
Experimenting with Measurement Error:
Techniques with Applications to the Caltech Cohort

Study∗

Ben Gillen Erik Snowberg Leeat Yariv
California Institute California Institute Princeton

of Technology Technology, UBC, and NBER University
bgillen@caltech.edu snowberg@caltech.edu lyariv@princeton.edu

hss.caltech.edu/∼bgillen/ hss.caltech.edu/∼snowberg/ www.princeton.edu/yariv

March 14, 2018

Abstract

Measurement error is ubiquitous in experimental work. It leads to imperfect statistical
controls, attenuated estimated effects of elicited behaviors, and biased correlations
between characteristics. We develop statistical techniques for handling experimental
measurement error. These techniques are applied to data from the Caltech Cohort
Study, which conducts repeated incentivized surveys of the Caltech student body. We
replicate three classic experiments, demonstrating that results change substantially
when measurement error is accounted for. Collectively, these results show that failing
to properly account for measurement error may cause a field-wide bias leading scholars
to identify “new” phenomena.

JEL Classifications: C81, C9, D8, J71

Keywords: Measurement Error, Experiments, ORIV, Competition, Risk, Ambiguity

∗Snowberg gratefully acknowledges the support of NSF grants SES-1156154 and SMA-1329195. Yariv
gratefully acknowledges the support of NSF grants SES-0963583 and SES-1629613, and the Gordon and
Betty Moore Foundation grant 1158. We thank Jonathan Bendor, Christopher Blattman, Colin Camerer,
Marco Castillo, Gary Charness, Lucas Coffman, Guillaume Frechette, Dan Friedman, Drew Fudenberg,
Yoram Halevy, Ori Heffetz, Muriel Niederle, Alex Rees-Jones, Shyam Sunder, Roel Van Veldhuizen, and
Lise Vesterlund, as well as two anonymous reviewers and the editor, Emir Kamenica, for comments and
suggestions. We also appreciate the input of seminar audiences at Caltech, HKUST, The ifo Institute,
Nanyang Technological University, the National University of Singapore, SITE, the University of Bonn,
UBC, USC, and the University of Zurich.

http://people.hss.caltech.edu/~bgillen/
http://people.hss.caltech.edu/~snowberg/


1 Introduction

Measurement error is ubiquitous in experimental work. Lab elicitations of attitudes are sub-

ject to random variation in participants’ attention and focus, as well as rounding due to finite

choice menus. Despite the ubiquity of measurement error, fewer than 10% of experimental

papers published in the last decade in leading economics journals mention measurement

error as a concern (see Section 1.2 for details). Moreover, the tools for dealing with measure-

ment error in experiments—most commonly improved elicitation techniques and multiple

rounds—are relatively crude. This paper proposes a mix of statistical tools and design

recommendations to handle measurement error in experimental and survey research.

At the heart of our approach is the combination of duplicate elicitations (usually two)

of behavioral proxies and methods from the econometrics literature, particularly the instru-

mental variables approach to errors-in-variables (Reiersøl, 1941). While multiple elicitations

would be impossible for a researcher using, say, the Current Population Survey, in experi-

mental economics they are very easy to obtain.

The statistical tools discussed here deal with three types of inference breakdowns that

arise from different uses of experimental proxies measured with error: as controls, as causal

variables, or to estimate correlations between latent preference characteristics. We demon-

strate the potential perils of measurement error, and the effectiveness of our techniques,

using a unique new data set tracking behavioral proxies of the entire Caltech undergraduate

student body, the Caltech Cohort Study (CCS), described in Section 2. We replicate within

the CCS three classic and influential studies, and observe that 30–40% of variance in choices

is attributable to measurement error. In all three of the studies we examine, accounting for

measurement error substantially alters conclusions and implications.

First, we consider the most influential experimental study of the last decade, Niederle and

Vesterlund (2007). That paper found that men are more likely to select into competition due

to a preference for competitive situations that is distinct from risk attitudes and overconfi-

dence. We replicate, as have many others, the fact that men choose to compete more often
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than women. However, the gender gap in competition is well explained by risk attitudes and

overconfidence once measurement error is properly accounted for. This is true both in our

data, and that of the original study. Second, Friedman et al. (2014), summarizing their own

research and that of many other scholars, find low correlations between different lab-based

methods of measuring risk attitudes. As risk attitudes are fundamental to many economic

theories, the failure to reliably measure them has troubling implications for lab experiments.

In contrast, we find that many commonly used measures of risk attitudes are highly cor-

related once measurement error is taken into account. Third, we inspect the relationship

between attitudes towards ambiguous and compound lotteries, following the setup of Halevy

(2007). Ambiguity aversion is a rich area of theoretical exploration, and it is used to explain

many behaviors: from equity trading to voting decisions. Despite the fact that Halevy finds

a substantial correlation between attitudes towards compound risk and ambiguity, his results

are often seen as consistent with these attitudes corresponding to separate phenomena (see

Ahn et al., 2014; Epstein, 2010, among others). However, we find that once measurement

error is accounted for, there is very little difference between the two attitudes.

As is well known, classical measurement error in a single variable biases estimates of

effects towards zero. This attenuation bias is considered conservative, as it “goes against

finding anything”—that is, it reduces the probability of false positives. However, as our

results demonstrate, it may also lead to the identification of “new” effects and phenomena

that are, in actuality, already reflected in existing research.

1.1 Simulated Examples

Here we present simulated examples to illustrate, for the unfamiliar reader, the problems

created by measurement error, and summarize our approaches. In our first example, a re-

searcher is interested in estimating the effects of a variable D—say, gambling—on some

outcome variable Y—say, participation in dangerous sports—using an experimentally mea-

sured variable X—say, elicited risk attitudes—as a control. The model we use to simulate
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data is

Y ∗ = X∗ with D = 0.5×X∗ + η and X = X∗ + ν, (1)

where η ∼ N [0, 0.9] (so the variance of D is ≈ 1), X∗ ∼ N [0, 1], and ν ∼ N [0, σ2
ν ]. That is,

risk attitudes drive both gambling and participation in dangerous sports, but that attitude

is measured through a lab-based elicitation technique that contains error. We assume the

researcher only has access to Y = Y ∗ + ε, a noisy measure of Y ∗, where ε ∼ N [0, 1].

A diligent researcher would fit a regression model of the form

Y = αD + βX + ε, (2)

hoping to control for the role of risk attitudes in the effect of gambling on participation in

dangerous sports. Table 1 shows, from simulations, how the estimates, α̂ and β̂, depend on

how much measurement error there is in the variance of X, that is σ2
ν

σ2
ν+σ

2
X∗

.

The estimated coefficients depend strongly on the amount of measurement error in X.

With N = 100—a typical sample size for an experiment—the coefficient on gambling α̂

becomes statistically significant in the average simulation when measurement error reaches

approximately 1/3 of the variance in X. Statistically significant results are likely in such

a setting, as we estimate that measurement error accounts for 30–40% of the variance of

elicited proxies for risk attitudes—see (4) and surrounding text. Intuitively, false positives

occur because the measurement error in X attenuates β̂, allowing α̂ to pick up the variation

in D related to X∗.

Depressingly, adding more observations does nothing to reduce the bias in the estimated

coefficients. In fact, whenN = 1,000, the approximate size of the CCS, α̂ appears statistically

significant in the average simulation when measurement error accounts for only 10% of the

variance in X. This emphasizes that issues with measurement error will not “wash out” once

a study is large enough.

Correcting this is simple—elicit more controls. But questions remain: how many? and
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Table 1: Simulated regressions of (2), with controls X measured with error. True model:
α = 0, β = 1.

Error as a percent
0 10% 20% 30% 40% 50%

of Var[X]:

Panel A: N = 100

α̂
0.00 0.06 0.11 0.16 0.21∗ 0.26∗∗∗

(0.11) (0.11) (0.12) (0.12) (0.12) (0.12)

β̂
1.00∗∗∗ 0.87∗∗∗ 0.75∗∗∗ 0.64∗∗∗ 0.54∗∗∗ 0.44∗∗∗

(0.12) (0.11) (0.11) (0.10) (0.10) (0.09)

Percent of time α = 0 rejected at the 5% level with:

1 noisy measure of X∗ 5% 8% 15% 25% 37% 50%

5 noisy measures of X∗ 5% 6% 6% 7% 9% 11%

10 noisy measures of X∗ 5% 5% 5% 5% 6% 7%

20 noisy measures of X∗ 5% 5% 5% 5% 5% 6%

Panel B: N = 1,000

α̂
0.00 0.06∗ 0.11∗∗∗ 0.16∗∗∗ 0.21∗∗∗ 0.26∗∗∗

(0.03) (0.04) (0.04) (0.04) (0.04) (0.04)

β̂
1.00∗∗∗ 0.87∗∗∗ 0.75∗∗∗ 0.64∗∗∗ 0.54∗∗∗ 0.43∗∗∗

(0.04) (0.04) (0.03) (0.03) (0.03) (0.03)

Percent of time α = 0 rejected at the 5% level with:

1 noisy measure of X∗ 5% 31% 81% 98% 100% 100%

5 noisy measures of X∗ 5% 6% 11% 23% 42% 66%

10 noisy measures of X∗ 5% 5% 7% 10% 16% 28%

20 noisy measures of X∗ 5% 5% 5% 6% 8% 11%

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, with standard errors
in parentheses. Coefficients and standard errors are averages from 10,000 simulated regressions.

how should these controls be used? If an experimenter is certain they can elicit the exact

quantity they wish to control for (with measurement error), only two controls are necessary.

