​t​k​, k, n  −  k)  ≥  U(​t​k​, k  −  1, n  −  k  +  1).

If (5) is not satisfied for any agent in the group ​( i.e., U(​t​1​, 0, n) > U(​t​1​, 1, n − 1) )​,  
then ​k​*​ = 0. Given our tie-breaking rule, ​k​*​ clearly defines a monotonic equilibrium 
as prescribed.

In order to show uniqueness of the amount of A-contributions made in equi-
librium, we show that if (​x​1​, … , ​x​n​) is a pure equilibrium such that for some  
i > j, ​x​i​ = A and ​x​j​ = B, then ​( ​y​1​, … , ​y​n​ )​ ∈ ​​{ A, B }​​n​, where ​y​l​ = ​x​l​ for all l ≠ i, j,  
​y​i​ = A, and ​y​j​ = B constitutes a pure equilibrium as well. Indeed, assume that

 	​  n​ A​  = ​ | ​{ ​x​l​  =  A, l  ≠  i, j }​ |​  and ​n​ B​  = ​ | ​{ ​x​l​  =  B, l  ≠  i, j }​ |​.
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​( ​x​1​, … , ​x​n​ )​ consisting an equilibrium requires that agent i best responds. In partic-
ular, U(​t​i​, ​n​ A​ + 1, ​n​ B​ + 1) ≥ U(​t​i​, ​n​ A​ + 2, ​n​ B​). Similarly, agent j best responding 

requires that U(​t​j​, ​n​ A​ + 1, ​n​ B​ + 1) ≥ U(​t​j​, ​n​ A​, ​n​ B​ + 2). Since ​ 
​∂​ 2​U(t, k, n − k)
 _ ∂t∂k

  ​ > 0, the 
above best response restrictions hold for agents i and j under the profile ​( ​y​1​, … , ​y​n​ )​  
as well, while all other players’ best responses remain unchanged. The claim follows.

Proof of Proposition 1:

Step 1: We first show that, given a group size n, for any taste t ∈ [0, 1], there 
exist l(t), h(t) ∈ ​[ 0, 1 ]​, l(t) ≤ t ≤ h(t), such that any group of agents with tastes  
​t​1​ ≥ ​t​2​ ≥ ⋯ ≥ ​t​n​ (one of whom is t) is optimal if and only if

 	​  t​1​  ≥ ​ t​2​  ⋯  ≥ ​ t​​n​ A​​( t )​​  ≥  l(t)    and    h(t)  > ​ t​​n​ A​(t)+1​  ≥  ⋯  ≥ ​ t​n​.

Indeed, for any taste t, an optimal choice for a group entails choosing ​n​A​​( t )​ agents 
who make an A-contribution and ​n​ B​ = n − ​n​ A​​( t )​ agents who make a B-contribution. 
From Lemma 1, this is tantamount to choosing a group of agents with tastes  
​t​1​ ≥ ​t​2​ ≥ ⋯ ≥ ​t​n​ (of which agent t is a member) such that condition (5) holds only 
for i = 1, … , ​n​ A​(t).

Define

 	  Δ  ≡  U(t, k, n  −  k)  −  U(t, k  −  1, n  −  k  +  1).

Since ​ 
​∂​ 2​U(t, k, n − k)
 _ ∂t∂k

  ​ > 0, it follows that

 	​   ∂Δ _ 
∂t

 ​   = ​ 
∂U(t, k, n − k)

  __ 
∂t

 ​   − ​ 
∂U(t, k − 1, n − k + 1)

   __  
∂t

 ​   >  0.

Therefore, the conditions for the group of agents with tastes ​t​1​ ≥ ​t​2​ ≥ ⋯ ≥ ​t​n​ to 
be optimal can be described as follows.

	 (i)	 For i  =  1,…, ​n​ A​(t),

 	U  (​t​i​, ​n​ A​(t), ​n​ B​(t))  ≥  U(​t​i​, ​n​ A​(t)  −  1, ​n​ B​(t)  +  1).

If this inequality holds for any ​t​i​ ≤ t, define l(t) = 0. Otherwise, define l(t) so that

 	U​  ( l(t), ​n​ A​(t), ​n​ B​(t) )​  =  U(l(t), ​n​ A​(t)  −  1, ​n​ B​(t)  +  1),

and l(t) is the preference parameter of an agent who is precisely indifferent between 
allocations prescribing ​n​ A​​( t )​ or ​n​ A​​( t )​ − 1 contributions directed at task A. The con-
dition then translates to ​t​1​ ≥ ⋯ ≥ ​t​​n​  A​​( t )​​ ≥ l(t).

