
Online Appendix—Not Intended for Publication

A Sampling Properties of the ORIV Estimator

There are several textbooks and survey articles that present methods for inference in linear

and non-linear models with measurement error, a topic that is also addressed in almost any

statistics and econometrics textbook. A common approach to this problem exploits repeated

measurements (or replicates) to characterize the severity of measurement error. After es-

timating these distributional features of the measurement error, researchers can compute

correction factors that dis-attenuate sample estimates. Our ORIV method provides a simple

unifying method for consistent estimation that integrates all information available for relat-

ing two variables to one another. To our knowledge, it is the first to do so. In this technical

appendix, we present a standard suite of results establishing consistency and asymptotic

normality, along with consistent standard errors, for the ORIV estimator. These properties

are proved using textbook-standard arguments presented primarily for completeness.

A.1 Assumptions for the ORIV Model

To establish the Sampling Properties of ORIV, we first detail the assumptions underlying the

linear regression model in latent variables (Assumption 1) and then present the classical mea-

surement error model for our contaminated observations (Assumption 2). The assumptions

here are standard, with the usual exogeneity restrictions and bounds on moments to admit

asymptotic analysis, and all results can be readily extended to allow for heteroskedasticity,

autocorrelation, or other relevant features of the observed data.

Assumption 1 (Linear Regression Model in Latent Variables). The relationship between

the latent variables Y ∗ and X∗ satisfy the usual assumptions for linear regression:

1. Linear model: Y ∗ = α +X∗β∗ + ε∗
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2. Exogeneity: E[ε∗|X∗] = 0

3. Variability in treatment: 0 < Var (X∗), and, E
[
(X∗)4] <∞

4. Variability in residuals: Var [ε∗|X∗] = σ2
ε∗, and, E

[
(ε∗)4 |X∗

]
<∞

5. Independent sampling of individuals: (Y ∗t , X
∗
t , ε
∗
t ) ⊥ (Y ∗s , X

∗
s , ε
∗
s) ∀t 6= s.

Assumption 2 (Replicated Classical Measurement Error). We observe multiple replicates

for noisy measurements of Y ∗ and X∗ that are tainted by classical measurement error.

1. Xk = X∗ + νkX , k = 1, . . . KX

(a) E
[
νkX |X∗, Y ∗

]
= 0

(b) E
[
(νkX)2|X∗, Y ∗

]
= σ2

νkX

(c) E
[
(νkX)4|X∗, Y ∗

]
<∞

(d) νkX ⊥ νlX , ∀k 6= l

2. Y k = Y ∗ + νkY k = 1, . . . KY

(a) E
[
νkY |X∗, Y ∗

]
= 0

(b) E
[
(νkY )2|X∗, Y ∗

]
= σ2

νkY

(c) E
[
(νkY )4|X∗, Y ∗

]
<∞

(d) νkY ⊥ νlY , ∀k 6= l

3. Independence across measures: νkY ⊥ νlX , ∀k, l

4. Independent sampling of individuals: ∀s, t ∈ {1, . . . , N} , s.t. t 6= s:

νkX,t ⊥ νlX,s, ∀k, l ∈ {1, . . . , KX} , and, νkY,t ⊥ νlY,s, ∀k, l ∈ {1, . . . , KY }

Our objective is to perform consistent and (potentially) efficient inference on β, for which

we propose the ORIV regression.1 Defining 1N as a (N × 1) vector of 1’s and 0N as a (N × 1)

1The conditional independence restrictions imposed in Assumptions 1 and 2 are stronger than necessary
for our purposes and can be weakened to mean independence conditions using standard arguments. We
make these assumptions for ease of interpretation. In principle, the conditional independence assumption
provides meaningful additional restrictions that could enhance the identification power, estimator efficiency,
and testable restrictions of the model. This is an interesting direction for future research.
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vector of 0’s, the independent and dependent variables are:

Ỹ ≡
[
Y 1′, . . . , Y KY ′

]′
X̃k ≡ 1KY ⊗Xk

YOR ≡ 1KX ⊗ Y XOR ≡
[
X̃1′, . . . , X̃KX ′

]′
Now construct the instruments for each model:

W k ≡
[
X1, . . . , Xk−1, 0N , X

k+1, . . . , XKX
]

W̃ k ≡ 1KY ⊗W k
WOR ≡



W̃ 1 0 · · · 0

0 W̃ 2 . . . 0

0 · · · . . .
...

0 · · · 0 W̃KX


Then, as we soon show, the ORIV estimator fits the linear model with the exogeneity re-

striction:

YOR = XORβ
∗ + εOR, E[εOR|WOR] = 0.

Letting PWOR
≡ WOR (W ′

ORWOR)−1W ′
OR denote the projection matrix onto the column space

of WOR, we can write the ORIV estimator for β using the usual formula:

β̂∗ = (X ′ORPWOR
XOR)

−1
X ′ORPWOR

YOR. (A.1)

A.2 ORIV Estimator Consistency

We now present the standard arguments for IV estimator consistency in the ORIV setting,

establishing the result stated in the text’s Proposition 1:

Proposition 1. ORIV produces consistent estimates of β∗.

Proof. We begin by verifying the exogeneity condition E[εOR,n|WOR,n] = 0. This requires

breaking εOR down equation-by-equation to verify the condition for each IV specification
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included in the model.

εi,j = Y i −Xjβ∗

= Y ∗ + νiY −X∗β∗ − ν
j
Xβ
∗

= X∗β∗ + ε∗ + νiY −X∗β∗ − ν
j
Xβ
∗

= ε∗ + νiY − ν
j
Xβ
∗.

Note the ORIV estimator interacts ε(i,j) solely with W (j), so that:

E
[
εi,j|W j

]
= E

[
ε∗ + νiY − ν

j
Xβ
∗|W j

]
= ������E

[
ε∗|W j

]
+������E

[
νiY |W j

]
+������E

[
νjX |W

j
]
βOR

= 0.

The first term above cancels by the exogeneity condition in assumption 1.2, the second by the

classical measurement error assumption 2.3, and the last by assumptions 2.1(a) and 2.1(d)

because the kth column of W k is zeroed out.

We now recall the formula for β̂∗ from equation A.1:

β̂∗ = (X ′ORPWOR
XOR)

−1
X ′ORPWOR

YOR

= (X ′ORPWOR
XOR)

−1
X ′ORPWOR

XORβ
∗ + (X ′ORPWOR

XOR)
−1
X ′ORPWOR

εOR

= β∗ + (X ′ORPWOR
XOR)

−1
X ′ORPWOR

εOR.
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To establish consistency of the estimator, notice that:

β̂∗ − β∗ = (X ′ORPWOR
XOR)

−1
X ′ORPWOR

εOR

=

(
1

N
X ′ORWOR

(
1

N
W ′
ORWOR

)−1
1

N
W ′
ORXOR

)−1

∗ 1

N
X ′ORWOR

(
1

N
W ′
ORWOR

)−1
1

N
W ′
ORεOR.

The bounded fourth moments in assumptions 1.4, 2.1(c), and 2.2(c) allow us to apply a

strong law of large numbers for each of the averages in the above formula. Further, since

E[εOR,n|WOR,n] = 0 ⇒ E[WOR,nεOR,n] = 0, the last term 1
N
W ′
ORεOR →p 0, yielding our

desired consistency result:
(
β̂∗ − β∗

)
→p 0.

A.3 Asymptotic Normality and Clustered Variances

We now establish asymptotic normality and present a consistent estimator for the variance

of β̂∗. This establishes the proof for Proposition 2:

Proposition 2. The ORIV estimator satisfies asymptotic normality under Assumptions (1)

and (2). The estimated standard errors, when clustered by participant, are consistent for the

asymptotic standard errors.

Proof. We first establish asymptotic normality. Let ΣεOR ≡ E [εORε
′
OR]. By laws of large

numbers,

SX′W ≡ plim
n→∞

1

N
X ′ORWOR , SW ′W ≡ plim

n→∞

1

N
W ′
ORWOR , and ΩOR ≡ plim

n→∞

1

N
W ′
ORΣεORWOR.

From the Central Limit Theorem, N−1/2W ′
ORεOR →d N (0,ΩOR).
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Asymptotic normality of β̂OR now follows since:

√
N
(
β̂∗ − β∗

)
=

(
1

N
X ′ORWOR

(
1

N
W ′
ORWOR

)−1
1

N
W ′
ORXOR

)−1

∗ 1

N
X ′ORWOR

(
1

N
W ′
ORWOR

)−1

N−1/2W ′
ORεOR

→p N
(

0,Σβ̂∗

)
, where

Σβ̂∗ =
(
SX′WS

−1
W ′WS

′
X′W

)−1
SX′WS

−1
W ′WΩS−1

W ′WS
′
X′W

(
SX′WS

−1
W ′WS

′
X′W

)−1
.

A feasible estimator of the asymptotic variance requires an estimate for Ω, which we will

show is available using the usual clustered variance-covariance matrix estimator. To achieve

this result, we characterize the structure of ΣεOR . Consider

E
[
εi,js ε

k,l
t

]
= E

[(
ε∗s + νiY,s − ν

j
X,sβ

∗) (ε∗t + νkY,t − νlX,tβ∗
)]

= E
[
ε∗sε
∗
t +���ε∗sν

k
Y,t −����ε∗sν

l
X,tβ

∗

+�
���νiY,sε
∗
t + νiY,sν

k
Y,t −����

νiY,sν
l
X,tβ

∗

−��
��νjX,sε
∗
t −��

��
νjX,sν

k
Y,t + νjX,sν

l
X,t(β

∗)2
]

= E
[
ε∗sε
∗
t + νiY,sν

k
Y,t + νjX,sν

l
X,t(β

∗)2
]
.

Therefore, we have:

E
[
εi,js ε

k,l
t

]
=



0, if s 6= t,∀i, j, k, l

s00 ≡ σ2
ε∗ , if s = t, i 6= k, j 6= l

si0 ≡ σ2
ε∗ + σ2

νiY i
, if s = t, i = k, j 6= l

s0j ≡ σ2
ε∗ + σ2

νjX
(β∗)2, if s = t, i 6= k, j = l

sij ≡ σ2
ε∗ + σ2

νiY
+ σ2

νjX
(β∗)2, if s = t, i = k, j = l

. (A.2)

This formula allows us to populate the entries of ΣεOR . Denote by SY the diagonal
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matrix with entries

[
σ2
ν1Y
, . . . , σ2

ν
KY
Y

]
and, similarly, by SX the diagonal matrix with entries[

σ2
ν1X
, . . . , σ2

ν
KX
X

]
. Letting IN denote the N ×N Identity matrix and working with Kronecker

products, we can write:

ΣεOR =σ2
ε∗

[(
1(KXKY )1

′
(KXKY )

)
⊗ IN

]
(A.3)

+
[
SY ⊗

((
1KX1′KX

)
⊗ IN

)]
+ β∗2

[((
1KY 1′KY

)
⊗ SX

)
⊗ IN

]
.