One control should be entered linearly, and the other used as an instrument for the control.

This will generate the proper coefficient on the control, and thus, on the variable of interest

D. However, it is doubtful that this will ever be the case in practice. Even for a simple

control like risk aversion, there are multiple, imperfectly correlated, elicitation methods,

as we discuss in Section 4. Including multiple controls for multiple measures of multiple
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Table 2: Simulated correlations when X and Y are measured with error (N = 100). True
model: Corr[X∗, Y ∗] = 1.

Error as a percent
0 10% 20% 30% 40% 50%

of Var[X] and Var[Y ]:

Ĉorr[X, Y ]
1.00 0.90∗∗∗ 0.80∗∗∗ 0.70∗∗∗ 0.60∗∗∗ 0.50∗∗∗

(0.00) (0.02) (0.04) (0.05) (0.06) (0.08)

Ĉorr[E[X],E[Y ]]
1.00 0.95∗∗∗ 0.89∗∗∗ 0.82∗∗∗ 0.75∗∗∗ 0.66∗∗∗

(0.00) (0.01) (0.02) (0.03) (0.04) (0.06)

ORIV Ĉorr[X, Y ]
1.00 1.00 1.00 1.00 1.00 1.00

(0.00) (0.01) (0.02) (0.04) (0.06) (0.10)

Notes: ∗∗∗, ∗∗, ∗ denote statistically significantly different from 1 at the 1%, 5%, and 10% level, with
standard errors in parentheses. Coefficients and standard errors are averages from 10,000 simulated
regressions.

behaviors may not be practical.

Thus, in Section 3, we explore several different ways of including controls. First, we

include them linearly, as suggested by Table 1. Then, we show that principal component

analysis allows for a small, but informative, set of controls—preserving degrees of freedom.

Finally, we elicit each control twice, and use the duplicate observation as an instrument.

These different approaches all lead to the same conclusion—the gender gap in competitiveness

can be explained by risk attitudes and overconfidence, although Niederle and Vesterlund

(2007) concluded that it was a distinct phenomenon.

The problem of measurement error biasing coefficients is particularly acute when re-

searchers estimate correlations between X and Y , as shown by the simulated results in

Table 2. In this table, we vary the proportion of measurement error in both variables. Even

a bit of measurement error causes significant deviations from the true correlation of 1. As

measurement error accounts for 30–40% of the variation in our elicitations, it is extremely

unlikely one would ever estimate a correlation close to 1, even if that were the true value.

As in Table 1, increasing N does not affect point estimates, but shrinks standard errors.1

To correct for measurement error, we expand on traditional instrumental variables ap-

1Note that the standard errors are smaller in Table 2, as Var[ε], set to 1 in all columns of Table 1, now
varies across the columns: starting at 0 in the first column, and climbing up to 1 in the final column.
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proaches to errors-in-variables. Our approach, which we call Obviously Related Instrumental

Variables (ORIV) uses duplicate elicitations of X and Y as instruments, and produces an

estimator which is more efficient than standard instrumental variable techniques. Specifi-

cally, we obtain duplicate measures of X, denoted Xa and Xb, which are both proxies for X∗

that are measured with error. If measurement error in the two elicitations is orthogonal—as

we assume—then the predicted values X̂a(Xb) from a regression of Xa on Xb contain only

information about X∗. We then use a stacked regression to combine the information from

both X̂a(Xb) and X̂b(Xa), resulting in an efficient use of the data.2 ORIV is easily extended

to allow for multiple measures of the outcome Y . This is particularly useful in estimating

correlations, where there is no clear distinction between outcome and explanatory variables,

and measurement error in either can attenuate estimates.3

ORIV produces consistent coefficients, correlations, and standard errors. This is in con-

trast to one common way experimenters deal with multiple noisy elicitations: averaging. As

can be seen from Table 2, while averaging reduces bias, it still leads to incorrect conclusions

in the presence of small amounts of measurement error.

We apply ORIV, in Section 4, to show that various risk elicitation methods are more

correlated than previously thought. We further use this technique to show, in Section 5, that

ambiguity aversion and reaction to compound lotteries are very close to perfectly correlated—

once we account for measurement error. This leads us to conclude, in Section 6, that failing

to correct for measurement error has led the field to over-identify “new” phenomena.

1.2 Related Literature

Mis-measurement of data has been an important concern for statisticians and econometri-

cians since the late 19th century (Adcock, 1878). Indeed, estimating the relationship between

2If measurement error is positively correlated across elicitations, then instrumented coefficients will still
be biased downwards, although less so than without instrumenting. In our experimental design, we tried to
weaken any possible correlation by varying the choice parameters, the grid of possible responses, and so on.
See Section 2.1 and Section 4.4.2 for details and discussion.

3ORIV is equivalent to using all valid moment conditions in the generalized method of moments (GMM),
however it is simpler and more transparent. See Appendix A.6 for a detailed comparison of ORIV and GMM.
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two variables when both are measured with error is a foundational problem in the statistics

literature (Koopmans, 1939; Wald, 1940). The use of instrumental variables to address the

classical errors-in-variables problem was proposed by Reiersøl (1941) (see Hausman, 2001, for

a review). This was first applied in economics by Friedman (1957) to estimate consumption

functions. Since then, instrumental variables have been used to account for measurement

error in an assortment of fields including medicine, psychology, and epidemiology.

The experimental literature has considered noise in lab data and its consequences, going

back to at least Kahneman (1965). Nonetheless, in the decade from 2006–2015 only 9% of the

283 experimental (field and lab) papers in top 5 economics journals explicitly tried to deal

with measurement error.4 One-fifth of these papers either used an experimental design aimed

at reducing noise, or averaged multiple elicitations, a technique that may do little to reduce

bias, as shown in Section 1.1. About one-half of these papers estimate structural models

of participants’ “mistakes.” In particular, two-fifths estimate Quantal Response Equilibrium

models.5 Most of the remaining papers use indirect methods to deal with noise, such as the

elimination of outliers, or the informal derivation of additional hypotheses about the effects

of noise, which are then tested.6 Our paper is, to our knowledge, the first to offer simple,

yet general, experimental techniques for mitigating the effects of measurement error.

Many of the issues in experimental work due to measurement error are present in survey

research as well. For example, Bertrand and Mullainathan (2001) and Bound, Brown, and

Mathiowetz (2001) highlight the potential perils of measurement error in survey research

4We examined full, refereed papers published in The American Economic Review, Econometrica, Journal
of Political Economy, The Quarterly Journal of Economics, and The Review of Economic Studies.

5These posit a structural model in which participant mistakes are inversely related to the payoff losses
they generate: see Goeree, Holt, and Palfrey (2016) for details and a review.

6Some particularly innovative papers of this type are worth mentioning. Battalio et al. (1973) show that
even small reporting errors can lead to a rejection of the generalized axiom of revealed preferences. Castillo,
Jordan, and Petrie (2015) posit a structural model of measurement error in children’s risk elicitations.
Coffman and Niehaus (2015) adjust for measurement error in self-interest and other-regard by projecting
both on a common set of explanatory variables. Ambuehl and Li (2015) use instrumental variables to
control for measurement error in one of their analyses. Like our paper, all of these only consider classical
measurement error. However, by designing experiments to produce more specific forms of measurement
error, experimenters may gain greater traction on their problem of interest. Standard texts on the statistics
of measurement error, such as Buonaccorsi (2010), may be of use in future research.
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in economics and social psychology. Bound, Brown, and Mathiowetz (2001) also note the

potential usefulness of instrumental variable approaches. The closest paper to ours in that

literature is Beauchamp, Cesarini, and Johannesson (2015), which considers measurement

error in survey-based risk elicitations. It uses a latent variable model that allows inferences

about the component of measured risk attitudes that is not due to measurement error. It

emphasizes, as we do, the ubiquity of measurement error, and the paucity of concern about

it.7

2 The Caltech Cohort Study

We administered an incentivized, online survey to the entire undergraduate student body

of Caltech in the Fall of 2013 and 2014, and the Spring of 2015. The surveys included

incentivized tasks designed to elicit an array of behavioral attributes. It also included a set

of questions addressing students’ lifestyle and social habits.8

The data used in this paper are from the Fall 2014 and Spring 2015 installments. In

the Fall of 2014, 92% of the student body (893/972) responded to the survey. The average

payment was $24.34. In the Spring of 2015, 91% of the student body (819/899) responded

to the survey. The average payment was $29.08. The difference in average payments across

years was due to the inclusion of several additional incentivized items in 2015.9 Of those

who had taken the survey in 2015, 96% (786/819) also took the survey in 2014. As Section

4 requires data from both surveys, for consistency we use this subsample of 786 throughout.