	 (ii)	 For i = ​n​ A​(t) + 1,…, n,
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 	U  (​t​i​, ​n​ A​(t), ​n​ B​(t))  ≥  U(​t​i​, ​n​ A​(t)  +  1, ​n​ B​(t)  −  1).

In analogy to the above, if this inequality holds for all ​t​i​ ≥ t, define h(t) = 1. 
Otherwise, define h(t) so that

 	U  (h(t), ​n​ A​(t), ​n​ B​(t))  =  U(h​( t )​, ​n​ A​(t)  +  1, ​n​ B​(t)  −  1),

and h​( t )​ is the preference parameter of an agent who is precisely indifferent between 
allocations prescribing ​n​ A​​( t )​ or ​n​ A​​( t )​ + 1 contributions directed at task A. The con-
dition then translates to h(t) > ​t​​n​  A​​( t )​+1​ ≥ ⋯ ≥ ​t​n​.

Step 2: We first show that ​m​ A​(t) is increasing in t. Indeed, suppose ​t′​ > t. 
Since ​ 

​∂​ 2​U(t, k, n − k)
 _ ∂t∂k

  ​ > 0, it follows that

 	​​ 
​
 ​ 
∂U(​t′​, k, n − k)

  __ 
∂k

 ​  |​​k=​m​  A​(t)
​  > ​​

​
 ​ 
∂U(t, k, n − k)

  __ 
∂k

 ​  |​​k=​m​  A​(t)
​  =  0.

Since ​​​ ​ 
∂U(​t​ ′​, k, n − k)
 _ ∂k

  ​ |​​k=​m​  A​​( ​t​ ′​ )​
​ = 0 and

 	​  
​∂​ 2​U(t, k, n − k)

  __ 
∂​k​2​

 ​   = ​ 
​∂​ 2​U(t, k, n − k)

  __ 
∂​k​ A​ 2

 ​
 ​   + ​ 

​∂​ 2​U(t, k, n − k)
  __ 

∂​k​ B​ 2
 ​
 ​   <  0,

we get that ​m​ A​(​t′​ ) > ​m​ A​(t).

If ​n​ A​(0) = ​n​ A​(1), then all agents agree on the allocation of contributions and any 
group of n agents is stable. That is, the partition containing one interval ​[ 0, 1 ]​ 
identifies stable groups.

Suppose ​n​ A​(0) < ​n​ A​(1). For any k = ​n​ A​(0) + 1, … , ​n​ A​(1), denote by t​( k )​ the 
taste parameter with which an agent is indifferent between k − 1 and k contribu-
tions to task A. That is,

 	U  (t​( k )​, k  −  1, n  −  k  +  1)  =  U(t​( k )​, k, n  −  k).

Monotonicity of ​m​ A​(t) insures that t(k) is defined uniquely for all k.
It follows that an agent with taste parameter t would like ​n​ A​(0) contribu-

tions to be directed to task A whenever t ∈ [0, t(​n​ A​(0) + 1)), would like ​n​ A​(1) 
units to be directed at task A whenever t ∈ ​[ t​( ​n​ A​(1) )​, 1 ]​,   and would like ​n​ A​​( t )​  
= k ∈ ​{ ​n​ A​(0) + 1, … , ​n​ A​(1) − 1 }​ contributions to be directed at task A if and 
only if t ∈ [t(k), t​( k + 1 )​). Since, from Step 1, each agent can achieve her optimal 
allocation of contributions with some group, stability boils down to all of the group 
members agreeing on the ideal amount of contributions directed at each task. The 
claim follows.
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Proof of Proposition 2:
Recall that the intervals {​T​ k​  n​​}​ v​ ​v​ ′​​ are defined as ​T​ k​  n​≡​{ t | ​n​ A​​( t )​ = k }​. Since  

​n​ A​​( t )​ = ​⌊ ​m​ A​​( t )​ ⌋​ if ​m​ A​(t) ∈ [0, n], the intervals’ extremes are identified with the 
projections of integer numbers onto the intervals [0, 1] via the function ​m​ A​(t). 
Let ​ 

d​m​ A​(t)
 _ 

dt
  ​ ≤ M for all t ∈ ​[ a, b ]​. By construction, types in ​[ a, b ]​ can belong to at 

most L ≡ ​⌈ M(b − a) ⌉​ + 1 stable groups for any group size n.