Importantly, the result indicates that all of the non-zero entries in ΣεOR correspond to in-

stances where the individual representing the unit of observation is the same in two different

regression matrices.

Define ε̂OR,(i) ≡ YOR,i − XOR,iβ̂
∗ and consider the estimator for Σ̂εOR that sets its (i, j)

entry equal to ε̂OR,(i)ε̂OR,(i) if the (i, j) entry in ΣεOR is non-zero. Then, by the Law of Large

Numbers:

Ω̂ ≡ 1

N
W ′
ORΣ̂εORWOR →p Ω

NΣ̂β̂∗ ≡ N
X ′ORWOR (W ′

ORWOR)−1 Ω̂ (W ′
ORWOR)−1W ′

ORXOR

(X ′ORPWOR
XOR)2 →p Σβ̂OR

.

A.4 Inference on Correlation Coefficients

A.4.1 Consistency and Asymptotic Normality

We now establish consistency and asymptotic normality of the correlation estimator as stated

in Proposition 3:

Proposition 3. ρ̂∗XY is consistent with an asymptotically normal distribution, where stan-

dard errors can be derived using the delta method. These standard errors can be consistently
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estimated using a bootstrap to construct confidence intervals.

Proof. Consistency follows from a straightforward application of the Continuous Mapping

Theorem. In particular, note that:

Ĉov[Xa, Xb]→p Cov[Xa, Xb] = σ2
X∗

Ĉov[Y a, Y b]→p Cov[Y a, Y b] = σ2
Y ∗

⇒

√√√√Ĉov[Xa, Xb]

Ĉov[Y a, Y b]
→p

√
Cov[Xa, Xb]

Cov[Y a, Y b]
=
σX∗

σY ∗
.

Given that β̂∗ is consistent for β∗ = Cov(X∗,Y ∗)
σ2
X∗

, we have:

ρ̂∗XY =

√√√√Ĉov[Xa, Xb]

Ĉov[Y a, Y b]
β̂∗ →p

Cov (X∗, Y ∗)

σX∗σY ∗
= ρ∗XY .

For the limiting distribution, assume independent sampling and suppose all observed ran-

dom variables have bounded 8th moments (so their kurtosis can be consistently estimated).

Then β̂∗, Ĉov[Xa, Xb], and Ĉov[Y a, Y b] are jointly asymptotically normal:

√
n


β̂∗ − β∗

Ĉov[Xa, Xb]− σ2
X∗

Ĉov[Y a, Y b]− σ2
Y ∗

→d N (0,Ψ) ,

where:

Ψ =


σ2
β̂∗

σβ̂∗,Ĉov[Xa,Xb] σβ̂∗,Ĉov[Y a,Y b]

σβ̂∗,Ĉov[Xa,Xb] σ2
Ĉov[Xa,Xb]

σĈov[Xa,Xb],Ĉov[Y a,Y b]

σβ̂∗,Ĉov[Y a,Y b] σĈov[Xa,Xb],Ĉov[Y a,Y b] σ2
Ĉov[Y a,Y b]


reflects the asymptotic covariance matrix of the estimators β̂∗, Ĉov[Xa, Xb], and Ĉov[Y a, Y b].

Denoting the kurtosis ofX∗ and Y ∗ as ζX = E
[
(X∗ − E [X∗])4] and ζY = E

[
(Y ∗ − E [Y ∗])4],
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respectively, algebraic manipulation yields:

σ2
β̂∗

= Σβ̂OR
(A.4)

σ2
Ĉov[Xa,Xb]

= ζX − σ4
X∗ + σ2

X∗

(
σ2
ν1X

+ σ2
ν2X

)
+ σ2

ν1X
σ2
ν2X

σ2
Ĉov[Y a,Y b]

= ζY − σ4
Y ∗ + σ2

Y ∗

(
σ2
ν1Y

+ σ2
ν2Y

)
+ σ2

ν1Y
σ2
ν2Y

σβ̂∗,Ĉov[Xa,Xb] = β
X ′1X1σ

2
ν1X

+X ′2X2σ
2
ν2X

X ′1X1 +X ′2X2

σβ̂∗,Ĉov[Y a,Y b] = β
σ2
ν1Y

+ σ2
ν2Y

2

σĈov[Xa,Xb],Ĉov[Y a,Y b] = β2ζX

The delta method approximation builds on a Taylor expansion of ρ̂∗XY at (β∗, σ2
X∗ , σ

2
Y ∗):

ρ̂∗XY =

√√√√Ĉov[Xa, Xb]

Ĉov[Y a, Y b]
β̂∗ ≈

√
σ2
X∗

σ2
Y ∗
β∗ +

√
σ2
X∗

σ2
Y ∗

(
β̂∗ − β∗

)
+

β∗

2
√
σ2
X∗σ

2
Y ∗

(
Ĉov[Xa, Xb]− σ2

X∗

)
− β∗

2

√
σ2
X∗

σ6
Y ∗

(
Ĉov[Y a, Y b]− σ2

Y ∗

)
.

Since the remainder in the approximation is op (n), asymptotic normality for ρ̂∗XY follows:

√
n (ρ̂∗XY − ρ∗XY ) =a

√
σ2
X∗

σ2
Y ∗

√
n
(
β̂∗ − β∗

)
+

β∗

2
√
σ2
X∗σ

2
Y ∗

√
n
(

Ĉov[Xa, Xb]− σ2
X∗

)
− β∗

2

√
σ2
X∗

σ6
Y ∗

√
n
(

Ĉov[Y a, Y b]− σ2
Y ∗

)
→dN

(
0, V ∞ρ̂∗XY

)
.

To derive the asymptotic variance, we square the right-hand side of this expression and

solve for its limiting expectation. Using the expressions from (A.4), we can derive the
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asymptotic variance as:

V ∞ρ̂∗XY =
σ2
X∗

σ2
Y ∗
σ2
β̂∗

+
β∗2

4σ2
X∗σ

2
Y ∗
σ2

Ĉov[Xa,Xb]
+
β∗2

4

σ2
X∗

σ6
Y ∗
σ2

Ĉov[Y a,Y b]
(A.5)

+
β∗

σ2
Y ∗
σβ̂∗,Ĉov[Xa,Xb] − β

∗σ
2
X∗

σ4
Y ∗
σβ̂∗,Ĉov[Y a,Y b] −

β∗2

2σ4
Y ∗
σĈov[Xa,Xb],Ĉov[Y a,Y b].

Since all the variance and covariance terms on the right hand side of (A.5) are finite,

so long as the variances σ2
X∗ and σ2

Y ∗ are bounded away from zero, this asymptotic vari-

ance is also finite. With asymptotic normality, we can construct confidence intervals using

asymptotically pivotal t-statistics centered on the null-hypothesis that ρ∗XY = ρ̂∗XY for all

|ρ̂∗XY | < 1. With this specification, the bootstrap’s empirical distribution function converges

to the population distribution function. In particular, standard errors can be consistently

estimated using a bootstrap to construct confidence intervals.

A.4.2 Bootstrapping Correlation Standard Errors for Confidence Regions

Given the complex formula in (A.5) and the difficulty of computing fourth moments using

standard statistical tools, we propose using a bootstrap to compute standard errors for con-

structing confidence intervals. Proposition 3 above assures that estimated standard errors

using a bootstrap are consistent. Incorporating the sampling error from Ĉov[Xa, Xb] and

Ĉov[Y a, Y b] requires only a small modification to the standard bootstrap procedure, as pre-

sented for the case with two replicates of X and Y in Algorithm 1 below. We present the

rescaling approach to computing the ORIV correlation in step 3 as it may facilitate bootstrap

implementation in some statistical packages. STATA code implementing the bootstrapped

standard errors is shown in Appendix C. A STATA package for computing ORIV correlations

and bootstrapped standard errors is available from the authors upon request.
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Algorithm 1 Bootstrap Algorithm for ORIV Correlation Standard Errors
For m = 1, . . . ,M :

1. Randomly draw an index of n observations from {1, . . . , n} with replacement. Denote this index:

T (m) =
{
t
(m)
1 , t

(m)
2 , . . . , t

(m)
n

}
.

2. Construct Xa,(m), Xb,(m), Y a,(m), and Y b,(m) so that:

Xa,(m) =
[
Xa

t
(m)
1

, Xa

t
(m)
2

, . . . , Xa

t
(m)
n

]
, Xb,(m) =

[
Xb

t
(m)
1

, Xb

t
(m)
2

, . . . , Xb

t
(m)
n

]
Y a,(m) =

[
Y a
t
(m)
1

, Y a
t
(m)
2

, . . . , Y a
t
(m)
n

]
, Y b,(m) =

[
Y b
t
(m)
1

, Y b
t
(m)
2

, . . . , Y b
t
(m)
n

]
.

3. Compute ORIV Correlations ρ̂
(m)
XY from Xa,(m), Xb,(m), Y a,(m), and Y b,(m):

3.A. Calculate the bootstrapped attenuation factors

X̄a,(m) ≡ 1

n

n∑
τ=1

Xa

t
(m)
τ
, X̄b,(m) ≡ 1

n

n∑
τ=1

Xb

t
(m)
τ
, Ȳ a,(m) ≡ 1

n

n∑
τ=1

Y a
t
(m)
τ
, Ȳ b,(m) ≡ 1

n

n∑
τ=1

Y b
t
(m)
τ

σ̂2
X∗,(m) =

1

n

n∑
τ=1

(
Xa

t
(m)
τ
− X̄a,(m)

)(
Xb

t
(m)
τ
− X̄b,(m)

)
,

σ̂2
Y ∗,(m) =

1

n

n∑
τ=1

(
Y a
t
(m)
τ
− Ȳ a,(m)

)(
Y b
t
(m)
τ
− Ȳ b,(m)

)
.