There are several advantages to using the CCS to address questions of measurement error.

The large size of the study allows us to document the non-existence of certain previously

identified “distinct” behaviors with unusual precision. Furthermore, the inflation of standard

7In a different context, Aguiar and Kashaev (2017) suggest a nonparametric statistical notion of ra-
tionalizability of a random vector of prices and consumption streams when there is measurement error in
consumption levels reported in surveys. They use this test to assess standard exponential time discounting.

8For screenshots of the 2015 survey, go to: leeatyariv.com/ScreenshotsSpring2015.pdf.
9The number of overall students was substantially lower in the Spring of 2015, as about 50 students

departed the institute due to hardship or early graduation. Further, we did not approach students who had
spent more than four years at Caltech, accounting for approximately 25 students.
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errors that comes with using instrumental variables techniques does not threaten the validity

of our inferences. Last, unlike most experimental settings, there is little concern about self-

selection into our experiments from the participant population, due to our 90%+ response

rates (see Snowberg and Yariv, 2018, and references therein). Thus, the issues we identify

are due solely to measurement error, and not due to a small sample or self-selection.

Nonetheless, Caltech is highly selective, which may cause concern that the overall popu-

lation is different from the pool used in most lab experiments. Three points should mitigate

this concern. First, the raw results of the replications are virtually identical to those reported

in the original papers. Second, responses from our survey to several standard elicitations—of

risk, altruism in the dictator game, and so on—are similar to those reported in several other

pools (see Appendix D for details). Third, while top-10 schools account for 0.32% of the

college age population in the U.S., top-50 schools enroll only 3.77% of that population (using

the U.S. News and World Report rankings). Thus, there seems to be little cause for concern

that our participant pool is more “special” than that used in many other lab experiments. As

the results reported in this paper are replications of other studies, these points suggest that

our conclusions are likely due to our more sophisticated treatment of measurement error,

rather than an artifact of the participant population.

2.1 Measures Used

Our results deal with a subset of the measured attributes, which we detail here. Question

wordings can be found in Appendix E. Throughout, 100 survey tokens were valued at $1.

2.1.1 Overconfidence

We break overconfidence into three categories, following Moore and Healy (2008). These

measures are used in Section 3 as controls.
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Overestimation and Overplacement: Participants complete two tasks: a five-question

cognitive reflection test (CRT; see Frederick, 2005), and five Raven’s matrices (Raven, 1936).

After each block of questions, each participant is asked how many they think they an-

swered correctly. This, minus the participant’s true performance, gives two measures of

overestimation—one for each of the two tasks. Each participant is also asked where they

think they are in the performance distribution of all participants. This, minus the partici-

pant’s true percentile, gives a measure of overplacement for each task.

Overprecision: Participants are shown a random picture of a jar of jellybeans, and asked

to guess how many jellybeans the jar contains. They are then asked—on a six point quali-

tative scale from “Not confident at all” to “Certain”—how confident they are of their guess.

This is repeated three times. Following Ortoleva and Snowberg (2015), each of these mea-

sures is interpreted as a measure of overprecision.

Perception of Academic Performance: A final measure of overconfidence asks partic-

ipants to state where in the grade distribution of their entering cohort they believe they

would fall over the next year. This is treated as a measure of confidence in placement.

2.1.2 Risk

Risk measures are used in Section 3 as controls, and in Section 4 as an outcome of interest.

Further, the Risk MPL described below is used as an outcome of interest in Section 5.

Projects: Following Gneezy and Potters (1997), participants are asked to allocate 100 or

200 tokens between a safe option, and a project that returns some multiple of the tokens with

probability p, otherwise nothing. In Fall 2014, two projects were used: the first returning 3

tokens per token invested with p = 0.4, and the second returning 2.5 tokens with p = 0.5.

In the Spring of 2015, the first project was modified to return 3 tokens with p = 0.35.
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Qualitative: Following Dohmen et al. (2011), participants are asked to rate themselves, on

a scale of 0–10, in terms of their willingness to take risks. We use the Spring 2015 elicitation

as a duplicate measure of the Fall 2014 elicitation.

Lottery Menu: Following Eckel and Grossman (2002), participants are asked to choose

between six 50/50 lotteries with different stakes.10 The first lottery contains the same payoff

in each state, and thus corresponds to a sure amount. The remaining lotteries contain

increasing means and variances, allowing for an estimation of risk aversion.

Risk MPL: Participants respond to two Multiple Price Lists (MPLs) that ask them to

choose between a lottery over a draw from an urn, and sure amounts. The lottery pays

off if a ball of the color of the participant’s choosing was drawn. The first urn contains 20

balls—10 black and 10 red—and paid 100 tokens. The second contains 30 balls—15 black

and 15 red—and paid 150 tokens.11

2.1.3 Ambiguity and Compound Lotteries

Reactions to ambiguous and compound lotteries are considered in Section 5.

Compound MPL: This follows the same protocol as the Risk MPLs described above,

except participants are told that the number of red balls would be uniformly drawn between

0 and 20 for the first urn, and between 0 and 30 for the second. As this is a measure of risk

attitudes, it is also used as a control in Section 4.

Ambiguous MPL: This elicitation emulates the standard Ellsberg (1961) urn. It follows

the same protocol as the two other MPLs. Participants are informed that the composition

of the urn was chosen by the Dean of Undergraduate Students at Caltech.

10The variant we use comes from Dave et al. (2010).
11In order to prevent multiple crossovers, the online form automatically selected the lottery over a 0 token

certainty equivalent, and 100 tokens over the lottery. Additionally, participants needed only to make one
choice and all other rows were automatically filled in to be consistent with that choice.
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To reduce instructions, both of the MPLs for a given attitude (Risk, Compound, Ambi-

guity) are run sequentially, in random order. These three blocks are spread across the survey,

and which block is given first, second, and third is randomly determined. As no order effects

were observed, we aggregate results across the different possible orderings.

3 Mis-specified Controls and Measurement Error

To make the claim that an estimated effect is independent of other factors, many studies

attempt to control for those other factors. If they are measured with error, one control, or

even a few, may be insufficient to reliably assert the claim, as illustrated in Section 1.1. Here

we show that properly dealing with controls measured with error has important substantive

consequences. We do so by replicating the competitiveness and gender study of Niederle and

Vesterlund (2007)—henceforth NV—within the CCS. Like NV, we find a robust difference

in the rates at which men and women compete. However, NV conclude that:

Including these controls [for overconfidence, risk, and feedback aversion], gender
differences are still significant and large. Hence, we conclude that, in addition
to gender differences in overconfidence, a sizable part of the gender difference in
tournament entry is explained by men and women having different preferences
for performing in a competitive environment.

In contrast, we show that the gender gap is well explained by risk aversion and overconfidence.

Using the notation of Section 1.1, measurement error in X, in this case controls for risk

aversion and overconfidence, can result in a biased estimate of the coefficient on D, in this

case gender, on competition Y . To understand this intuitively, consider the model in (1)

where Y ∗ = X∗, D and X∗ are correlated, and X = X∗ + ν is a noisy measure of X∗.12

For illustration, consider an extreme case where the variance of ν is very large, so that X is

almost entirely noise. Ignoring that noise in X, standard regression analysis could lead to

12Note that in many of our applications, these variables will be binary or ordered multinomials. In those
cases, we still model the corresponding latent variable (X∗ or Y ∗) as continuous and the responses (X or Y )
as stochastic. Measurement error then affects the probability that a given discrete choice is made.
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the erroneous conclusion that Y and D are correlated, even when controlling for X.13

To put this in terms of our substantive example, it is well known that overconfidence is

correlated with gender (see, for example, Moore and Healy, 2008), and, depending on the

elicitation method, risk aversion may be correlated with gender as well (see Charness, Gneezy,

and Imas, 2013; Holt and Laury, 2014, for surveys, as well as our discussion in Section 4.6).

Thus, if competitiveness is driven by overconfidence or risk aversion, mis-measurement of

these traits will lead to an overestimate of the effect of gender.

What can be done to mitigate this issue? There are several approaches. The first is

to include multiple measures for each of the possible controls X. This approach reduces

the effects of measurement error, while helping to ensure that elicited controls cover the

potentially different aspects of the behavioral attribute being controlled for. However, this

may have two shortcomings. First, it may come at the cost of too many degrees of freedom.

Second, without a large number of controls for each aspect, this approach will not entirely

eliminate the effects of measurement error. We therefore consider two further approaches:

including principal components of the multiple controls, and instrumenting each control with

a duplicate. This final approach—spanning the space of different aspects of the behavioral

attribute, while instrumenting each of these aspects—is preferable whenever feasible.