Proof of Proposition 3:

	 (i)	 Recall that {​t​1​, … , ​t​r​} is the set of taste parameters ​t​i​ such that there is at 
least one agent in N with taste ​t​i​. Let any group of agents G ⊆ N be identi-
fied by a vector ​( ​z​1​, … , ​z​r​ )​, where ​z​l​ ≤ ​m​l​ is the number of agents of taste ​
t​l​ in group G. Suppose that  = {​G​1​, … , ​G​s​} is a stable allocation, and let  
​t​i​, ​t​j​, ​t​h​ ∈ {​t​1​, … , ​t​r​} be such that ​t​i​ > ​t​j​ > ​t​h​, and suppose that two agents 
with tastes ​t​i​ and ​t​h​, respectively, are in a group G ∈  and that an agent with 
taste ​t​j​ is in ​G′​ ≠ G. Assume that in any equilibrium of the task-selection 
game, ​k​A​ contributions are directed at task A and ​k​B​ contributions are directed 
at task B in group G, while ​k​ A​ ′ ​ contributions are directed at task A and  
​k​ B​ ′ ​ contributions are directed at task B in group ​G′​. Since an agent with taste ​
t​j​ at least weakly prefers ​G′​ over G it must be the case that either ​k​A​ < ​k​ A​ ′ ​ or ​
k​B​ < ​k​ B​ ′ ​. Suppose ​k​A​ < ​k​ A​ ′ ​. Certainly, if ​k​B​ ≤ ​k​ B​ ′ ​, the other two agents (of 
types ​t​i​ and ​t​h​) would benefit by switching to group ​G′​. Assume then that ​
k​B​ > ​k​ B​ ′ ​. Optimality for the agent of type ​t​j​ then implies:

 	U  (​t​j​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​j​, ​k​A​, ​k​B​)  ≥  0.

	 Since ​ ​∂​ 2​U
 _ ∂t∂​k​A​
 ​ > 0,

 	U  (​t​j​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​j​, ​k​A​, ​k​ B​ ′ ​)  ≤  U(​t​i​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​i​, ​k​A​, ​k​ B​ ′ ​)

	 and, similarly, since ​ ​∂​ 2​U
 _ ∂t∂​k​B​
 ​ < 0,

 	U  (​t​j​, ​k​A​, ​k​B​)  −  U(​t​j​, ​k​A​, ​k​ B​ ′ ​)  ≥  U(​t​i​, ​k​A​, ​k​B​)  −  U(​t​i​, ​k​A​, ​k​ B​ ′ ​).

		  It follows that

 	  U(​t​i​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​i​, ​k​A​, ​k​B​)

	     = ​ [ U(​t​i​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​i​, ​k​A​, ​k​ B​ ′ ​) ]​  − ​ [ U(​t​i​, ​k​A​, ​k​B​)  −  U(​t​i​, ​k​A​, ​k​ B​ ′ ​) ]​

	     ≥ ​ [ U(​t​j​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​j​, ​k​A​, ​k​ B​ ′ ​) ]​  −  ​[ U(​t​j​, ​k​A​, ​k​B​)  −  U(​t​j​, ​k​A​, ​k​ B​ ′ ​) ]​

	     =  U(​t​j​, ​k​ A​ ′ ​, ​k​ B​ ′ ​)  −  U(​t​j​, ​k​A​, ​k​B​)  ≥  0.
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		  Since the agent of type ​t​i​ joining ​G′​ would imply an additional available contri-
bution, it follows that an agent of type ​t​i​ would strictly benefit by shifting from 
group G to group ​G′​, in contradiction. The case ​k​A​ > ​k​ A​ ′ ​ follows analogously.