3.B. Rescale the resampled data to define X̃a,(m), X̃b,(m), Ỹ a,(m), and Ỹ b,(m).

X̃a,(m) ≡ Xa,(m)√
σ̂2
X∗,(m)

, X̃b,(m) ≡ Xb,(m)√
σ̂2
X∗,(m)

, Ỹ a,(m) ≡ Y a,(m)√
σ̂2
Y ∗,(m)

, Ỹ b,(m) ≡ Y n,(m)√
σ̂2
Y ∗,(m)

3.C. Compute and store ρ̂
(m)
XY from the ORIV Regression of Ỹ (m) on X̃(m).

The bootstrap variance estimator is:

V̂BS (ρ̂XY ) ≡ 1

M

M∑
m=1

(
ρ̂
(m)
XY − ρ̂XY

)2

A.4.3 Finite-Sample Hypothesis Tests and Confidence Interval Coverage

We performed a series of simulations to ensure hypothesis tests and confidence intervals

using asymptotic and bootstrapped standard errors have appropriate size and coverage in

finite samples. The simulations specify a data generating process sampling independently in

t:  X∗t

Y ∗t

 ∼ N


 0

0

 ,
 1 ρ

ρ 1


 .
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We generated two contaminated measures of both X∗t and Y ∗t with independent normally

distributed measurement error, defining

Xa
t = X∗t + ηX,at Xb

t = X∗t + ηX,bt Y a
t = Y ∗t + ηY,at Y b

t = Y ∗t + ηY,bt ,

where each η·t ∼ N
(
0, σ2

η

)
is drawn independently of all other measurement errors.

Different simulations are used to generate data sets of size n ∈ {100, 250, 500, 1000}.

We estimate models with correlations ρ ∈ {0, 0.25, 0.5, 0.95, 0.99} and measurement error

variances σ2
η ∈ {0, 0.1/0.9, 0.25/0.75, 0.5/0.5}. Hypothesis tests and confidence intervals are

constructed using t-Statistics at the 1%, 5%, and 10% levels, where standard errors are

calculated using the asymptotic approximation in (A.5) and the bootstrap algorithm with

10,000 replications.

Table A.1 presents the finite-sample estimated standard errors from 1,000 simulations.

Across all specifications, the estimated standard errors display only moderate bias. The only

notable bias appears in extreme cases featuring small samples, where measurement error

variability and the underlying correlation are both high. In such settings, the bootstrap

procedure occasionally generates samples in which the estimated variance σ̂2
Y ∗ is nearly zero.

The explosive impact of these draws on the estimated correlations leads to bootstrapped

standard errors that greatly exceed the population standard errors. Outside of these extreme

cases, the bootstrap demonstrates negligible bias in estimated standard errors. In fact, for

reasonable levels of measurement errors, of the order we observe in our data, we see very

little bias.

To evaluate the finite-sample performance of hypothesis tests, table A.2 reports rejection

frequencies using t-Tests. As with the standard errors, when measurement error constitutes

less than 50% of the variance in the underlying variables or correlations are lower than

0.95, inference using bootstrapped or asymptotic standard errors appears reasonable for any

sample size. We expect these to be the ranges that are relevant for most experimental work.
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Table A.1: Simulated Bias in Estimated Standard Errors for Correlations

Panel A: Bootstrap Standard Error Bias (*1,000) Panel B: Asymptotic Standard Error Bias (*1,000)

n = 100 σ2
η n = 100 σ2

η

ρ 0 0.1/0.9 0.25/0.75 0.5/0.5 ρ 0 0.1/0.9 0.25/0.75 0.5/0.5
0 -5.18 -2.82 -6.30 15.47 0 -5.50 -3.07 -6.85 -6.53
0.25 -0.52 -0.55 0.21 3.99 0.25 -1.37 -1.38 -0.52 -7.14
0.5 -1.24 0.26 -3.79 29.09 0.5 -3.79 -2.15 -5.92 -2.65
0.95 0.47 0.28 0.25 63.98 0.95 -4.70 -3.15 -5.75 -4.32
0.99 0.50 1.00 0.45 71.29 0.99 4.07 7.02 0.96 -6.09

n = 250 σ2
η n = 250 σ2

η

ρ 0 0.1/0.9 0.25/0.75 0.5/0.5 ρ 0 0.1/0.9 0.25/0.75 0.5/0.5
0 -0.61 -1.72 -0.87 -3.04 0 -0.64 -1.70 -0.91 -3.67
0.25 -1.66 -1.23 -2.24 -1.47 0.25 -1.85 -1.42 -2.43 -2.22
0.5 -0.73 -0.42 -0.22 -3.06 0.5 -1.36 -1.01 -0.69 -4.19
0.95 0.19 -0.03 -0.27 3.71 0.95 -2.02 -2.16 -2.40 1.64
0.99 0.16 0.04 0.29 0.98 0.99 2.43 2.99 -0.87 -1.16

n = 500 σ2
η n = 500 σ2

η

ρ 0 0.1/0.9 0.25/0.75 0.5/0.5 ρ 0 0.1/0.9 0.25/0.75 0.5/0.5
0 0.72 0.92 -0.11 4.41 0 0.71 0.92 -0.09 4.23
0.25 -0.32 0.11 0.12 -0.68 250 -0.36 0.10 0.04 -0.91
0.5 0.26 0.47 0.92 1.24 500 0.12 0.30 0.75 1.17
0.95 -0.17 -0.12 -0.82 0.79 950 -1.83 -1.72 -2.51 0.43
0.99 0.06 0.14 0.06 0.36 990 1.46 1.77 -0.81 -0.17

n = 1, 000 σ2
η n = 1, 000 σ2

η

ρ 0 0.1/0.9 0.25/0.75 0.5/0.5 ρ 0 0.1/0.9 0.25/0.75 0.5/0.5
0 0.76 0.56 0.35 0.23 0 0.75 0.56 0.34 0.17
0.25 0.00 -0.18 -0.04 0.27 0.25 -0.03 -0.21 -0.07 0.20
0.5 0.06 0.12 0.29 0.80 0.5 0.01 0.05 0.31 0.82
0.95 -0.07 -0.22 -0.72 0.98 0.95 -0.66 -0.71 -1.12 1.18
0.99 0.03 0.04 -0.24 0.02 0.99 0.79 0.62 -1.29 -0.16

This table reports simulated finite-sample bias in estimated standard errors relative to simulated standard

errors for the ORIV correlations in 1,000 simulations with normally distributed variables for a range of

sample sizes (n), true correlations (ρ), and variability of measurement error (σ2
η). Bootstrap standard errors

(Panel A) are calculated using the bootstrap algorithm presented in section A.4.2 with 10,000 resampling

draws. Asymptotic standard errors (Panel B) are calculated using the formula in (A.5).

For completeness, we explore more extreme cases to identify where the asymptotic ap-

proximations may not be valid. When n = 100, hypothesis tests typically reject the null

hypothesis more often than expected based on the nominal size though the distortion is not

extreme. If the true correlation is as high as 0.99 or the variance of measurement error

matches or exceeds that of the underlying X∗ and Y ∗, the asymptotic approximation breaks

down in samples with fewer than 1,000 observations. The bootstrap overstates the variance

of the estimator in these settings, which results in overly conservative tests that fail to reject

the null hypothesis with sufficient frequency.
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Table A.2: Simulated Rejection Frequencies for Bootstrapped Correlation t-Tests

Panel A: 1% Level Panel B: 5% Level Panel C: 10% Level

n = 100 σ2
η σ2

η σ2
η

ρ 0 10% 25% 50% ρ 0 10% 25% 50% ρ 0 10% 25% 50%
0 2.2% 1.8% 2.1% 1.5% 0 6.5% 5.2% 7.2% 5.9% 0 12.0% 10.7% 12.5% 10.5%
0.25 1.4% 1.6% 2.0% 1.4% 0.25 6.2% 6.2% 5.9% 5.9% 0.25 11.1% 11.3% 9.9% 11.1%
0.5 1.6% 1.9% 1.4% 1.1% 0.5 5.5% 5.5% 6.1% 5.1% 0.5 10.3% 11.2% 12.3% 9.1%
0.95 1.3% 1.5% 1.3% 0.3% 0.95 4.5% 5.1% 5.5% 2.1% 0.95 9.4% 9.9% 10.1% 4.9%
0.99 0.4% 0.4% 0.2% 0.2% 0.99 1.8% 2.7% 3.6% 2.0% 0.99 4.7% 6.3% 7.8% 5.3%

n = 250 σ2
η σ2

η σ2
η

ρ 0 10% 25% 50% ρ 0 10% 25% 50% ρ 0 10% 25% 50%
0 1.2% 1.3% 0.9% 1.3% 0 4.9% 5.9% 5.3% 6.1% 0 10.9% 11.7% 10.7% 11.5%
0.25 1.4% 1.7% 1.7% 1.8% 0.25 5.6% 5.5% 6.1% 6.0% 0.25 10.4% 10.9% 11.5% 10.7%
0.5 1.5% 1.5% 2.0% 1.7% 0.5 5.2% 5.4% 5.4% 6.0% 0.5 10.6% 10.3% 9.8% 11.4%
0.95 1.4% 2.2% 1.4% 0.5% 0.95 5.0% 5.6% 4.6% 3.0% 0.95 9.2% 10.6% 10.1% 8.3%
0.99 0.7% 0.9% 0.5% 0.5% 0.99 3.6% 4.4% 5.1% 3.0% 0.99 7.1% 10.6% 9.7% 8.6%

n = 500 σ2
η σ2

η σ2
η

ρ 0 10% 25% 50% ρ 0 10% 25% 50% ρ 0 10% 25% 50%
0 0.6% 1.2% 1.2% 0.6% 0 4.8% 5.4% 5.2% 3.8% 0 10.2% 9.3% 10.0% 9.3%
0.25 1.5% 1.3% 1.3% 0.9% 0.25 6.1% 5.3% 4.8% 5.8% 0.25 10.1% 10.5% 10.4% 12.2%
0.5 1.2% 1.4% 1.0% 1.0% 0.5 4.7% 4.5% 4.3% 4.2% 0.5 10.3% 9.7% 9.4% 8.9%
0.95 0.8% 0.8% 1.3% 1.1% 0.95 5.2% 5.4% 6.9% 4.6% 0.95 11.8% 10.4% 12.3% 9.1%
0.99 0.9% 0.4% 0.9% 0.6% 0.99 4.3% 4.6% 4.5% 4.7% 0.99 8.2% 10.1% 9.7% 9.8%

n = 1, 000 σ2
η σ2

η σ2
η

ρ 0 10% 25% 50% ρ 0 10% 25% 50% ρ 0 10% 25% 50%
0 1.4% 0.6% 1.5% 1.3% 0 4.5% 5.1% 4.7% 5.2% 0 9.0% 10.1% 9.8% 9.5%
0.25 1.3% 1.2% 0.9% 1.1% 0.25 4.9% 4.7% 5.5% 4.8% 0.25 11.3% 11.3% 10.1% 11.2%
0.5 1.6% 0.9% 1.1% 1.1% 0.5 4.9% 5.0% 4.6% 4.2% 0.5 9.1% 10.4% 9.4% 9.5%
0.95 1.3% 1.4% 1.2% 0.8% 0.95 5.0% 5.4% 6.3% 4.3% 0.95 9.7% 9.9% 11.1% 9.4%
0.99 0.9% 0.6% 1.1% 0.7% 0.99 4.7% 5.4% 5.7% 5.4% 0.99 7.4% 10.0% 11.1% 9.2%

This table reports simulated rejection frequency of the null hypothesis using t-Tests with bootstrapped

standard errors (presented in section A.4.2 with 10,000 resampling draws) for ORIV correlations. The

results report on 1,000 simulations with normally distributed variables for a range of sample sizes (n), true

correlations (ρ), and variability of measurement error (σ2
η). Critical values are based on nominal test sizes

of 1% (Panel A), 5% (Panel B), and 10% (Panel C).