3.1 Measuring Competitiveness in the Caltech Cohort Study

Part of the Spring 2015 survey mimicked the essential elements of NV’s design. First,

participants had three minutes to complete as many sums of five two-digit numbers as they

could. Participants were informed that they would be randomly grouped with three others

at the end of the survey. If they completed the most sums in that group of four, they would

receive 40 experimental tokens (or $0.40) for each sum correctly solved, and would otherwise

receive no payment for the task. Ties were broken randomly. As in NV, at the end of this

task, participants were asked to guess their rank, from 1 to 4, within the group of four

13It is well known that measurement error in left-side variables may bias estimated coefficients in discrete
choice models, see Hausman (2001). We use linear probability models as Y may also be measured with error.
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participants. They were paid 50 tokens (or $0.50) if their guess was correct.

Next, in parallel to the central task of NV’s design, participants were told they would

have an additional three minutes to complete sums. But, before doing so, they chose whether

to be paid according to a piece-rate scheme or a tournament. The piece-rate scheme paid

10 tokens for each correctly solved sum. The tournament had a similar payment scheme to

the first three-minute task. However, a participant’s performance in the tournament would

be compared to the performance of three randomly chosen participants in the first task.14

Otherwise, the payment structure was identical to that in the first task.

There are a few ways in which our implementation differs from NV’s:

Time and Payments: We gave participants three, rather than five, minutes to complete

sums. Per-sum payments were scaled down by a factor of four. As with the rest of the CCS,

participants were paid for all tasks, rather than a randomly selected one. This could have

caused participants to hedge by choosing the piece-rate scheme.

Grouping of Participants: In NV, participants were assigned to groups of four where

they could visibly see that there were two men and two women. This created an imbalance

in the expected number of female competitors: 2/3 of the group for men, 1/3 for women. In

the CCS, we randomly selected groups for each of the two tasks separately after the survey

was administered. Thus, both genders faced the same expected profile of competitors.

Experimental Setting: Our tasks are on a survey, whereas NV use a lab setting. We ran

our survey several months later in a lab environment to 98 Caltech students. We saw very

similar results, but with larger standard errors due to the smaller sample.

Additional Tasks: NV include two additional parts: a preliminary task allowing partici-

pants to try out the piece-rate scheme, and a final choice that allows participants to select

14This ensured that the participant would not need to be concerned about the motivation, or other
characteristics, that might drive someone to compete in the second task.
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either an additional piece-rate or tournament payment scheme for their performance in the

preliminary task. This final choice served as a control for risk aversion and overconfidence.

As the CCS has multiple other controls for both of these traits, we omitted these two parts

to reduce complexity and length.

The first three of these factors would only change interpretation if they affected men and

women differently. However, as we replicate the gender gap in tournament entry found by

NV, these do not seem to be of particular importance. The final factor implies that we cannot

use an analogous control to that of NV’s with the CCS data. Nonetheless, using NV’s data

and an analysis accounting for measurement error in their control, we find that the gender

gap in tournament entry can be explained by risk aversion and overconfidence (see Section

3.3). More details about our, and NV’s, implementation can be found in Appendix E.1.

3.2 Gender, Competition, and Controls

This subsection analyzes the extent to which risk aversion and overconfidence drive the

gender gap in competitiveness. Table 3 summarizes specifications meant to illustrate different

points. These are linear probability models, and hence, the coefficient on gender is directly

interpretable as the percentage-point gap between men and women in choosing to compete.15

The first column shows the baseline difference in competition: Women choose tournament

incentives 21.4% of the time, while men choose them 40.4% of the time, for a difference of 19.0

percentage points. This difference is highly statistically significant. While these numbers are

somewhat lower than those reported in NV, their relative sizes are quite similar. The second

column controls for participants’ performance and estimates of their own rank linearly, as in

NV’s main specification. Similar to their results, the inclusion of these controls reduces the

coefficient on gender by approximately 1/3.

There is, however, a non-linear relationship between expected rank and perceived prob-

15As noted in Footnote 13, discrete choice models may produce biased estimates of coefficients when the
left-side variable is measured with error. Nonetheless, in our data, Probit and Logit specifications produce
almost identical levels of statistical significance as in Table 3.
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ability of victory in a competition.16 Therefore, the third column enters participants’ sub-

jective ranks non-parametrically, by including a dummy variable for each possible response

(three categories). This estimation confirms that the effect of perceived rank in a compe-

tition is, indeed, non-linear, although the coefficient on gender remains unchanged.17 The

third column also enters performance non-linearly (29 and 26 categories, respectively), as

there is also a non-linear relationship between performance and competition. The coefficient

on gender in the third column is lower than in the second.18

The fourth column introduces controls for risk aversion and overconfidence. One control

for each attribute, selected for illustrative purposes, is entered. This does not affect the

gender coefficient, despite both controls having statistically significant coefficients. Two

different controls are entered in Column 5. Doing so cuts the coefficient on gender by more

than half, and renders it statistically insignificant. Taken together, these columns show

that the statistical significance of controls is not a good indicator of whether a trait is fully

controlled for. Moreover, they suggest that measurement error in the controls themselves

allows for the perception of competitiveness as a separate trait.

We note that these conclusions are not driven by our unusually large sample size. If

anything, the size of our dataset helps reduce standard errors and identify weak effects. To

see this, we draw a random sample of 40 women and 40 men (the size and gender composition

of NV’s experiment) from our data 10,000 times, and regress the competition decision on

two overconfidence controls, two risk controls, and perceived rank in the first competition

task. The coefficient on gender is significant at the 1% level 2.2% of the time, at the 5%

level 7.6% of the time, and at the 10% level 13% of the time.

16If an individual believes a random participant is inferior to her with probability p, then her probability
of winning is p3. Furthermore, her expected rank is given by

∑3
i=0(i + 1)

(
3
i

)
(1− p)i p3−i = 3(1 − p) + 1.

Thus, with a reported rank of r (ignoring rounding), the probability of winning the competition is
(
4−r
3

)3
.

17Rates of competition are 65.6% for participants who predicted they would come in first (in a random
group of 4), and 31.4%, 15.3%, and 5.0% for participants predicting they would come in second, third,
and fourth (last), respectively. The distribution of guessed ranks differs from that reported in NV: our
participants were better calibrated, and this likely resulted in the lower observed rates of tournament entry.

18This is entirely driven by including performance in the first task non-parametrically, as there are small
differences in male and female performance in this task, as shown in Figure E.2 of Appendix E.1.
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The sixth column enters all available controls for risk (6 controls) and overconfidence (an

additional 12 controls). The coefficient on gender is relatively unchanged. If we enter these

controls separately, we find that much of the decrease in this coefficient, compared with the

third column, is due to risk controls. We revisit the relationship between gender and risk

aversion in Section 4.6.

The number of controls in the sixth column (76, including categorical controls for perfor-

mance) approaches the number of data points in a normally sized study—such as NV, which

had 80 participants. Thus, we examine ways to preserve degrees of freedom. The simplest

is to perform a principal components analysis of all 76 of the controls. In this case, entering

just the first 5 principal components produces a very similar point estimate to entering all

76 controls. More on this technique can be found in Appendix B.1.

As discussed in Section 1.1, the potential bias in the gender coefficient comes from the

fact that the coefficients on the noisy controls—assumed to be positively correlated with

both gender and competitive behavior—are biased towards zero. Thus, in the final column,

we instrument the risk aversion and overconfidence controls for which we have multiple

elicitations. This approach combines consistent estimates of the coefficients on controls,

while still ensuring we span the space of possible aspects of risk aversion and overconfidence

in our data. While the point estimate of the gender coefficient is consistent, it is accompanied

by higher standard errors that come with an instrumental variables specification.

When dealing with measurement error, a key advantage of the experimental approach is

the ability to design one’s own controls. Using enough controls to span the space of aspects

of a behavioral attribute, with a duplicate elicitation of each as an instrument, is preferable,

if feasible. However, as mentioned, limits on participants’ time and attention may impose

a constraint on the number of controls that can be elicited. When this constraint binds,

an experimenter should think carefully about the trade-off between measuring an additional

aspect and controlling for it perfectly via instrumentation. We return to multiple elicitations

and instrumental variables strategies in Sections 4 and 5. Before doing so, we examine how
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Table 4: Re-Analysis of Niederle and Vesterlund’s Data

Dependent Variable: Choose To Compete (Y a
i ) Y a

i − Y b
i

Male 0.37∗∗∗ 0.27∗∗∗ 0.21∗∗ 0.075 0.053
(.11) (.11) (.10) (.12) (.12)

Tournament 0.016 −0.003 −0.012∗∗∗ −0.037
Performance (.019) (.019) (.018) (.023)

Performance 0.016 -0.005 0.012 0.056∗∗

Difference (.023) (.023) (.023) (.027)

Guessed Tournament −0.24∗∗∗ −0.20∗∗∗ −0.11
Rank (.066) (.066) (.080)

Y b
i

0.27∗∗

(.11)

Adjusted R2 0.13 0.24 0.29 0.00 0.054

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, with
standard errors in parentheses. Coefficients and standard errors on all non-dichotomous
measures are standardized. N = 80 for all regressions.

to correct for measurement error when using specially designed controls.