	 (ii)	 Suppose that  is a stable allocation, and suppose that G, ​G′​ ∈ , G ≠ ​G′​ both 
contain at least one agent of taste ​t​i​. If one group identified by ​( ​x​1​, … , ​x​r​ )​  
is (weakly) preferred by an agent of taste ​t​i​ to the group identified by  
​( ​x​ 1​ ′ ​, … , ​x​ r​ ′ ​ )​, we write ​( ​x​1​, … , ​x​r​ )​ ​≽​​t​i​​ ​( ​x​ 1​ ′ ​, … , ​x​ r​ ′ ​ )​. Assume that G is identified 
by ​( ​x​1​, … , ​x​i​,…​x​r​ )​ and that ​G′​ is identified by ​( ​y​1​, … , ​y​i​, … , ​y​r​ )​. For an  
agent of taste ​t​i​, a deviation from G to ​G′​ is unprofitable if ​( ​x​1​, … , ​x​i​, … ​x​r​ )​  
​≽​​t​i​​ ​( ​y​1​, … , ​y​i​ + 1, … , ​y​r​ )​. Similarly, for an agent of taste ​t​ i​ ′​, a deviation 
from ​G′​ to G is unprofitable if ​( ​y​1​, … , ​y​i​, … , ​y​r​ )​ ​≽​​t​i​​ ​( ​x​1​, … , ​x​i​ + 1, … , ​x​r​ )​.  
However, any agent of taste ​t​i​ strictly benefits from having her group aug-
mented by one more member of her own type. Since ​( ​z​1​, … , ​z​s​ + 1, … , ​z​r​ )​​  
≻​​t​s​​ ​( ​z​1​, … , ​z​s​, … , ​z​r​ )​, for any ​( ​z​1​, … , ​z​s​, … , ​z​r​ )​ and ​t​s​, we get a contradiction.

Proof of Proposition 4:
From the definition of ​n​ A​​( t )​, in the information-collection setting, we have  

​n​ A​​( t )​ = ​⌊ ​m​ A​​( t )​ ⌋​ if ​m​ A​(t) ∈ [0, n], ​n​ A​(t) = 0 if ​m​ A​(t) < 0, and ​n​ A​(t) = n if ​m​ A​
(t) > n, where ​m​ A​​( t )​ is the number achieving equality in condition (1). Simple 
algebraic manipulation yields:

 	​  m​ A​​( t )​  = ​ 
ln ​( ​ 1 _ t ​ − 1 )​ + n ln ​( 1 − ​q​B​ )​ + ln ​( 1 − ​q​A​ )​ + ln ​ ​q​B​

 _ ​q​A​ ​
    ____    

 ln ​( 1 − ​q​A​ )​ + ln ​( 1 − ​q​B​ )​
 ​  .

Differentiating ​m​ A​​( t )​ we get:

​ 
d​m​ A​​( t )​

 _ 
dt

 ​   =  − ​  1  ___   
t​( 1 − t )​  ln ​[ ​( 1 − ​q​A​ )​ ​( 1 − ​q​B​ )​ ]​

 ​  >  0;

​ 
​d​ 2​​m​ A​​( t )​

 _ 
d​t​2​

 ​   = ​   1 − 2t  ___    
​​[ t​( 1 − t )​ ]​​2​ ln ​[ ​( 1 − ​q​A​ )​ ​( 1 − ​q​B​ )​ ]​

 ​ .

Therefore, ​m​ A​​( t )​ is an increasing function that is concave up to t = ​ 1 _ 2 ​ and convex 
thereafter. Since for any k = 1, … , n − 1, ​T​ k​  n​ = ​​( ​m​A​ )​​−1​​( [k, k + 1) )​, this implies 
that the sequence of intervals {​T​ k​  n​​}​ k=1​ n−1​ is such that the intervals are increasing in 
length until the interval ​T​ ​  k ​​ 

n
 ​ such that 1/2 ∈ ​T​ ​  k ​​ 

n
 ​ and decreasing thereafter.

We now address the extreme intervals ​T​ 0​  n​ and ​T​ n​  n​. We will show that these inter-
vals follow the same pattern of {​T​ k​  n​​}​ k=1​ n−1​ if either ​q​A​, ​q​B​ are high enough, or n is high 
enough. Recall that ​T​ 0​  n​ = [0, t(1)) and ​T​ n​  n​ = [t(n), 1]. From the definition of t(k) 
above, we get

(6) 	  t(k)  = ​ 
​​( 1  − ​ q​B​ )​​n−k​​q​B​

  ___    
​​( 1  − ​ q​A​ )​​k−1​​q​A​  + ​​ ( 1  − ​ q​B​ )​​n−k​​q​B​

 ​ .
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We have that t(1) ≤ t(2) − t(1) (i.e., interval ​T​ 0​ n​ is shorter than ​T​ 1​ n​ ) if and only if