Overall, these results affirm the obvious caution when performing inference in relatively

small samples in which most of the variability in observations is due to measurement error.

More extreme cases may require additional data or a more refined test statistic accounting

for boundary issues that complicate the sampling distribution of the estimator as ρ∗XY → 1

(a complex statistical problem beyond the scope of the current paper).
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A.5 Equivalent Estimators

The ORIV estimator provides a convenient and intuitive representation for consolidating all

the information available to the experimenter. This convenient representation can be mo-

tivated by many representations and so we highlight here a couple of special cases yielding

numerically equivalent estimators to ORIV. These equivalences also motivate an interpre-

tation of ORIV as a model combination estimator that will be useful in characterizing the

estimator’s efficiency.

A.5.1 Averaging Left-Side Variables: KY ≥ 2

As mentioned in the text, averaging of observations is common in experimental work. As it

turns out, when measurement error occurs on both left- and right-side variables, a numeri-

cally equivalent estimator to ORIV can be derived by averaging observations of the left-side

variable and stacking only right-side variables.

Proposition 4. Suppose KY ≥ 2, let Ȳ = 1
KY

∑KY
k=1 Y

k, and define:

ȲOR = 1KX ⊗ Ȳ

X̄OR =
[
X1′, . . . , XKX ′

]′ W̄OR =



W 1 0 · · · 0

0 W 2 . . . 0

0 · · · . . .
...

0 · · · 0 WKX


.

Then β̄OR =
(
X̄ ′ORPW̄OR

X̄OR

)−1
X̄ ′ORPW̄OR

ȲOR = β̂∗.

Proof. The first step in the proof shows that X ′ORPWOR
XOR = KY X̄

′
ORPW̄OR

X̄OR, which

comes immediately from the SUR structure ORIV imposes on the first stage regressions of

Xk on W k. Due to the blocked structure of W̄OR,

X̄ ′ORPW̄OR
X̄OR =

KX∑
k=1

Xk′PWkXk.
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Due to the stacked structure of X̃k and W̃ k, X̃k′PW̃kX̃k = KYX
k′PWkXk, which when

blocked across the measurements of X∗, gives:

X ′ORPWOR
XOR =

KX∑
k=1

X̃k′PW̃kX̃k =

KX∑
k=1

KYX
k′PWkXk = KY X̄

′
ORPW̄OR

X̄OR.

We complete the proof using a parallel argument to show X ′ORPWOR
YOR = KY X̄

′
ORPW̄OR

ȲOR.

A.5.2 Averaging Estimates of Individual IV Models: KY = 1

In the special case where KY = 1, either because there is only one measurement for Y ∗ or

because multiple measurements have been concentrated into Ȳ , the ORIV estimator is nu-

merically equivalent to a weighted average of estimates from the individual IV specifications.

Proposition 5. Let β̂k =
(
Xk′PWkXk

)−1
Xk′PWkY and ωk =

(
Xk′PWkXk

)
, then:

β̃∗ =
1∑KX

k=1 ωk

KX∑
k=1

ωkβ̂k = β̂∗.

Proof. We begin with the observation that W̃ k = W k and X̃k = Xk when KY = 1. From

the previous subsection, we can write:

β̂∗ =

(
KX∑
k=1

Xk′PWkXk

)−1 KX∑
k=1

Xk′PWkY =

(
KX∑
k=1

ωk

)−1 KX∑
k=1

Xk′PWkXkβ̂k =

∑KX
k=1 ωkβ̂k∑KX
k=1 ωk

= β̃∗.

A further specialized case of Proposition 5 applies when KX = 2. In this setting,

ω1 = X1′PW 1X1 = X1′PX2X1 = X2′PX1X2 = X2′PW 2X2 = ω2.

Consequently, in the setting where KY = 1 and KX = 2, the ORIV estimator can be
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computed by taking the simple average of the two IV estimators β̂1 and β̂2.

A.6 GMM Representation, Efficiency, and GLS Estimation

We close our discussion of the ORIV estimator with a brief comment on the estimator’s

efficiency. First, we present an unweighted GMM representation for the ORIV estimator

to establish ORIV’s efficiency in a homoskedastic model where measurement error has a

constant variance across replicates. In the special case where measurement errors are ho-

moskedastic, the ORIV estimator is asymptotically efficient. In general, when measurement

errors are characterized by heteroskedastic variances, the efficiently weighted GMM estimator

corresponds to a GLS implementation of ORIV that can improve efficiency.

A.6.1 GMM Representation of the ORIV Estimator

ORIV’s efficiency derives from combining all available exclusion restrictions when estimating

the regression model. Let W j
t denote the tth row of the matrix Wt, construct the KYKX

identifying moment conditions:

gk,jt ≡ E
[(
Y k
t −X

j
t β
)
W j
t

]
= 0, k = 1, . . . , KY , j = 1, . . . , KX .

2

We can consolidate these conditions using a vector representation:

gt ≡
[
g1,1
t , . . . , g1,KX

t , g2,1
t , . . . , g2,KX

t , . . . gKY ,1t , . . . , gKY ,KXt

]′
.

2This mean independence assumption is implied by the conditional independence assumptions in Assump-
tions 1 and 2. However, the conditional independence assumptions provide additional restrictions on higher
order moments such that E[(Y kt − X

j
t β)f(W j

t )] = 0 for any function f . Under conditional independence,
these additional restrictions are informative and could be used to enhance estimator efficiency or test the
validity of the independence assumptions.
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The GMM objective function weights the quadratic loss for the sample-estimated moment

conditions ḡn ≡ 1
n

∑n
t=1 gt so that:

β̂GMM = argmin ḡ′nW ḡn

where W is a KYKX ×KYKX weighting matrix.

In our leading specification, which features homoskedastic errors and homogeneous vari-

ances across replicated measures, the efficient choice for W is the identity matrix (since all

moment restrictions are equally informative). The GMM objective function in this case ex-

actly matches the objective function minimized by the ORIV estimator, establishing ORIV’s

efficiency as demonstrated in Section A.6.2. More generally, in the presence of heteroskedas-

ticity or heterogeneous contamination variances, the identity-weighting matrix may be inef-

ficient. In these cases, discussed in Sections A.6.3 and A.6.4, the efficiently-weighted GMM

estimator is equivalent to an FGLS implementation of ORIV that also achieves efficiency.

A.6.2 Efficiency in Homoskedastic Setting: KY = 1

In this subsection, we consider efficiency when KY = 1 while maintaining the following

homogeneity assumption for variances in the model.

Assumption 3 (Identical Variances Across Replicates). Suppose measurement error has the

same variance for all replicates, so that:

1. σν,X,k = σν,X,j = σν,X , ∀j, k 2. σν,Y,k = σν,Y,j = σν,Y , ∀j, k.

Intuitively, efficiency obtains under Assumption 3 because each observation is equally

informative and, as such, should be weighted equally. To verify efficiency, we analyze the

variance-covariance matrix for estimates from individual models. Let B̂ =
[
β̂1, . . . , β̂KX

]′
.

The asymptotic variance-covariance matrix for this vector is defined by the limit of the scaled
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covariances:

NCov
[
β̂i, β̂j

]
= N

X i′PW iPW jXj

(X i′PW iX i) (Xj′PW̃ jXj))
s1(1{i=j})

=
1
N
X i′PW iPW jXj(

1
N
X i′PW iX i

) (
1
N
Xj′PW̃ jXj)

)s1(1{i=j}) →p ζi,j.

We will show below that the homoskedastic measurement error guaranteed by Assumption

3 implies ζi,j = ζk,l,∀i 6= j, k 6= l, and ζi,i = ζj,j, ∀i, j, allowing us to express the asymptotic

variance-covariance matrix for B̂ as:

Σ∞
B̂

= 1KX1′KXζ1,2 + IKXζ1,1.

If we want to form an efficient linear combination of the estimators in B̂ while maintaining

consistency, we would be looking for a vector of weights, w = [w1, w2, . . . , wKX ]′, that sum

to one and minimize:

w∗ = arg min
w
w′Σ∞

B̂
w, such that, w′1KX = 1

⇒ w∗ = K−1
X 1KX .

That is, in the homoskedastic setting, equally weighting the estimates of the individually

valid IV estimators is asymptotically efficient.

Proposition 6 (Two-Parameter Covariance Matrix for Individual IV Estimators). Under

Assumptions (1)–(3), the variance-covariance matrix for estimates from the individual IV

models for β∗ features constant correlations and homoskedastic variances. That is,

Σ∞
B̂

= 1KX1′KXζ1,2 + IKXζ1,1.
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Proof. By virtue of the homoskedastic measurement error, in the limit:

plim
N→∞

1

N
X i′PW iX i = plim

N→∞

1

N
Xj′PW jXj ≡ ω11, and

plim
N→∞

1

N
X i′PW iPW jXj = plim

N→∞

1

N
Xk′PWkPW lX l ≡ ω12, and,,∀i 6= j, k 6= l

The exact formulas for the constants ω involve some algebraic manipulation. The rel-

atively simple constant for the norm of X i projected onto its instruments W i is just the

expected R2 of the first stage regression:

ω11 =
(KX − 1)E[(X∗)2]

2

(KX − 1)E[(X∗)2] + σ2
νX

.