3.3 Using Designed Controls

NV control for risk aversion and overconfidence with another tournament entry choice.

Namely, in the last stage of their experiment, participants are given a second opportunity

to be paid for their performance in the piece-rate task from the beginning of the experi-

ment. They can choose to be paid again as a piece rate, or to enter their performance into a

tournament. The clever idea behind this additional choice is that it controls for all aspects

determining tournament entry not directly related to a preference for competing—explicitly,

risk aversion and overconfidence. Using their data, we show that accounting for measure-

ment error in this control generates different conclusions than those of NV. Henceforth, we

refer to the choice in the main task as Y a
i , and that in the final task as Y b

i .

NV regress Y a
i on gender, performance, guessed tournament rank, and Y b

i , as in the third

column of Table 4. This reduces the coefficient on gender compared to their main specifi-
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cations, which are displayed in the first two columns.19 However, suppose Y b
i is positively

correlated with both gender and competition, but contaminated with classical measurement

error. This will bias the coefficient on Y b
i downwards, and the coefficient on gender upwards.

As Y b
i is designed to measure every part of the tournament entry choice except a pref-

erence for competition, it should enter the regression with a coefficient of 1. This can be

implemented by regressing Y a
i − Y b

i on gender, which produces an unbiased estimate of the

effect of gender on tournament entry, controlling for Y b
i . Intuitively, the only difference be-

tween these two variables is, by construction, a desire to compete. To see if this desire is

correlated with gender, it should be regressed on gender. Doing so results in an insignificant

coefficient on gender of 0.075. The inclusion of additional controls on the right side reduces

the coefficient even further.20

3.4 Substantive Interpretation

Our analysis shows, using both new data, and data from NV, that although men are more

likely to select into competition, this is not due to a distinct preference for performing in a

competitive environment. Rather, it is driven by differences in risk aversion and overconfi-

dence. It is important to note that using multiple controls for risk aversion and overconfi-

dence, or using principal components, does not allow us to say how important either of these

factors is in explaining competition, only that together they explain much of the effect.21

Our results do not, by any means, imply that it is better to elicit risk attitudes and over-

confidence instead of competitiveness. There is a tradeoff: competition is potentially more

directly relevant for an array of economically important decisions, and is definitely a more

parsimonious measure. Indeed, competition has been shown to predict several interesting

19We thank Muriel Niederle and Lise Vesterlund for generously sharing their data. The coefficients in Table
4 differ from NV due to our use of OLS—which is preferred to Probit for reasons described in Footnote 13.
However, p-values are very similar.

20The inclusion of additional controls should make the test more efficient in small samples. A formal
exposition of this point, and other details of this sub-section, can be found in Appendix B.2.

21Van Veldhuizen (2016) uses clever experimental design to add refined versions of NV’s final task, and
specifications following the previous subsection, to tease these effects apart.
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behaviors, such as choice of college major (see, for example, Buser, Niederle, and Oosterbeek,

2014). However, risk aversion and overconfidence feature in many theories, and are therefore

of potential use in bringing theory to bear on gender differences.

There are also practical considerations. NV report that their experiment had an average

runtime of approximately 45 minutes. By using two tasks (rather than four) and allowing

participants to solve sums for three minutes (rather than five), we reduced the average time

participants spent on the competition task to around 8 minutes. Naturally, eliciting multiple

measures of risk and overconfidence may be time consuming as well. Nevertheless, our entire

survey had an average runtime of less than 30 minutes, including the competition task.

4 Measurement Error on Both Sides

It is well known that measurement error in outcome, or dependent, variables does not bias

estimated relationships, although it increases standard errors. Measurement error in explana-

tory, or independent, variables is a much more serious problem, biasing estimated coefficients

and distorting standard errors. This leads to an improper understanding of the relationship

between explanatory variables and outcomes. These problems are compounded when esti-

mating a correlation: the distinction between outcome and explanatory variables is blurred,

and classical measurement error in either biases estimates towards zero. We introduce a

simple method, Obviously Related Instrumental Variables (ORIV)—which is more efficient

than standard instrumental variables techniques—to overcome these issues. We apply this

technique to the estimation of the correlation between different measures of risk attitudes

in this section, and between risk and ambiguity aversion in the next. The discussion in this

section focuses on implementation, with the formal properties of the estimators developed

in Appendix A.

4.1 Risk Elicitation Techniques
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There is a substantial experimental literature assessing the validity of common experimental

techniques for eliciting attitudes towards risk and uncertainty (see the literature review in

Holt and Laury, 2014). These studies often elicit risk attitudes in the same set of participants

using different techniques. By using a within-participant design, researchers attempt to

understand technique-driven differences in elicited proxies for risk aversion. This type of

work has generally found small correlations between different techniques, making it difficult

to study the individual correlates of risk preferences. The literature concludes that risk

elicitation is a “risky business”—the pun is not ours, see Friedman et al. (2014) for a survey.

However, none of the studies on which this conclusion is based account for measurement

error. In what follows, we inspect several commonly used risk-elicitation techniques, and

estimate their within-participant correlations using an instrumental variables strategy to

account for measurement error. This generates much higher within-participant correlations

than previously reported. Moreover, the corrected correlations suggest that elicitation tech-

niques fall into one of two sets: those that elicit certainty equivalents for lotteries, and those

that elicit allocations of assets between safe and risky options. The latter category exhibits

greater correlations with other measures, and more stability over time. Further, elicitations

based on allocation decisions display substantial gender effects—which are consistent with

investment behavior in the field—while certainty equivalent elicitations do not.

This section uses four measures of risk as described in Section 2.1: Qualitative, Risk

MPL, Project, and Lottery Menu. Before proceeding, we note how we transform variables

for comparison. First, when using two measures from the same form of elicitation, we put

them on a common scale. In particular, the certainty equivalents from the 30-ball urn Risk

MPL (which go up to 150) are divided by 1.5 to be on the same scale as the certainty

equivalents from the 20-ball urn Risk MPL (which go up to 100).22 Second, when comparing

objects like estimated CRRA coefficients or derived certainty equivalents, these are also

put on the same scale. For example, when examining the relationship between certainty

22This implicitly assumes a CRRA utility function.
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equivalents from the Risk MPLs and Projects—the former allowing for risk-loving answers

and the latter not—those who give risk-loving answers in the Risk MPLs are re-coded to

give a risk-neutral answer. Without this censoring, results are qualitatively similar.23

4.2 A First Take on Measurement Error Correction

It is well known that measurement error attenuates estimated coefficients (see, for exam-

ple, Buonaccorsi, 2010). Here we review that basic finding to set up a framework for our

estimator.

To estimate the relationship between two variables measured with independent i.i.d. error,

Y = Y ∗ + νY and X = X∗ + νX (with E[νY νX ] = 0 and Var[νk] = σ2
νk

), the ideal regression

model would be Y ∗ = α∗+β∗X∗+ ε∗. Instead, we can only estimate Y = α+βX+ ε, where

α is a constant and ε is a mean-zero random noise. Annotating finite-sample estimates with

hats and population moments without hats, this results in an estimated relationship of

β̂ =
Ĉov[Y,X]

V̂ar[X]
=

Ĉov[α + β∗X∗ + ε+ νY , X
∗ + νX ]

V̂ar[X∗ + νX ]

E
[
β̂
]

= plim
n→∞

β̂ = β∗
σ2
X∗

σ2
X∗ + σ2

νX

< β∗. (3)

The estimated coefficient β̂ is thus biased towards zero. Importantly, the bias in (3) depends

on the amount of information about the true explanatory variable X∗ in X.

In a lab experiment, it is relatively easy to elicit two replicated measures of the same

underlying parameter X∗. That is, suppose we have Xa = X∗ + νaX and Xb = X∗ + νbX ,

with νaX , ν
b
X i.i.d. random variables, and E

[
νaXν

b
X

]
= 0. With the additional assumption that

Var[νaX ]

Var[Xa]
=

Var[νbX ]

Var[Xb]
≡ Var[νX ]

Var[X]
, we have

Ĉorr[Xa, Xb]→p Corr[Xa, Xb] =
σ2
X∗

σ2
X∗ + σ2

νX

, (4)

23This censoring affects 22% of the responses in the 20-ball urn, and 32% of responses in the 30-ball urn.
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which allows us to ballpark the degree of bias in estimated coefficients. The modal correlation

between two elicitations of the same risk measure is approximately 0.6, suggesting that the

variance of measurement error is of the order of 2/3 of the variance of X∗.24

Using instrumental variables, the second noisy measure of X∗ can be used to recover a

consistent estimate of the true coefficient β∗. As a corollary of (4), note that Ĉov[Xa, Xb] ≈

V̂ar[X∗] consistently estimates Var[X∗] in the population. We apply two-stage-least-squares

(2SLS) to instrument Xa with Xb

Xa = π0 + π1X
b + εX ⇒ π̂1 =

Ĉov[Xa, Xb]

V̂ar[Xb]
≈ V̂ar[X∗]

V̂ar[Xb]
, (5)

and then condition on this instrumented relationship to estimate Y = α+β(π̂0 + π̂1X
b)+εY .