 	​  
2​​( 1  − ​ q​B​ )​​n−1​​q​B​

  __  
​q​A​  + ​​ ( 1  − ​ q​B​ )​​n−1​​q​B​

 ​  ≤ ​ 
​​( 1  − ​ q​B​ )​​n−2​​q​B​

  ___   
​( 1  − ​ q​A​ )​ ​q​A​  + ​​ ( 1  − ​ q​B​ )​​n−2​​q​B​

 ​.

Rearranging, the above condition is satisfied if and only if

(7) 	  2​q​A​​( 1  − ​ q​A​ )​ ​( 1  − ​ q​B​ )​  + ​​ ( 1  − ​ q​B​ )​​n−1​​q​B​  ≤ ​ q​A​.

Condition (7) is a necessary and sufficient condition on ​q​A​, ​q​B​, and n such that 
the interval ​T​ 0​  n​ follows the same pattern of the sequence {​T​ k​  n​​}​ k=1​ n−1​. Note that, since ​
( 1 − x )​ x is maximized in ​[ ​ 1 _ 2 ​, 1 ]​ at x = 1/2, ​q​A​, ​q​B​ ≥ ​ 1 _ 2 ​ is a sufficient condition to 
guarantee (7), as we have

 	  2​( 1 − ​q​A​ )​ ​q​A​​( 1 − ​q​B​ )​ + ​​( 1 − ​q​B​ )​​n−1​​q​B​ ≤ ​( 1 − ​q​A​ )​ ​q​A​ + ​ 1 _ 
4
 ​ ≤ ​ 1 _ 

2
 ​ ≤ ​q​A​.

Moreover, if ​( 1 − ​q​A​ )​ ​( 1 − ​q​B​ )​ < 1/2, condition (2) holds for n large enough. The 
interval ​T​ n​  n​ is shorter than ​T​ n−1​  n

  ​ if and only if 1 − t(n) ≤ t(n) − t(n − 1). After 
rearranging, this is equivalent to

(8) 	  2​q​B​​( 1  − ​ q​A​ )​ ​( 1  − ​ q​B​ )​  + ​​ ( 1  − ​ q​A​ )​​n−1​​q​A​  ≤ ​ q​B​.

As before, it is easy to see that if ​( 1 − ​q​A​ )​ ​( 1 − ​q​B​ )​ < 1/2, condition (8) is sat-
isfied for large enough n, and that ​q​A​, ​q​B​ ≥ ​ 1 _ 2 ​ is a sufficient condition for (8) to be 
satisfied for any n.

Proof of Corollary 1:
The first part follows directly from Proposition 2 since in this setting ​ d​m​ A​

 _ 
dt

  ​ is uni-
formly bounded for any interval ​[ a, b ]​ ⊂ ​( 0, 1 )​. For the second part, observe that 

the interval ​T​ 0​  n​ contains all t such that t < ​  ​​( 1 − ​q​B​ )​​ n−1​​q​B​
 _  

​q​A​ + ​​( 1 − ​q​B​ )​​ n−1​​q​B​
 ​ = ​t​ n​(1). It follows that  

​T​ 0​  ​n​′​​ ⊊ ​T​ 0​  n​ for any ​n′​ > n and, for any ​q​A​, ​q​B​ ∈ ​( 0, 1 )​, ​t​ n​(1)​↘​n→∞​ 0, so the interval ​
T​ 0​  n​ shrinks to a singleton as the size of the group becomes infinitely large. Similarly, ​

T​ n​  n​ contains all t ≥ ​  ​q​B​
 __  

​​( 1 − ​q​A​ )​​ n−1​​q​A​ + ​q​B​
 ​ = ​t​n​(n). It follows that ​T​ ​n​′​​ 

 ​n​′​​ ⊊ ​T​ n​  n​ for any ​n′​ > n 

and, for any ​q​A​, ​q​B​ ∈ ​( 0, 1 )​, ​t​ n​(n)​↗​n→∞​1, so the interval ​T​ n​  n​ shrinks to a singleton as 
the size of the group becomes infinitely large as well.