With respect to ω12, notice that

plim
N→∞

1

N
X i′W i = E

[
X i
nW

i′
n

]
= E

[
(X∗)2

]
1′KX−1

plim
N→∞

1

N
W i′W i = E

[
W i
nW

i′
n

]
= E

[
(X∗)2

]
1KX−11′KX−1 + σ2

νX
IKX−1

plim
N→∞

1

N
W i′W j = E

[
W i
nW

j′
n

]
= E

[
(X∗)2

]
1KX−11′KX−1 + σ2

νX
E ′iEj

Here Ei is a KX×(KX−1) matrix constructed by removing the ith column from the KX×KX

identity matrix. Establishing the probability limit result for plim
N→∞

1

N
X i′PW iPW jXj requires

chaining together and inverting a series of these expressions:

plim
N→∞

1

N
X i′PW iPW jXj = plim

N→∞

1

N
X i′W i

(
1

N
W i′W i

)−1
1

N
W i′W j

(
1

N
W j′W j

)−1
1

N
W j′Xj

Importantly, the dependence on which measurements are involved, i and j is entirely wrapped

up in inner products of the form 1′KX−1E
′
iEj1KX−1 = KX − 2
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A.6.3 Efficiency in Heteroskedastic Settings: KY = 1

We now consider efficiency in the heteroskedastic setting, relaxing assumption 3 to allow

for the case where σνkX 6= σνjX
, while maintaining the assumption that KY = 1. In this

setting, the heteroskedastic errors will admit a more efficient GLS estimator. Here, SX is

the diagonal matrix with σ2
νkX

in the (k, k)th entry, so that:

ΣKY =1
εOR

=
(
σ2
ε∗ + σ2

νY

) [(
1KX1′KX

)
⊗ IN

]
+ β∗2 (SX ⊗ IN)

Importantly, even though the off-diagonal terms retain a homoskedastic structure, now the

diagonal terms reflect the heteroskedasticity in the measurement error for X. It is this

heteroskedasticity that allows for enhanced efficiency. For efficient estimation in the presence

of heteroskedasticity, the usual formulas for GLS estimation can be used for ORIV.

To characterize the efficient weights associated with each of the individual IV models, we

can again consider the model combination exercise pertaining to the combination of estimates

in B̂ to minimize variance. ΣB̂ is no longer going to have constant variances and covariances.

Without a homogeneity assumption, we cannot further simplify its representation beyond

the results above:

w∗ = arg min
w
w′Σ∞

B̂
w, such that, w′1KX = 1

⇒ w∗ =
Σ∞−1

B̂
1KX

1′KXΣ∞−1

B̂
1KX

.

Without reweighting observations, the ORIV estimator will assign weights of wi,OR =

Xi′PWiXi∑K
k=1(Xk′P

WkXk)
. Therefore, consider reweighting observations for the ith model to achieve
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the optimal weights. Specifically, defining λi ≡
√

w∗i
wi,OR

and λ ≡ [λ1, . . . , λKX ]′, let

ỸOR,λ = λ⊗ Y 1

X̃OR,λ =
[
λ1X

1′, . . . , λKXX
KX ′
]′ W̃OR,λ =



λ1W
1 0 · · · 0

0 λ2W
2 . . . 0

0 · · · . . .
...

0 · · · 0 λKXW
KX


.

Then β̂∗GLS =
(
X̃ ′OR,λPW̃OR,λ

X̃OR,λ

)−1

X̃ ′OR,λPW̃OR,λ
ỸOR,λ is the efficient, asymptotically un-

biased estimator for β∗.
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A.6.4 Efficiency in Heteroskedastic Settings: KY ≥ 2

The efficiency arguments in the homoskedastic setting when KY = 1 extend immediately to

models with KY > 1 by the equivalence result in Proposition 4. The heteroskedastic setting

is slightly complicated because the simple average is no longer the most efficient way to

combine the information in the different measurements of Y . Instead, we replace the simple

average with the efficient average, ȲGLS = 1∑KY
k=1 σ

−2

νk
Y

∑KY
k=1 σ

−2
νkY
Y k.

Having minimized measurement error in the left-side variable, Y ∗, we can construct the

weighted GLS estimator from the previous subsection. Define ˜̄YOR,λ = λ ⊗ ȲGLS. Then

ˆ̂
β∗GLS =

(
X̃ ′OR,λPW̃OR,λ

X̃OR,λ

)−1

X̃ ′OR,λPW̃OR,λ

˜̄YOR,λ is the efficient, asymptotically unbiased

estimator for β∗.

A.6.5 Estimating Measurement Error Variance and FGLS Efficiency: KY = 1

Feasibly implementing the GLS adjustments proposed in the previous two subsections re-

quires estimating the weighting parameters λ. Clearly, the weights for wi,OR can be readily

estimated from sample data. As such, we focus on estimating w∗, an exercise that turns to

estimating Σ∞B . In the heteroskedastic setting,

Cov
[
β̂i, β̂j

]
=


Xi′PWiPWjX

j

(Xi′PWiXi)(Xj′P
W̃jXj))

s10, if i 6= j

1
Xi′PWiXi s1i, if i = j

.

Feasible implementation then requires estimating s10 and s1i. Recalling their definition

from (A.2), a feasible estimator for s10 would average over the cross-products between resid-

uals corresponding to two different elicitations of X∗ for the same individual. The feasible

estimator for s1i then just sums those squared residuals corresponding to the ith model’s

specification.

ŝ10 =
1

N

N∑
n=1

2

(KX − 1) (KX − 2)

KX−1∑
i=1

KX∑
j=i+1

ε̂inε̂
j
n , and, ŝ1i =

1

N

N∑
n=1

ε̂i2n .
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Applications of the Law of Large Numbers then ensure that ŝ1i →p s1i, i = 0, . . . , KX .

Substituting these values into the formula for Σ∞B defines a consistent estimator Σ̂B →p Σ∞B ,

which can be used to consistently estimate the efficient weights, ŵ∗ =
Σ̂−1
B 1KX

1′KX
Σ̂−1
B 1KX

.

A.6.6 Estimating Measurement Error Variance and FGLS Efficiency: KY ≥ 2

Implementing feasible efficient estimators with multiple measurements of Y ∗, each of which

has different variances, requires estimating the variance-covariance matrix for the different

measurements. This setting is straightforward, as the objective of inference can be directly

estimated. Let Σ̂Y → ΣY denote the sample and population covariance matrix for the

different measurements of Y . Recalling that SY is the diagonal matrix of measurement error

variances for Y ∗, it is immediately apparent that:

ΣY = σ2
ε∗1KY 1′KY + SY .

Consequently, a consistent estimate of σ2
νkY

could estimate σ2
ε∗ by averaging the off-diagonal

entries of ΣY , and subtracting this average from the kth diagonal entry.

A.6.7 A Note of Caution on FGLS Implementations

When implementing FGLS for ORIV, it is best to exploit the structure of the model to its

fullest extent. Simply applying FGLS to the full ORIV specification will perform very poorly.

Since the population covariance matrix for residuals is singular, in finite samples, its inverse

is not well scaled. Even attempting to simply combine elicitations for Y efficiently can result

in extreme weights without imposing homogeneity on the off-diagonal entries in ΣY . While

we do not present detailed results to this effect, our simulation analysis suggests that FGLS

estimators perform poorly relative to the simple ORIV estimator. Unless there is good reason

to model substantial heterogeneity in measurement error, our informal recommendation is

to avoid FGLS corrections.
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B Other Ways of Using Controls

B.1 Principal Components

The sixth column of Table 3 contains 76 control variables (including the non-parametric

controls for perceived rank and performance). With a dataset the size of ours, this does not

present a challenge, as can be seen from the fact that standard errors of the coefficient on

gender are stable across specifications. However, this many controls would be infeasible in a

sample on the order of the original NV experiment. Moreover, a potential concern with the

final column of Table 3 is that adding too many controls measured with error may bias the

coefficient on gender downwards. Although this is unlikely to be the case here due to the

size of our dataset and the fact that we get similar results with only five controls, it may be

a concern in smaller datasets. This raises the question of how to use a relatively exhaustive

control strategy with available degrees of freedom.

A growing literature in statistics and econometrics considers inference in the presence of a

high-dimensional set of sparse controls.3 One way to cope with this issue is to perform model

selection after rotating the controls into their principal components, following the strategy

proposed by Belloni, Chernozhukov, and Hansen (2013). This transformation concentrates

the information from the controls into relatively few factors, effectively controlling for a rich

characterization of risk preferences and overconfidence without giving up too many degrees

of freedom.

Table B.1 illustrates this approach. We first conduct a principal components analysis of

all 76 controls used in the last column of Table 3. We then enter these principal components

sequentially in the columns of Table B.1. As can be seen, the first principal component

causes the coefficient on gender to fall by approximately half, the third by a further half,

3This literature’s roots lie in machine learning techniques for automating model selection, including the
LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and the Dantzig Selector (Candes and Tao, 2007).
Performing inference after model selection presents a non-trivial statistical problem (Leeb and Pötscher,
2005) with recent innovations from Belloni, Chernozhukov, and Wang (2011), Fan and Liao (2014), Belloni,
Chernozhukov, and Hansen (2013), and Van de Geer et al. (2014) establishing new techniques for robust
inference after model selection.
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Table B.1: Principal components can be used to save degrees of freedom.