This second stage regression provides

β̂ =
Ĉov[α∗ + β∗X∗ + ε∗ + νY , π̂0 + π̂1X

b]

V̂ar[π̂0 + π̂1Xb]
≈ β∗π̂1V̂ar[X∗]

π̂2
1V̂ar[Xb]

→p β
∗,

a consistent estimate of β∗, the true relationship between Y ∗ and X∗.

4.3 Two Instrumentation Strategies

Multiple measures for X∗ admit multiple instrumentation strategies that will only produce

the same estimate with infinite data. The ORIV estimator consolidates the information from

these different formulations, producing a more efficient estimator.25 In our working example,

we have two equally valid elicitations and two possible instrumentation strategies: one may

24In practice, if one is not certain that the variation inXa andXb due to measurement error is identical, one
can measure the proportion of measurement error in each elicitation j separately as Cov[Xa, Xb]/Var[Xj ].
In general, it is advisable to standardize variables, at which point the formulation here and in (4) coincide.

This formulation also allows a correction factor for the attenuation bias in the regression estimates from

(3) dating back to Spearman (1904). Define the “disattenuated” estimator of β as β̃ = β̂

Ĉorr[Xa,Xb]
. The

continuous mapping theorem implies that β̃ is a consistent estimator for β. However, this approach is less
efficient than ORIV.

25Combining these estimators is the same as using both valid moment conditions in GMM, see Appendix
A. ORIV offers a simpler and more transparent correction technique than GMM. In our settings, GMM and
ORIV are equally efficient.
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instrument Xa with Xb, or Xb with Xa. In this subsection, we illustrate the divergent results

these two strategies may produce. The next subsections show how to combine these sources

of information into a single estimated relationship.

Table 5 shows estimated correlations between different elicitation techniques.26 These are

first estimated using a standard regression, and then the two different instrumental variables

strategies discussed above. Although different instrumentation strategies may produce sim-

ilar results—as in the third and fourth columns of Table 5—they may also produce different

results—as in the seventh and eighth columns. Moreover, given that estimated standard

deviations—inflated by measurement error—are used to standardize the variables in Table

5, neither strategy produces an accurate correlation. The next subsection deals with both

of these issues.

4.4 Obviously Related Instrumental Variables

We construct ORIV estimates and corrected correlations in three steps. First, we consider the

case where only explanatory variables are measured with error. We then extend the analysis

to the case where both the outcome and explanatory variables are measured with error.

Finally, we show how to derive consistent correlations from the consistent and asymptotically

efficient ORIV estimates of the regression coefficient β. Throughout, we focus on designs in

which there are at most two replications for each measure.27 This is done for simplicity, and

because it fits precisely the implementation carried out using the Caltech Cohort Study.

4.4.1 Errors in Explanatory Variables

The ORIV regression estimates a stacked model to consolidate the information from the two

available instrumentation strategies. In the model of Section 4.2 this can be written as:

26The coefficients are from regressions where both the left- and right-side variables are standardized, which
removes scale effects and provides for easy comparison.

27When there are two replications of each, the ORIV estimator is twice as efficient as instrumental
variables—that is, the variance of the ORIV estimator is one-half that of instrumental variables estima-
tors. Appendix A extends the ORIV estimator to settings where more than one replicate is available.
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(
Y

Y

)
=

(
α1

α2

)
+ β

(
Xa

Xb

)
+ ε, instrumenting

(
Xa

Xb

)
with W =

 Xb 0N

0N Xa

 , (6)

where N is the number of participants and 0N is an N × N zero matrix. To implement

this, one should create a stacked dataset and run a 2SLS regression. This is equivalent to

estimating a first stage, as in (5), for both instrumentation strategies, then estimating

(
Y

Y

)
=

(
α1

α2

)
+ β

(
X̂a

X̂b

)
+ ε, (7)

where X̂a and X̂b are the predicted values derived from the two first-stage regressions.

Sample Stata code illustrating this estimation procedure appears in Appendix C.2.

With a single replication, the stacked regression will produce an estimate of β∗ that is

the average of the estimates from the two instrumentation approaches in prior subsections.

Intuitively, with no theoretical reason to favor one estimate or the other, it is equally likely

that the smaller is too small as it is that the larger is too large.28 The estimator splits the

difference, leading to a consistent estimate of β∗, the true relationship between Y ∗ and X∗.

Proposition 1. ORIV produces consistent estimates of β∗.

This technique uses each individual twice, which results in standard errors that are too

small, as the regression appears to have twice as much data as it really does. Many practi-

tioners understand intuitively the idea that one should use clustered standard errors to treat

multiple observations as having the same source.29

28Over-identification can be addressed using GMM, which allows testable restrictions that can be evaluated
using a standard Sargan test.

29Mathematically, clustering is needed as Cov[εi, εN+i] = Var[ε∗i ] for i ∈ {1, 2, 3, . . . , N}. This implies that
the variance-covariance matrix of residuals is given by(

(Var[ε∗] + β2Var[νa])IN Var[ε∗]IN
Var[ε∗]IN (Var[ε∗] + β2Var[νb])IN

)
, where IN is an N ×N identity matrix.

Clustering takes care of the common ε∗i for participant i on- and off-diagonal.
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Proposition 2. The ORIV estimator satisfies asymptotic normality under standard condi-

tions. The estimated standard errors, when clustered by participant, are consistent estimates

of the asymptotic standard errors.

Simulations using t-Tests show that these asymptotic standard errors reject the null

slightly too often at the 1%, 5%, and 10% levels. Bootstrapped standard errors, in contrast,

produce effective rejection rates equal to the nominal rate. Thus, asymptotic standard errors

slightly understate the true variability of estimates in finite samples.

4.4.2 Designing Experiments for ORIV

Our analysis assumes that measurement error is independent across elicitations. To increase

the chances this is true, we recommend experimental designers follow a few standard prac-

tices. First, duplicate elicitations should use different numerical values. Second, if using an

MPL, the response grid should be constructed so that implied values (usually the midpoint

between two choices) are not the same. Third, duplicate items should be placed in different

parts of the survey or study to alleviate any tendency for consistency of responses.

Even after adopting these practices, a common component of measurement error may

still remain. Assume that this common component is independent across measures (but not

elicitations of that measure).30 In this case, when estimating the correlation between the two

measures using ORIV—or any other technique to deal with measurement error—there is a

residual error in each measurement and assessed correlations would still be attenuated. Even

in such settings, ORIV would be advised as it corrects for one component of measurement

error. However, resulting estimates would be conservative. This illustrates a general point:

As the diagonal terms of the residual covariance matrix differ in whether Var[νa] or Var[νb] remain, a
different weighting of Xa and Xb is optimal for efficiency. Such a condition can be most easily identified by
comparing the unconditional variances of Xa and Xb. If they differ substantially, a feasibly-efficient GMM
or weighted Feasible-Generalized Least Squares (FGLS) approach would yield asymptotically efficient (and
equivalent) estimators. In our dataset, which is an order of magnitude larger than most, FGLS-weighting
does not produce different results, suggesting the assumption of homogenous errors underlying ORIV is
reasonable in our application. We present the asymptotic equivalence between feasible-efficient GMM and
FGLS in Appendix A.6. This appendix concludes with a discussion of the numerical challenges that may
arise in implementing a nave FGLS ORIV estimator due to rank-deficiency in the residual covariance matrix.

30In particular: Xi = X∗+ ηX + νiX and Y i = Y ∗+ ηY + νiY , with E[ηXηY ] = E
[
νaXν

b
X

]
= E

[
νaY ν

b
Y

]
= 0.
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survey- or session-based measurement error is difficult to estimate or interpret. In particular,

if we see different patterns of responses across surveys or sessions, it would be challenging

to disentangle correlated measurement error from a change in preferences.

4.4.3 Errors in Outcome and Explanatory Variables

When estimating the relationship between two elicited variables, there is no reason to believe

that one is measured with error (X), but the other is not (Y ). The existence of measurement

error in Y does not change Propositions 1 and 2, although estimated standard errors will,

of course, increase, reflecting the degree of uncertainty in the estimated coefficient. Still,

if one has access to two estimates of Y there is no reason not to use them, as they will

increase efficiency. Moreover, when estimating correlations between two variables, classical

measurement error in either will attenuate the estimated correlation.

To incorporate two measures of Y ∗ with measurement error (Y a = Y ∗+νaY , Y
b = Y ∗+νbY ,

E[νaY ] = E
[
νbY
]

= 0) in the ORIV estimation procedure, one would simply estimate



Y a

Y a

Y b

Y b


=



α1

α2

α3

α4


+ β



Xa

Xb

Xa

Xb


+ ε with instruments W =



Xb 0N 0N 0N

0N Xa 0N 0N

0N 0N Xb 0N

0N 0N 0N Xa


.