Proof of Proposition 5:
For x = A, B, denote by ​z​ x​(t, h) ≡ ​n​ x​(t) the optimal number of x-signals out 

of a total of h signals for an agent of taste t. Moreover, for any ​t​1​, ​t​2​ ∈ [0, 1], let  
​w​ x​​( ​t​1​, ​t​2​, ​h​1​, ​h​2​ )​ denote the equilibrium number of x-signals collected in a group that 
is composed of ​h​1​ agents of taste ​t​1​ and ​h​2​ agents of taste ​t​2​ (well-defined from 
Lemma 1).

Observe that if ​z​ A​​( ​t​1​, N )​ > ​z​ A​​( ​t​2​, N )​ then either ​w​ A​​( ​t​1​, ​t​2​, 1, N )​ = ​z​ A​​( ​t​2​, N )​ + 1 (if  
​z​ A​(​t​2​, N + 1) = ​z​ A​​( ​t​2​, N )​ + 1), or ​w​ A​​( ​t​1​, ​t​2​, 1, N )​ = ​z​ A​​( ​t​2​, N )​ ​( if ​z​ A​(​t​2​, N + 1) = ​z​ A​​( ​t​2​, N )​ )​.
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Consider a fully segregated partition and suppose that agent a ∈ ​N​i​ has taste 
parameter ​t​i​ for i ∈ {1, … , r}. Since ​| ​N​i​ |​ = m for all i, checking that such an agent 
does not have a profitable deviation by joining ​N​i+1​ ∪ {a} and ​N​i−1​ ∪ {a} is enough 
to guarantee that this agent does not have profitable deviations (note that for i = 1, r, 
there is only one constraint to check). Consider a deviation of agent a from ​N​i​ to ​
N​i+1​ ∪ {a}. Since ​t​i​ ≥ ​t​i+1​, ​z​ A​(​t​i​, n) ≥ ​z​ A​(​t​i+1​, n) for all n ≥ 1. A necessary con-
dition for the deviation not to be strictly beneficial is that ​z​ A​(​t​i​, m) > ​z​ A​(​t​i+1​, m). 
Suppose first that ​w​ A​​( ​t​i​, ​t​i+1​, 1, m )​ = ​z​ A​​( ​t​i+1​, m )​ + 1. It follows that the deviation is 
not profitable whenever

(9)   ​t​i​​[ 1 − ​ 1 _ 
2
 ​​​( 1 − ​q​A​ )​​​z​ 

 A​​( ​t​i​, m )​​ ]​ + ​( 1 − ​t​i​ )​ ​[ 1 − ​ 1 _ 
2
 ​​​( 1 − ​q​B​ )​​m−​z​ A​​( ​t​i​, m )​​ ]​

	     ≥  ​t​i​​[ 1 − ​ 1 _ 
2
 ​​​( 1 − ​q​A​ )​​​z​ 

A​​( ​t​i+1​, m )​+1​ ]​ + ​( 1 − ​t​i​ )​ ​[ 1 − ​ 1 _ 
2
 ​​​( 1 − ​q​B​ )​​m−​z​ A​​( ​t​i+1​, m )​​ ]​,

or, rearranging terms,

(10) 	​  t​i​​[ ​​( 1  − ​ q​A​ )​​​z​ 
A​​( ​t​i+1​, m )​+1​  − ​​ ( 1  − ​ q​A​ )​​​z​ A​​( ​t​i​, m )​​ ]​ 

	     ≥ ​ ( 1  − ​ t​i​ )​ ​[ ​​( 1  − ​ q​B​ )​​m−​z​ A​​( ​t​i​, m )​​  − ​​ ( 1  − ​ q​B​ )​​m−​z​ A​​( ​t​i+1​, m )​​ ]​.
For x = A, B, define ​v​ x​​( k )​ ≡ ​​( 1 − ​q​x​ )​​k​ − ​​( 1 − ​q​x​ )​​k+1​, so that ​v​ A​​( k )​ is the marginal 
contribution of the ​( k + 1 )​th A-signal and similarly for ​v​B​(k) ​( up to a factor of ​ 1 _ 2 ​  )​.  
Note that, for x = A, B, ​v​ x​​( k )​ is decreasing in k. Thus, substituting and rearranging 
terms, we can rewrite (10) as follows:

(11) 	​  
​t​i​ _ 

1  − ​ t​i​
 ​  ≥  ​  

​∑​ 
k=m−​z​ A​​( ​t​i​ , m )​

​ m−​z​ A​​( ​t​i+1​, m )​−1​ ​v​ B​(k)
  __  

​∑​ 
k=​z​ A​​( ​t​i+1​, m )​+1

​ ​z​ A​​( ​t​i​, m )​−1
  ​ ​v​ A​(k)

 ​ ,

where we use the convention that ​∑​ k=w​ 
w−1​ ​v​ A​​( k )​ ≡ 0 for any w. Condition (11) implic-

itly defines a condition on ​t​i​ and ​t​i+1​ for a deviation from ​N​i​ to ​N​i+1​ to be unprofit-
able. Observe that, if ​w​ A​​( ​t​i​, ​t​i+1​, 1, m )​ = ​z​ A​​( ​t​i+1​, m )​, a deviation of agent a of taste 
parameter ​t​i​ to a group of m agents of taste parameter ​t​i+1​ is less profitable than 
a deviation to a group in which ​z​ A​​( ​t​i+1​, m )​ + 1 out of m + 1 agents collect the 
A-signal, and therefore, condition (11) is sufficient to guarantee that such deviation 
is not profitable.

If ​t​i​ is fixed, condition (11) is weaker the lower is ​t​i+1​ (that is, the further apart ​t​i​ 
and ​t​i+1​ are). This guarantees that there exists ​t _​(​t​i​) such that a deviation of agent a in ​
N​i​ to ​N​i+1​ is unprofitable if and only if ​t​i+1​ < ​t _​ (​t​i​). If ​t​i+1​ ∈ ​T​ 0​  m​ and condition (11) is 
not satisfied, then ​t _​(​t​i​) = 0. Set ​t _​(​t​i​) = 0 if ​z​ A​(​t​i​, m) = ​z​ A​(​t​i+1​, m) = 0.

We can follow a similar procedure by considering a deviation from ​N​i​ to ​N​i−1​ ∪ {a} 
and defining a taste ​

_
 t ​(​t​i​) such that a deviation from ​N​i​ to ​N​i−1​ ∪ {a} is unprofit-

able if and only if ​t​i−1​ > ​
_
 t ​(​t​i​). The intervals {​​i​ ​}​ i=1​ r

  ​ are obtained by setting for any 
i ∈ {1, … , r}, ​​i​ ≡ [ ​t _​(​t​i​), ​

_
 t ​(​t​i​)) whenever ​

_
 t ​(​t​i​) < 1 and ​​i​ ≡ [ ​t _​(​t​i​), 1] whenever  
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​
_
 t ​(​t​i​) = 1. To see that ​​i​ are unions of contiguous intervals of the sequence  
{​T​ k​  m​​}​ k=1​ m

  ​, observe that all ​t​i+1​ in the same interval ​T​ k​  m​ share the same optimal allo-
cation ​( ​z​ A​(​t​i+1​, m), ​z​ B​(​t​i+1​, m) )​. Thus, for a given ​t​i​, if condition (11) is satisfied for ​
t​i+1​ ∈ ​T​ k​  m​, then it is satisfied for any ​t​ i+1​ ′  ​ ∈ ​T​ k​  m​.

We now show the comparative statics of the intervals {​​i​ ​}​i​. For each i, denote 
​​ i​   −​ = ​​i​ ∩ [0, ​t​i​] and ​​ i​   +​ = ​​i​ ∩ [​t​i​, 1] the subintervals of ​​i​ that are to the left and 
right of ​t​i​, respectively. Notice that for sufficiently low ​t​i​, ​​ i​   −​ = [0, ​t​i​], the length 
of which is increasing in ​t​i​ (and decreasing in i ). Similarly, for sufficiently high  
​t​i​, ​​ i​   +​ = [​t​i​ , 1], the length of which is decreasing in ​t​i​ (and increasing in i ). To show 
the claim, it suffices to illustrate that for sufficiently low ​t​i​, ​​ i​   +​, … , ​​ s​   +​ are decreas-
ing in length and, similarly, for sufficiently high ​t​i​, ​​ 1​   −​, … , ​​ i​   −​ are increasing in 
length. Consider t and ​t′​, with ​t′​ > t, and k ∈ {1, … , ​z​ A​(t, m)}, such that the agent 
of type t prefers to stay in her group collecting ​z​ A​(t, m) A-signals than to be the 
m + 1’th member of a group in which, without her, ​z​ A​(t, m) − k A-signals are col-
lected. Upon joining such a group, the agent would be collecting an A-signal, and so 
the corresponding incentive constraint (similar to condition (10)) implies that