Dependent Variable: Chose to Compete (N = 783)

Male 0.19∗∗∗ 0.10∗∗∗ 0.10∗∗∗ 0.054∗ 0.054∗ 0.041
(.034) (.034) (.034) (.033) (.033) (.033)

First Principal 0.14∗∗∗ 0.14∗∗∗ 0.15∗∗∗ 0.15∗∗∗ 0.15∗∗∗

Component (.017) (.017) (.016) (.016) (.016)

Second Principal 0.020 0.020 0.019 0.019
Component (.016) (.015) (.015) (.015)

Third Principal -0.14∗∗∗ -0.13∗∗∗ -0.14∗∗∗

Component (.015) (.015) (.015)

Fourth Principal -0.0094 -0.0093
Component (.015) (.015)

Fifth Principal 0.034∗∗

Component (.015)

Adjusted R2 0.038 0.12 0.12 0.20 0.20 0.20

Notes: ∗∗∗, ∗∗, ∗ denote statistical significance at the 1%, 5%, and 10% level, with
standard errors in parentheses. Coefficients and standard errors on all non-dichotomous
measures are standardized. N = 783.

and the fifth by an additional 25%. The second and fourth have no impact on the coefficient

on gender. The adjusted-R2 begins to drop when the 12th component is entered, at which

point the coefficient on male is 0.0431 (s.e. 0.0330)—that is, the coefficient on male does not

change meaningfully as components 6 through 11 are added. Importantly, this suggests one

can control for all relevant variation using only five controls. Moreover, this strategy allows

the use of non-parametric or semi-parametric versions of the controls we enter linearly.

As can be seen throughout the table, the second and fourth principal components are

statistically insignificant, indicating the potential for using LASSO, or similar variable selec-

tion techniques, when using principal components. The Belloni, Chernozhukov, and Hansen

(2013) approach would imply a two-stage model selection strategy, using first a LASSO re-

gression to select the principal components of the controls that correlate with tournament

participation and then using a second LASSO regression to select the components that cor-

relate with gender. We refer interested readers to their paper for details of the algorithm.
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B.2 Measurement Error in Binary Choices

As mentioned in the text, Niederle and Vesterlund (2007) attempt to control for preferences

with another competition choice. Namely, in the last stage of the experiment (their Task 4),

participants are given a second opportunity to be paid for their performance in the piece-

rate task (Task 1). They may choose whether to be paid as a piece rate, or to enter their

Task 1 performance into a tournament with the other three participants in the group (this

decision affected participants’ payoffs when Task 4 was randomly chosen for payment by the

experimenters). This choice has the same payoff features as the competitive choice given

in their main task (Task 3). The idea is that the choice in Task 4 would control for risk

aversion, overconfidence, and feedback aversion, so that different choices in Task 3 and Task

4 would be explained by a difference in preferences for competition per se. However, in the

presence of measurement error, this control is subject to the issues highlighted in Section 3.

Here, we explore the effect of measurement error in binary controls theoretically. We then

show that an analysis of NV’s data that properly accounts for measurement error leads to

the same conclusion we arrive at, that gender differences in competition are driven by gender

differences in fundamental attitudes such as risk aversion and overconfidence.

Although this section is motivated by the approach in NV, it is developed in generality

as it applies to any case where a binary elicitation, measured with error, is used as a control.

The next subsection carries out this general analysis, and the following subsection gives a

numerical example that is closely related to NV.

B.2.1 Stochastic Choice with Binary Preference Control

This section provides the formal arguments underlying Section 3.3. In the general formula-

tion, let individual i have latent characteristics Xi (risk and overconfidence), and be identified

by treatment Di (gender). Each such individual faces two binary decision tasks in which

they report Y a
i ∈ {0, 1} (competition) as well as its replicate Y b

i ∈ {0, 1} (entering piece-rate

performance into a competition). Each individual answers 1 to both the decision task and
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the replicate with probability pi(Xi) that depends on Xi but is independent of treatment,

Di, so that

E[Y a
i |Xi, Di] = E[Y a

i |Xi] = pi(Xi) = E
[
Y b
i |Xi

]
= E

[
Y b
i |Xi, Di

]
.

Though Y a
i |Xi ⊥ Di ⊥ Y b

i |Xi, the unconditional statement is not generally true due to

potential dependence between Di and Xi. Consequently, pi is correlated with Di only because

both are correlated with Xi.

By a standard application of the Frisch-Waugh-Lovell Theorem, we can estimate the

effect of D on Y a conditional on a set of controls in two stages. That is, we can get rid of

the dependence on Xi, through pi(Xi), to directly understand how measurement error would

produce a biased estimate of the effect of D on Y a, even controlling for Y b. In the first stage,

we regress Y a and D on the controls and recover the residuals from both regressions:

Y a = πY a,0 + πY a,1pi(Xi) + uY a

D = πD,0 + πD,1pi(Xi) + uD.

In the second stage, we regress the residual variation in outcomes, uY a , on the residual

variation in treatment, uD.

uY a = βuD + ε.

Without measurement error, the estimate of β would be zero.

However, when Y b
i as a proxy for pi(Xi) this introduces measurement error. In this case,

the first-stage estimates for πY a,· and πD,· will be biased towards zero by measurement error.

Consequently, in the second stage regression of uY a on uD, both residuals will be tainted by

persistent variation in the controls due to measurement error. Further, the contamination

in both residuals will be correlated. This correlated contamination is what drives distorted

inference in the second stage regression.
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Replacing each individual’s choice probability pi with the replicate Y b
i provides just this

form of measurement error. To show this formally, denote this error as νi = Y b
i − pi, which

takes the value −pi with probability 1 − pi and the value 1 − pi with the complementary

probability pi. Then we have

Y a = π̃Y a,0 + π̃Y a,1Y
b + ũY a = π̃Y a,0 + π̃Y a,1(p+ ν) + ũY a

D = π̃D,0 + π̃D,1Y
b + ũD = π̃D,0 + π̃D,1(p+ ν) + ũD.

The residuals for this regression clearly differ from those in the regression without measure-

ment error. Let γY a = Var[Y a]
Var[Y a]+Var[ν]

and γD = Var[D]
Var[D]+Var[ν]

, so that π̃·,1 = γ·π·,1. Note that

π1,· − π̃1,· = (1− γ·)π1,· and

π0,· = E[Y a]− π1,·E[p]

π̃0,· = E[Y a]− π̃1,·E
[
Y b
] ⇒ π̃0,· = π0,· + (π1,· − π̃1,·)E[p]

= π0,· + (1− γ·)π1,·E[p] .

We can now relate the residuals ũ· to their uncontaminated counterpart u·:

u· − ũ· = π̃0,· − π0,· + (π̃1,· − π1,·)p+ π̃1,·ν

= (1− γ·)π1,·{E[p] + p}+ γ·π1,·ν.

Regressing the contaminated residual in outcomes on the contaminated residual in treat-

ment then yields a spurious correlation, as

Cov[ũY a , ũD] = Cov[uY a + (1− γY a)π1,Y ap+ γY aπ1,Y aν, uD + (1− γD)π1,Dp+ γDπ1,Dν]

= Cov[uY a , uD] + (1− γY a)π1,Y a(1− γD)π1,DVar[p] + γY aπ1,Y aγDπ1,DVar[ν],

where constant expectations are dropped for compactness. We also see that:

Var[ũD] = Var[uD] + (1− γD)2π2
1,DVar[p] + γ2

Dπ
2
1,DVar[ν].
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Consequently, even though Cov[uY a , uD] = 0, when we test the second stage regression:

ũY a = β̃ũD,

we are likely to get biased results indicating a significant treatment effect in the contaminated

data because:

E
[
β̃
]

=
(1− γaY )π1,Y a(1− γD)π1,DVar[p] + γY aπ1,Y aγDπ1,DVar[ν]

Var[uD] + (1− γD)2π2
1,DVar[p] + γ2

Dπ
2
1,DVar[ν]

6= 0.

B.2.2 Numerical Example

Note that choosing to compete in NV is tantamount to choosing a lottery that pays a

fixed amount with some probability—the probability of winning the tournament—and zero

otherwise, over a sure thing—the piece-rate payment.4 We use this observation to present a

numerical example.

In the setup of the competition task, the choice will be driven by the interaction of sub-

jective probabilities of winning (overconfidence) with risk aversion. To simplify, we consider

only variations in risk aversion for a fixed lottery and certainty equivalent. Participants are

given the choice between a lottery that pays $100 with a 25% probability and receiving a

$20 payment with certainty. Each participant has CRRA utility with risk aversion param-

eter θi. Conditional on risk aversion, participants’ choices are governed by logistic choice

probabilities:

pi = Pr{Choose Lottery|θi} =
exp{ 0.25

1−θi1001−θi}
exp{ 0.25

1−θi1001−θi}+ exp{ 1
1−θi201−θi}

To synthetically calibrate preferences, participants who have θi = log(4/5)
log(1/5)

≈ 0.14 are indiffer-

ent between the lottery and the certainty equivalent, choosing each with equal probability.

We assume the risk-aversion parameter is distributed normally for men and women, with

4Indeed, participants were informed of the number of correct sums they solved during each task.
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Figure B.1: Example Illustrating Lottery Choice Probabilities and Gender-Differences in
Risk Aversion
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each distribution having standard deviation 0.05. To calibrate choices to the 19.0% gap in

competition we observe in our data, we assume the distribution for men has mean 0.15, and

for women, 0.2. This results in men and women who will choose the lottery about 46% and

27% of the time, respectively. Figure B.1 illustrates the probability of choosing the lottery

conditional on risk aversion and the distributions over risk aversion for men and women.

Let Y a
i = 1{Player i Chooses Lottery in Main Decision} represent the observed choice for

participant i in the main decision task. If we knew θi and could compute each individual’s pi,

then pi ≡ E[Y a
i |θi] would be the best predictor for Y a

i and the ideal explanatory variable and

control. As such, following NV, we describe pi as an individual’s preferences. A regression

of Y a
i on gender and preferences pi would fail to find any relationship between gender and

lottery take-up (competition) in a large sample.

If we only observe a replicate Y b
i = 1{Player i Chooses Lottery in Replicate Task}, that

replicate will have classical, mean-zero measurement error for the proper control pi. Letting

ηi = Y b
i − pi, the variance of the realization of this measurement error, pi(1− pi) correlates
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with gender because the distribution of pi depends on gender.

Numerically, if we simulate the choices Y a
i , Y b

i for 800 individuals (calibrated to our

sample size) and regress the choice of the lottery in Y a
i on gender 10,000 times, we observe

an average coefficient of 0.16 (or 16%, s.e. 0.034, p < 0.01). This can be understood to

occur because although the coefficient on Y b should be unity, it is instead 0.19 (s.e. 0.036,

p < 0.01) due to measurement error.

This suggests that by forcing the coefficient on Y b
i to be 1, the resulting regression can

produce a valid test. That is, by regressing Y a
i − Y b

i on gender, the resulting coefficient will

be a conservative test of the effect of gender controlling for the second choice.5 Following this

prescription in our simulated data gives a very accurate and precise estimate of −0.000078

(s.e. 0.034, p = 1.00).