4.4.4 Estimating Correlations from Consistent Coefficients

ORIV produces β̂∗, a consistent estimate of β∗. Notice that

β̂ =
Ĉov[X, Y ]

V̂ar[X]
implying ρ̂XY = β̂

√√√√V̂ar[X]

V̂ar[Y ]
,

where ρXY is the correlation. Thus, we need consistent estimates of Var[X∗] and Var[Y ∗]

to recover ρ̂∗XY . The problem is that Var[X] = Var[X∗] + Var[νX ]. As Var[Y ] is biased as
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well, it is not clear if transforming the regression coefficient into a correlation will generate

an estimate that is biased up or down. Nonetheless, we have

Cov[Xa, Xb] = Cov[X∗ + νaX , X
∗ + νbX ] = Var[X∗] so ρ̂∗XY = β̂∗

√√√√Ĉov[Xa, Xb]

Ĉov[Y a, Y b]
.

Proposition 3. ρ̂∗XY is consistent with an asymptotically normal distribution, where stan-

dard errors can be derived using the delta method. These standard errors can be consistently

estimated using a bootstrap to construct confidence intervals.

An example of how to estimate correlations and bootstrapped standard errors using

ORIV in STATA can be found in Appendix C. A STATA program to estimate correlations

and bootstrapped standard errors is available from the authors upon request.

4.5 Corrected Correlations between Risk Elicitation Techniques

We now use ORIV estimators to examine the correlations between different risk measures.

Table 6 contains both the raw and corrected correlations. Both the Risk MPL and the

Project measures were elicited twice. The qualitative risk assessment was elicited once in

the Fall of 2014 and again in the Spring of 2015, the latter serving as the duplicate elicitation.

The Lottery Menu measure was elicited only once.31

Previous work comparing different risk-elicitation techniques often transforms them into

a common scale (see Deck et al., 2010, for an example). For comparability, we do the same

in Table 6. This is not theoretically advisable as it introduces a non-linear change in the

structure of measurement error, which may lead to inconsistent estimates. However, for the

question at hand, this makes little difference in the results.

31For correlations involving the Lottery Menu task, we multiply by

√
V̂ar[((Xa)′ (Xb)′)′]/V̂ar[Y ]. This

is valid so long as the measurement error in the measures of X and Y are equal—that is, Corr[Xa, Xb] =
Var[Y ∗]/Var[Y ], as shown in (4). Having only one measure of Y , we have no measure of Var[Y ∗], and cannot
test this. However, the correlation between elicitations for the three that we do have are 0.67 (s.e. 0.027,
projects), 0.62 (s.e. 0.028, qualitative), and 0.59 (s.e. 0.29, Risk MPLs), so this seems reasonable.
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In the top panel, we consider correlations between the unaltered measures. That is,

we use units given by the elicitation techniques. The second panel translates these various

measures into CRRA coefficients, except for the qualitative assessment, which does not lend

itself to transformation. The third panel uses the imputed CRRA coefficients to calculate

the implied certainty equivalent of a lottery with a 50% probability of 100 tokens and a 50%

probability of 0 tokens. Note that in the case of the Risk MPLs, this is the same as the

questions’ natural units, as these are elicitations of certainty equivalents over 50/50 lotteries.

All three panels suggest similar conclusions. First, the corrected correlations are sub-

stantially higher. While the raw correlations are arguably low, never exceeding 0.5 (and

uniformly below 0.27 when considering imputed CRRA coefficients), corrected correlations

are dramatically higher, reaching levels as high as 0.73. Whether this correlation is “high” or

“low” is largely a judgement call. However, the literature seems to consistently suggest that

correlations above 0.7 are very high (see, for example, Cohen, 1988; Evans, 1996). Moreover,

many perceived strong links correspond to correlations that are 0.7 or less. For example,

the correlation between parents’ and their childrens’ heights hovers around 0.5 (Wright and

Cheetham, 1999); the correlation between average parents’ education and their children’s

education ranges from around 0.30 in Denmark to 0.54 in Italy, with most western countries

falling somewhere in-between (Hertz et al., 2007). Second, some measures are noticeably

more correlated. Namely, the Project measure is most correlated with our other elicitation

techniques. It is most highly correlated with the Lottery Menu measure, with corrected

correlations of 0.55–0.73, depending on measurement units. The Lottery Menu also ex-

hibits relatively high correlations with other measures. The lowest correlations are observed

between the Risk MPL and the Qualitative measure.

4.6 Substantive Implications

There are good reasons to suspect that the Risk MPL measure captures risk attitudes over a

different domain than the other measures: its smaller correlation with other measures, and
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Table 6: Correlation matrices before and after accounting for measurement error

In Units Given by the Questions

Raw Correlations
Corrected for

Measurement Error

Project Qualitative
Lottery

Project Qualitative
Lottery

Menu Menu

Qualitative
0.26∗∗∗ 0.40∗∗∗

(.029) (.043)

Lottery 0.47∗∗∗ 0.25∗∗∗ 0.71∗∗∗ 0.40∗∗∗

Menu (.029) (.032) (.046) (.052)

Risk MPL
0.19∗∗∗ 0.13∗∗∗ 0.22∗∗∗ 0.30∗∗∗ 0.19∗∗∗ 0.38∗∗∗

(.032) (.033) (.030) (.048) (.047) (.053)

Measured in CRRA coefficients

Raw Correlations
Corrected for

Measurement Error

Project Qualitative
Lottery

Project Qualitative
Lottery

Menu Menu

Qualitative
0.20∗∗∗ 0.36∗∗∗

(.032) (.047)

Lottery 0.27∗∗∗ 0.24∗∗∗ 0.55∗∗∗ 0.38∗∗∗

Menu (.040) (.033) (.078) (.053)

Risk MPL
0.18∗∗∗ 0.070∗∗ 0.22∗∗∗ 0.37∗∗∗ 0.10∗∗ 0.42∗∗∗

(.037) (.033) (.037) (.078) (.047) (.071)

Measured in certainty equivalent of a 50/50 lottery over 0/100 tokens

Raw Correlations
Corrected for

Measurement Error

Project Qualitative
Lottery

Project Qualitative
Lottery

Menu Menu

Qualitative
0.25∗∗∗ 0.44∗∗∗

(.029) (.046)

Lottery 0.38∗∗∗ 0.23∗∗∗ 0.73∗∗∗ 0.37∗∗∗

Menu (.026) (.032) (.077) (.051)

Risk MPL
0.24∗∗∗ 0.13∗∗∗ 0.20∗∗∗ 0.43∗∗∗ 0.19∗∗∗ 0.34∗∗∗

(.043) (.033) (.027) (.067) (.047) (.047)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5% and 10% level, with bootstrapped
standard errors from 10,000 simulations in parentheses. N = 775.
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the fact that, unlike other risk measures, it is uncorrelated with gender, as shown in Figure

1.32 These differences account for differences in the explanatory power of risk controls on

the gender gap in competitiveness in Section 3.2.

The fact that different measures yield different conclusions about the relationship be-

tween gender and risk attitudes is reflected in the behavioral literature, which reaches mixed

conclusions about the general relationship between gender and risk (see, for example, Byrnes,

Miller, and Schafer, 1999, for a review of the relevant experimental work in psychology, and

Croson and Gneezy, 2009 and Eckel and Grossman, 2008b for reviews of related experimental

work in economics). On the other hand, the finance literature has found a more consistent

difference between men and women when considering risky financial investments (see, for

example, Barber and Odean, 2013; Embrey and Fox, 1997; Farrell, 2011). The Project

measure intentionally mimics a stock/bond portfolio choice (or risky/safe assets), and the

gender-based behavior in this task is similar to that seen in real financial investments: men

invest more aggressively than women.33

There is also variation in the consistency of responses to the different risk elicitation

techniques across time. The Project task, Risk MPL, and Qualitative assessment were all

elicited in both the Fall 2014 and Spring 2015 installments of the survey. The risk attitudes

elicited by the Project task exhibit more stability than the Risk MPLs—a correlation of

0.65 (0.038) for the Project measure(s), compared with 0.42 (0.063) for the Risk MPL (both

corrected for measurement error). The Qualitative elicitation was performed only once per

survey, and the uncorrected correlation between these elicitations was 0.62.

Taken together, these different measures may be representative of risk attitudes in differ-

ent settings. This would not be surprising, as psychologists have found that risk attitudes do

32In addition to the usual concerns with the Kolmogorov-Smirnov test, it is not valid for discrete distri-
butions. In such cases, the p-value is only approximate, and may lead to extreme implications, such as the
p-values of 1.000 found in Figure 2. As such, we provide p-values only to aid visual inspection.

33The lotteries in the Lottery Menu task can be viewed as corresponding to different investment allocations
between a safe option and a risky one that pays three times the amount invested with 50% probability, see
Eckel and Grossman (2002). Eckel and Grossman (2008a) observed that results are not sensitive to whether
or not lotteries are described as risky investments to participants, which is consistent with the Lottery Menu
task exhibiting similar patterns to the Project measure.
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differ across contexts (Slovic, 1964; see also Kruger, Wang, and Wilke, 2007 and references

therein for more recent work). While there are many criteria on which one might evaluate

such measures, the Project-based measure seems particularly attractive due to its stability,

correlation with other popular measures, and the fact that the literal interpretation of the

measure is consistent with evidence from the field in finance.34

5 New Traits

Measurement error may lead researchers to believe that an observed behavior is not well

explained by current theory. We have already shown one example of this in Section 3, due

to controls measured with error. It is natural to think that bias in correlations, explored in

the last section, may similarly cause researchers to underestimate the relationship between

two variables, and thus declare them distinct when they are, in fact, not. In this section we

provide a potential example of this phenomenon by examining attitudes towards ambiguity.