(12) 	​    t _ 
1  −  t

 ​  ≥ ​ 
​​( 1  − ​ q​B​ )​​m−​z​ A​​( t, m )​​  − ​​ ( 1  − ​ q​B​ )​​m−​z​ A​​( t, m )​+k​

    ___    
​​( 1  − ​ q​A​ )​​​z​ A​​( t, m )​−k+1​  − ​​ ( 1  − ​ q​A​ )​​​z​ A​​( t, m )​​

 ​  .

Let

 	   (t)  ≡  t​[ ​​( 1  − ​ q​A​ )​​​m​ A​​( t )​−k+1​  − ​​ ( 1  − ​ q​A​ )​​​m​ A​​( t )​​ ]​,

 	   (t)  ≡  (1  −  t)​[ ​​( 1  − ​ q​B​ )​​m−​m​ A​​( t )​​  − ​​ ( 1  − ​ q​B​ )​​m−​m​ A​​( t )​+k​ ]​

and note that whenever ​z​ A​(t, m) = ​z​ A​(​t′​, m), if (12) holds for t, it will hold for ​t′​.  
In order to show the claim, it is therefore sufficient to focus on t and ​t′​ that are 
at the cusps of our original intervals ​​{ ​T​ k​  m​ }​​k​, for which ​m​ A​(t) = ​z​ A​(t, m) and ​m​ A​(​t′​)  
= ​z​ A​(​t′​, m). For such t and ​t′​, (12) is satisfied whenever (t) ≥ (t) and (​t′​) ≥ (​t′​),  
respectively. From the derivations in the Proof of Proposition 5, recall that

 	​  
d​m​A​​( t )​

 _ 
dt

 ​   =  − ​  1  ___    
t​( 1  −  t )​  ln ​[ ​( 1  − ​ q​A​ )​ ​( 1  − ​ q​B​ )​ ]​

 ​  >  0.

Simple algebraic manipulations imply that ′(t) is positive if 1  +  t  
× ln ​( 1 − ​q​A​ )​ ​ d​m​  A​​( t )​

 _ 
dt

  ​ > 0, which, after further manipulation, is equivalent to

 	  t  < ​ 
ln ​( 1  − ​ q​B​ )​

  ___   
ln ​( 1  − ​ q​A​ )​  +  ln ​( 1  − ​ q​B​ )​

 ​.

Similarly, it is easy to show that ′(t) positive if 1 + (1 − t)  
× ln ​( 1 − ​q​B​ )​ ​ d​m​ A​​( t )​

 _ 
dt

  ​ < 0, or
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 	  t  < ​ 
ln ​( 1  − ​ q​B​ )​

  ___   
ln ​( 1  − ​ q​A​ )​  +  ln ​( 1  − ​ q​B​ )​

 ​.

Note that (0) = 0 and (1) = ​[ ​​( 1 − ​q​A​ )​​m−k+1​ − ​​( 1 − ​q​A​ )​​m​ ]​ > 0, while 
(0) = ​​( 1 − ​q​B​ )​​m​ − ​​( 1 − ​q​B​ )​​m+k​ > 0 and (1) = 0. Since both (t) and (t) are 

decreasing for any t > ​   ln ​( 1 − ​q​B​ )​
  __   ln ​( 1 − ​q​A​ )​ +  ln ​( 1 − ​q​B​ )​ ​, and (1) > (1), it must be the case 

that for t high enough, (t) ≥ (t) implies (​t′​) ≥ (​t′​) whenever ​t′​ > t ​( in addi-

tion, it is easy to show that both (t) and (t) are concave; therefore, they can 

cross at most once for t > ​   ln ​( 1 − ​q​B​ )​
  __   ln ​( 1 − ​q​A​ )​ +  ln ​( 1 − ​q​B​ )​ ​ )​. From the comparative statics of 

Proposition 4, it follows that for any ​t​i​ high enough, ​​ 1​   −​, … , ​​ i​   −​ are increasing in 
length, as was required. The case of low ​t​i​ follows analogously.
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