C Example STATA

C.1 Using Principal Components as Controls

tab sumsRank, gen(ss)

tab sumsCorrectCompete, gen(scc)

tab performanceDiff, gen(pdd)

#delimit;

pca ss* scc* pdd* *RiskyProjectAllocation riskyUrn*0MaxValue compoundUrn*

*Over* CRTCorrect CRTPercentile ravenCorrect ravenPercentile guess*Confidence

gpaPercentile;

#delimit cr

predict p1-p76

//stardardize principal components to make output easily interpretable

foreach x of varlist p1-p5 {

sum ‘x’

5The test is conservative because although the left side will now properly correspond to Y − E[Y |X],
the right side will consist of D rather than D − E[D|X]. This test is asymptotically efficient, but it will be
inefficient in small samples.
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replace ‘x’ = (‘x’-r(mean))/r(sd)

}

reg sumsCompete male p1-p5

C.2 ORIV When Y is Measured without Error

This subsection and the next implement ORIV assuming that the X and Y variables are

on the same scale. If they are not, one should first put them on the same scale. If there is

an obvious way to do this, as in the case of certainty equivalents of lotteries with the same

probabilities, but a different high option, this should be done. Otherwise standardization of

the variables may be attractive.

Note that if one estimates 2SLS in stages, the estimated standard errors from the second

stage, in (7), would be incorrect, as they do not take into account the fact that X̂a and X̂b

are estimated. Therefore, it is preferable to estimate (6) directly, using a statistical package’s

2SLS command as this will give correct asymptotic standard errors.

keep id highLowValue firstProjectValue secondProjectValue

//standardize variables

for each var of varlist highLowValue-secondProjectValue {

quietly sum ‘var’

replace ‘var’ = (‘var’ - r(mean))/r(sd)

}

expand 2, generate(replicant)

gen mainVar = firstProjectValue if replicant == 0

replace mainVar = secondProjectValue if replicant == 1

gen instrument = secondProjectValue if replicant == 0

replace instrument = firstProjectValue if replicant == 1

//One constant per stack

forvalues x=0/1 {

gen constant‘x’ = replicant == ‘x’

}

ivregress 2sls highLowValue (mainVar = instrument) control*, cluster(id) nocons
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C.3 ORIV Estimates of a Correlation

keep id riskyUrn20Value riskyUrn30Value compoundUrn20Value compoundUrn30Value

replace id = _n

//standardize variables

for each var of varlist riskyUrn20Value-compoundUrn30Value {

quietly sum ‘var’

replace ‘var’ = (‘var’ - r(mean))/r(sd)

}

//Duplicate data four times for each way of stacking data

expand 4

sort id

gen replicant = mod(_n,4)

//Created stacked variables

gen LHS = riskyUrn20Value if replicant <= 1

replace LHS = riskyUrn30Value if replicant >= 2

gen mainVar = compoundUrn20Value if replicant == 0 | replicant == 2

replace mainVar = compoundUrn30Value if replicant == 1 | replicant == 3

gen instrument = compoundUrn30Value if replicant == 0 | replicant == 3

replace instrument = compoundUrn20Value if replicant == 1 | replicant == 2

//One constant per stack

forvalues x=1/4 {

gen constant‘x’ = replicant == ‘x’-1

}

//Compute ORIV coefficients and correlations

ivregress 2sls LHS (mainVar = instrument) constant*, cluster(id) nocons

local correctedCoefficient = _b[mainVar]

qui corr riskyUrn20Value riskyUrn30Value if replicant == 0, cov

local correctedYVar = r(cov_12)

qui corr compoundUrn20Value compoundUrn30Value if replicant == 0, cov

local correctedXVar = r(cov_12)

local correctedCorrelation = ///

‘correctedCoefficient’*sqrt(‘correctedXVar’/‘correctedYVar’)

display "The ORIV Correlation is: ‘correctedCorrelation’"
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C.4 Bootstrapped Standard Errors

//note: should already have dataset generated above in memory

local reps = 10000

keep if replicant == 0

drop replicant

capture program drop orivbstrap

program define orivbstrap, rclass

preserve

bsample,cluster(id)

quietly ivreg LHS (mainVar = instrument) control*, nocons

scalar BSCorrectedCoefficient = _b[mainVar]

quietly corr riskyUrn20Value riskyUrn30Value, cov

scalar BSCorrectedYVar = r(cov_12)

quietly corr compoundUrn20Value compoundUrn30Value, cov

scalar BSCorrectedXVar = r(cov_12)

return scalar BSCorrectedCorrelation = ///

BSCorrectedCoefficient*sqrt(BSCorrectedXVar/BSCorrectedYVar)

restore

end

simulate BSCorrectedCorrelation = ///

r(BSCorrectedRho), reps(‘reps’) seed(10) nodots: orivbstrap

bstat, stat(correctedCorrelation)

D Comparison of Participant Pools

We now compare responses to standard choice tasks on the Caltech Cohort Study (CCS) to

other participant pools. The participant’s responses on the CCS resemble those previously

reported. That is, the participants in the CCS are not dramatically different from those in

other participant pools. This is in line with the replication results reported in the paper:

before correcting for measurement error, our data yield virtually identical conclusions to

those reported in the original experiments.
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D.1 The Beauty Contest

Each installment of the CCS contained a beauty contest game following Nagel (1995). Each

participant is asked to choose a number between 0 and 100. They are told that they will

be grouped with 9 randomly-chosen participants, and if their choice is closest to 2/3 of the

average of the choices in that group, they will receive a $5 reward, otherwise nothing.6

This task is often viewed as a proxy for cognitive sophistication. Any choice above 66.66

is dominated. If everyone uses undominated strategies, any choice above 44.44 will not pay

off. In this way, each iteration can be associated with a greater level of sophistication. In

the limit, this iterated elimination of dominated strategies yields the unique equilibrium of

the game—everyone should choose 0. Nagel (1995) reported numbers very far from 0 when

the game was played for the first time by Bonn University students. In her data, the mean

number chosen was 36.73 and the median was 33. Data from the first installment of the

CCS in the Fall of 2013 yields similar results: In our sample of 806 participants, the mean

was 37.17 with a median of 33.7

D.2 The Cognitive Reflection Test

Next we compare responses on the Cognitive Reflection Test (CRT), described briefly in

Section 2.1. The CRT was introduced by Frederick (2005) and consists of three quantitative

questions, each having a seemingly intuitive answer that is wrong. In the Spring 2015

installment of the CCS, we included the three questions proposed by Frederick (2005), but

with different wording and scaling.

The number of correct answers on the CRT is viewed as a proxy for meta-cognition. It

is associated with time preferences: participants who score higher are more “patient”. In

the CCS, the fraction of participants with 0, 1, 2, and 3 correct answers are 19%, 25%, 28%,

and 27%, respectively. Frederick (2005) reports responses from 11 participant populations

6If they tie with a subset of k participants in their group, each gets 1/k of the $5 reward.
7While Nagel (1995) does not report her raw data, the distribution of selected numbers in our data

visually resembles the distribution depicted in her Figure 1B.
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with aggregate proportions of 33%, 28%, 23%, and 17%. In the CCS, participants were less

likely to answer no question correctly, and more likely to answer all three questions correctly,

while the rates for 1 or 2 correct answers are similar.

D.3 Dictator Giving

All installments of the CCS included the dictator game, in which participants have to divide

a fixed allocation between themselves and another randomly chosen participant. We have

noted that generosity declines markedly the second time a student participates in the CCS,

so we focus on the initial, Fall 2013, installment. The mean amount given away is 22%, with

43% giving away nothing, 13% giving away a third, and 27% giving away half.

Engel (2011) compiles data from 83 papers, consisting of 616 treatments and 20,813

individual observations. The mean amount given away across all treatments was 28%. At

the individual level, he reports that 36% give away nothing, 9% give away a third, and 17%

give away half. These numbers are very close to those we observe. Participants in the CCS

are slightly more extreme in the sense that they are more likely to give away nothing, but

when they do give, they are more generous.

D.4 Risky Projects

We conclude in Section 4 that a particularly appealing risk elicitation is the “Project” mea-

sure, described in Section 2.1, and based on Gneezy and Potters (1997). Here we focus on

a particular implementation of this elicitation in the Fall 2014 installment of the CCS. This

implementation allowed participants to allocate 200 tokens between a safe option and a risky

project, the latter returning 2.5 tokens with 50% probability per token allocated.8 In our

data, the mean allocation to the risky project is 74%, with a median of 75%.

In comparison, Agranov and Yariv (2015) elicit precisely the same measure in 8 sessions

8We focus on this version of the task since it is the most commonly used and therefore allows for a natural
comparison with existing data.
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with 80 students at the University of California, Irvine (UCI). There, the mean allocation

was 72% with a median of 70%. The distribution of allocations in their data looks very

similar to that in the CCS. For example, in the CCS approximately 30% of participants

allocated half or less of their endowment to the risky project, while at UCI approximately

35% of participants did.

E Question Wordings

Screenshots and design details of the CCS can be found in Section 2. Here we present the

question wordings that were used in this paper. Throughout this section, comments in square

brackets are meant to express information that is not found on the screen, but is useful in

understanding the flow of the survey. A new item number generally indicates another screen

(even though there may not be a particular question associated with it).

E.1 Competition

This question, meant to elicit competitiveness, follows NV, and was used on the Spring 2015

CCS. It consists of several parts, some of which are used by both LV and us as controls.

1. This next task asks you to add together series of numbers. You will be given three
minutes to complete as many sums as possible. When all surveys are submitted, we
will randomly group you with 3 other people (so you will be in a group of 4). You will
be paid only if you achieve the highest number of completed sums within
this group, in which case you will be paid 40 tokens per sum completed.

In case of a tie between those who completed the highest number of sums, we will
randomly determine the participant who will be paid.

2. [3 minutes in which to do as many sums as the participant can]

3. In the randomly determined group of 4 (you and 3 others), where do you think you rank
in terms of the number of sums completed (1 corresponding to the highest number of
sums completed in the group, 4 corresponding to the lowest number of sums completed
in the group). You will earn an additional 50 tokens if your guess is correct.

[radio buttons next to numbers 1 through 4]
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4. You will be given an additional three minutes to complete as many sums as possible.
Please pick how you would like to be paid from the following two options:

(a) 10 tokens per sum completed; or

(b) When all surveys are submitted, we will randomly group you with 3 other people
(so you will be in a group of 4). We will compare the number of sums you complete
now with the number of sums the other 3 completed in the previous stage you
just concluded. You will be paid only if you achieve the highest number
of completed sums within this group, in which case you will be paid 40
tokens per sum completed.