Ambiguity aversion refers to a preference for known risks over unknown risks. First

introduced by Ellsberg (1961), this preference implies that an ambiguity averse individual

would prefer a lottery with a known probability distribution of rewards over a similar lottery

in which the probability distribution of rewards is unknown. This behavior is expressed in

the Ellsberg Paradox, where participants prefer a bet on the draw of a black ball from an urn

with, say, 10 red and 10 black balls than on an urn with 20 balls of unknown composition.

Ambiguity aversion is widely studied, and used to explain incomplete contracts, volatility in

stock markets, selective abstention in elections, and so on (Mukerji, 2000).

Segal (1987, 1990) suggests that choices under ambiguity may come from improperly

compounding a sequence of lotteries. For instance, in the Ellsberg Paradox scenario above,

a participant might view a draw from the ambiguous urn as having two stages: First, the

number of red balls is randomly determined, according to some subjective probability; sec-

34Recent evidence suggests a global risk component that explains individuals’ choices across investment
domains. This component exhibits some of the features of the Project measure (Einav et al., 2012).
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ond, a ball is drawn from the urn. If an individual fails to properly reduce these two lotteries

into one, a bias will result. Halevy (2007) experimentally tests this proposition. In his study,

participants face both an Ellsberg urn, and an urn where the number of red balls is uniformly

determined. In his results, Halevy reports correlations of around 0.5 between behaviors in

both treatments. Nonetheless, his results suggest that half the variation in the responses

to ambiguous and compound lotteries is independent. This implies a strong, but imperfect,

link between ambiguity aversion and (negative) reactions to compound lotteries.

In this section, we replicate Halevy’s exercise, adding duplicate measures of certainty

equivalents of both ambiguous and compound lotteries. Correcting for measurement error

using ORIV, ambiguity aversion and reaction to compound lotteries appear almost identical.

5.1 Ambiguity Aversion and Reaction to Compound Lotteries

As described in Section 3.1, the Risk MPL, Compound MPL, and Ambiguous MPL are all

implemented similarly. All ask for a participant’s certainty equivalent value of a draw from

an urn if a certain color ball is drawn. All allow the participant to select the color of the ball

associated with positive payment. All have the same number of balls, and the same payoff.

The only difference is how the distribution of balls in the urn is specified: half black and half

red for Risk; drawn from a uniform distribution for Compound; or unknown for Ambiguous.

Each measure is replicated twice: once with a 20-ball urn and a payoff of 100 tokens if the

correct color ball is drawn, and once with a 30-ball urn and a 150-token payoff.

Our data show evidence of ambiguity aversion, as well as a negative reaction to compound

lotteries. In particular, the certainty equivalents of the ambiguous urns are 2.5 and percent-

age points lower than those of the risky urns (s.e. of 0.48 for 20-ball urn, and 0.46 for 30-ball

urn); and the certainty equivalents of the compound lotteries are 2.9 (0.51) and 2.8 (0.51)

percentage points lower than those of the risky urns. Note that these differences are sta-

tistically significant, but not significantly different from each other. On average, ambiguity

aversion and reaction to compound lotteries are identical.
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Table 7: The correlation between certainty equivalents is substantial.

Raw Correlations
Corrected for

Measurement Error

Risk Compound Compound Risk Compound Compound
CE CE Reaction CE CE Reaction

Compound 0.55∗∗∗ 0.74∗∗∗

CE (.035) (.043)

Ambiguous 0.60∗∗∗ 0.65∗∗∗ 0.78∗∗∗ 0.85∗∗∗

CE (.033) (.027) (.037) (.029)

Ambiguity 0.44∗∗∗ 0.86∗∗∗

Aversion (.039) (.059)

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, with bootstrapped standard
errors from 10,000 simulations in parentheses. N = 774.

Table 7 reports the raw and corrected correlations between the three measures. The raw

correlation between ambiguous and compound certainty equivalents are 0.65. This is in line

with Halevy (2007), who reports a correlation of 0.45 (N = 104) in the first round of his

experiment, and a correlation of 0.71 in his robustness round (N = 38). However, once

measurement error is corrected for in our data, the correlation is much higher: 0.85.

Corrected correlations between certainty equivalents of risky and compound or ambigu-

ous urns are substantial as well—0.74 and 0.78, respectively. This leads to an important

point: the high correlation between ambiguity aversion and reaction to compound lotteries

may be because the certainty equivalents of both reflect risk attitudes as well. Thus, we

subtract the risk certainty equivalents from each of the compound and ambiguous certainty

equivalents, leaving measures of ambiguity aversion, and (negative) reaction to compound

lotteries. This results in a smaller raw correlation of 0.44, but the same correlation of 0.86

when measurement error is taken into account. Moreover, the 95% confidence interval for

this correlation is (0.74, 0.98).35 As mentioned in the introduction, the correlations observed

by Halevy have allowed various scholars to maintain the assumption that ambiguity aversion

and reaction to compound lotteries are separate phenomena (see Ahn et al., 2014; Epstein,

35The 99% confidence interval is (0.71, 1.01).
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2010, among others). Our corrected correlations suggest that the difference between the two

attitudes is, in fact, extremely small.

Here, unlike in Section 3, our large sample size is likely the reason we find any difference

between these behaviors. Drawing a random sample of 104 observations (the size of Halevy’s

experiment) 10,000 times, the correlation between ambiguity aversion and reaction to com-

pound lotteries differs from 1 only 1.2% of the time at the 1% level, 4.8% of the time at the

5% level, and 9.0% of the time at the 10% level. It should be noted that these results from

standard confidence intervals are well-calibrated. While correlations have an upper bound

of 1, and thus suffer from the Andrews’s (2001) problem, our estimator can take on values

greater than 1, and is normally distributed around 1 when that is the true correlation. Thus,

any time a correlation greater than 1 is calculated using ORIV, it should be interpreted as

strong evidence that the correlation is actually 1.

Finally, we plot the CDFs of the various measures in Figure 2. The left-most panels show

certainty equivalents for risky urns and ambiguous urns. The fact that these diverge below

50 is evidence of ambiguity aversion. The center panels show the certainty equivalents for

ambiguous urns and compound urns: the distributions appear identical. The final panels

show the distributions of ambiguity aversion and reaction to compound lotteries. Once again,

these appear identical.

5.2 Substantive Implications

Ambiguity aversion and reaction to compound lotteries appear remarkably similar once mea-

surement error is accounted for. It is worth noting that this is compatible with the original

description of Knightian (1921) Uncertainty,

[T]he essential fact is that “risk” means in some cases a quantity susceptible of
measurement, while at other times it is something distinctly not of this char-
acter; and there are far-reaching and crucial differences in the bearings of the
phenomena depending on which of the two is really present and operating.

That is, compound lotteries may be no more “susceptible to measurement” for individuals—
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even Caltech students, who are mathematically inclined—than those that are ambiguous.

This suggests to us that the defining characteristic, in addition to risk attitudes, in

determining valuations of these lotteries is some notion of complexity. Regardless of the

philosophical interpretation of these results, it is clear that any successful model of ambiguity

aversion should also predict behavior in complex, but fully specified, risky environments.

6 Conclusion

If measurement error is such a ubiquitous, but easily correctable, issue, why has the ex-

perimental literature paid so little attention to it? The answer likely lies in the fact that

attenuation bias driven by measurement error is a conservative bias. That is, it biases the

researcher against false positives. So when asked about measurement error, a researcher can

confidently answer that it would “go against finding anything.”

However, measurement error creates another, field-wide, issue that has been little appre-

ciated. It leads to the over-identification of “new” phenomena. Indeed, our paper shows two

examples of this: previously, competitiveness was thought to have a component unconnected

to risk aversion and overconfidence, and ambiguity aversion and reaction to compound lot-

teries (the latter a form of risk aversion) were thought to be distinct. Our results show that

both of these beliefs are unlikely to be true. Moreover, our finding that elicitations of risk

attitudes are more highly correlated than previously appreciated suggests that fewer elicita-

tion methods are needed than previously thought. Given that these are the only three results

we examined in trying to understand the influence of measurement error in experiments, it

seems likely that the over-identification of new phenomena is a substantial problem.

That measurement error may lead to the identification of new phenomena where none

exist may feed into the recent mushrooming of methodological work suggesting the high rates

of non-replicability of research discoveries (see Ioannidis, 2005; Simonsohn, 2015, and refer-

ences therein). Using the techniques developed here to account for measurement error may
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help researchers discover, in a more robust fashion, the deep connections between different

attitudes and effects.
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