In case you tie with another participant(s), we will randomly determine whom of
these gets first place, and you will be paid only if it is you who is declared the
winner.

(c) [3 minutes in which to do as many sums as the participant can]

Some other details of our implementation are worth mentioning. As these are identical

to the design choices of NV, we address them here, rather than in the main text.

Generation of sums: The five two-digit numbers used for the tasks were generated ran-

domly.

Payment for guessed tournament rank: If there were ties in a group, Question 3 was

paid in the way that was most favorable to participants. For example, if a participant

correctly solved 14 sums, while others in the group solved 14, 12, and 11 sums, the

participant would get the 50 token reward with a guessed rank of either 1 or 2.

Selection of task: This task was chosen by NV because it was found to elicit similar per-

formance between men and women. This may not hold for all tasks: see Gneezy et al.

(2003).

Figure E.2 illustrates the performance of men and women in both tasks, splitting partici-

pants in the second task into those who chose to compete and those who chose the piece-rate

scheme. There is no significant difference between the performance of men and women in

the second task, regardless of the compensation scheme.
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Figure E.2: Performance in different tasks by gender
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However, in the first task there is a difference in performance. This difference occurs

among those that complete fewer than 10 sums. In that group, women solve slightly fewer

sums, on average, then men. This may appear to differ from the findings of NV, who observe

statistically identical performance. However, we have roughly 10 times as many participants

as they do. If we draw a group of 40 men and 40 women—the number of participants in

NV—10,000 times randomly from our data, we observe a p-value lower than 10% only 8.3%

of the time. Thus, performance data seems consistent with NV.

A final note on our implementation is warranted: because our experiment was conducted

on a survey rather than in the lab we could not enforce our prohibition on the use of

calculators. To mitigate this, sums were presented as images so they would be impossible to

cut and paste into an online calculator. Participants could not use the back button during

the task, and logging out and returning caused them to skip the task altogether. Participants

were asked to sign an acknowledgement that they would abide by the Caltech Honor Code.

Despite all this, we cannot eliminate the possibility that some students used calculators.

However, in order for this to affect our results, it would have to be the case that women

believed men used calculators more often, and that this belief affected not only their decision

to compete, but also their choices in unrelated risk aversion and overconfidence elicitations.

Moreover, as noted in the text, we later had 98 Caltech students take the survey in the

lab, where they could not use calculators. All results were substantially the same, but with
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larger standard errors driven by the smaller sample.

E.2 Overconfidence

These questions were used as controls in the regressions on competitiveness, and elicited on

the Spring 2015 CCS.

The first three questions are used as a control for overprecision, and are based on Ortoleva

and Snowberg (2015).

1. We will now measure your ability to assess numbers quickly.

We will show you three pictures of jars of jellybeans. Please give us your best guess as
to the number of jellybeans in each jar.

2. [With random picture of a jar of jellybeans] Please enter the number of jellybeans you
think are in this jar (between 1 and 1000).

3. How confident are you of your answer to this question?

(a) No confidence at all

(b) Not very confident

(c) Somewhat unconfident

(d) Somewhat confident

(e) Very confident

(f) Certain

[Repeat three times.]

The next set of questions ask the participant to complete a set of tasks, and then asks

the participant to guess their performance (as a measure of estimation / overestimation),

and then their guess as to how their performance compares with their peers (placement /

overplacement). Participants are given 30 seconds to answer each logical question.

4. This next task asks you to solve five logical puzzles. You will be given thirty seconds
to complete each puzzle, and will be paid 20 tokens for each puzzle solved correctly.

5. [5 Raven’s matrices from Condon and Revelle (2014). All participants executed the
same matrices in the same order.]

6. How many of the 5 puzzles do you think you solved correctly?
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7. Out of 100 other randomly picked survey participants, what percentage do you think
solved more puzzles correctly than you?

The next set follows the same structure, but uses questions from the cognitive reflection

test (CRT).

8. This next task asks you to answer five logical questions. You will have up to 30 second
to answer each question and will be paid 20 tokens for each question answered correctly.

9. A monitor and a keyboard cost $350 in total. The monitor costs $300 more than the
keyboard. How much does the keyboard cost?

10. It takes 10 computers 10 minutes to run 10 simulations. How long does it take 200
computers to run 200 simulations?

11. In the pond in front of Baxter Hall, there is a patch of lily pads. The patch doubles
in size every day. If it takes 36 days for the patch to cover the entire pond, how many
days would it take to cover half the pond?

12. Professor Wiseman spent one-fourth of his life as a boy, one-eighth as a youth, and
one-half as an active man. If Professor Wiseman spent 8 years as an old and wise man,
how many years did he spend as an active man?

13. A 4 foot pole casts a shadow that is 2 feet long on the ground. If the pole was 16 feet
in height, how long would the shadow be?

14. How many of the 5 questions do you think you answered correctly?

15. Out of 100 other randomly picked survey participants, what percentage do you think
answered more questions correctly than you?

E.3 Risk Elicitations

The Fall, 2014 CCS contained a large number of risk elicitations. The Spring, 2015 CCS

included variants of the risky projects, the risky urns, and the qualitative risk question,

which were used as controls for the competition task.

E.3.1 Projects

These risky projects are based on Gneezy and Potters (1997). Note that they were separated

by several questions on the survey.
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1. You are endowed with 200 tokens (or $2) that you can choose to keep or invest in a
risky project. Tokens that are not invested in the risky project are yours to keep.

The risky project has a 40% chance of success.

If the project is successful, you will receive 3 times the amount you chose to invest.

If the project is unsuccessful, you will lose the amount invested.

Please choose how many tokens you want to invest in the risky project. Note that you
can pick any number between 0 and 100, including 0 or 100:

2. You can invest in another risky project if you would like. You can invest up to 200
tokens, or you can choose to keep them.

The risky project has a 50% chance of success.

If the project is successful, you will receive 2.5 times the amount you chose to invest.

If the project is unsuccessful, you will lose the amount invested.

Please choose how many tokens you want to invest in the risky project. Note that you
can pick any number between 0 and 200, including 0 or 200:

E.3.2 Urn MPL

These are standard urn gambles, with certainty equivalents elicited using a multiple price

list. Note that the order of the lotteries was randomized, as was the order (spaced throughout

the survey) with the compound and ambiguous urn lotteries.

4. In the next task we will ask you to assess the value of several gambles. The gambles
will be designed using virtual urns filled with red and black balls. We will give you
some information on the composition of each urn.

Well let you pick which color ball you would like to pay off for each gamble. If you
choose a gamble on an urn, we will draw one ball from it. If that ball is the color you
chose, you will receive a reward. If it is the other color, you will receive nothing.

The mechanism for selecting the gamble may take some getting used to. We will
provide you with a list of rewards from 0 tokens to 150 tokens in increments of 5
tokens, and for each one, we ask that you think whether you prefer that amount, or
taking the urn gamble. Once you click on an option, well fill in the rest of the choices
for you so that they make sense (this will save you time!).

However, you should keep clicking on options that you prefer until the choice in each
line is what you would like. You should do so because at the end of the survey, we will
randomly select one row from the list, and you will get whatever you chose on that
line. If you specified you prefer a sure amount on that line, youll get that amount. If
you specified that you preferred the gamble, then we will draw a ball from the urn,
and pay you according to the description above.
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5. The next choice will involve an urn containing 20 balls, 10 of which are red and 10 of
which are black.

Which color ball would you like to paid 100 tokens for (if it is drawn from the urn in
the following questions)? Note that this means you will be paid 0 tokens if the other
color is drawn.

(a) red

(b) black

6. Urn with Equal Number of Red and Black Balls

The urn from which we can draw a ball is composed of 10 red balls and 10 black balls.

The urn gamble pays 100 tokens if the ball drawn is [red].

What do you prefer? (make sure a radio button in each row is selected)

[Multiple price list with “Urn Gamble” on the left side, and “X tokens” on the right
side, with X in increments of 10 from 0 to 100.]

7. The next choice will involve an urn containing 30 balls, 15 of which are red and 15 of
which are black.

Which color ball would you like to paid 150 tokens for (if it is drawn from the urn in
the following questions)? Note that this means you will be paid 0 tokens if the other
color is drawn.

(a) red

(b) black

8. Urn with Equal Number of Red and Black Balls

The urn from which we can draw a ball is composed of 15 red balls and 15 black balls.

The urn gamble pays 150 tokens if the ball drawn is [red].

What do you prefer? (make sure a radio button in each row is selected)

[Multiple price list with “Urn Gamble” on the left side, and “X tokens” on the right
side, with X in increments of 10 from 0 to 150.]

E.3.3 Lottery Menu

This question is based on Eckel and Grossman (2002).

9. Which of the following gambles would you prefer?

Each of the gambles will give you a 50% chance of the Low Payoff, and a 50% chance
of the High Payoff.

The gamble you chose will be run at the end of the survey, and we will tell you your
payoff then.
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Low Payoff High Payoff
Gamble 1: 140 140
Gamble 2: 120 180
Gamble 3: 100 220
Gamble 4: 80 260
Gamble 5: 60 300
Gamble 6: 10 350

E.3.4 Qualitative Risk Assessment

This qualitative assessment of risk comes from Dohmen et al. (2011). This was also elicited

on the Spring 2015 CCS, and that question was used to instrument the question on the Fall

2014 CCS.

10. How do you see yourself: are you generally a person who is fully prepared to take risks
or do you try to avoid taking risks?

Please tick a box on the scale, where the value 0 means: not at all willing to take risks
and the value 10 means: very willing to take risks

[radio buttons, presented horizontally, with numbers from 0 to 10 next to each option.]

E.4 Compound and Ambiguous Lotteries

Compound and ambiguous lotteries follow the same format as the risky urn lotteries above.
These three blocks of urn gambles were spaced out throughout the survey, and their order
was randomized. The compound lotteries were also used as a control (risk-aversion measure)
in the regressions regarding competitiveness.

1. The next choice will involve an urn containing 20 red and black balls. The composition
of the urn is randomly determined. That is, we will first randomly draw a number
between 0 and 20 (all equally likely). That number will be the number of red balls.
The remaining balls will be black.

Which color ball would you like to paid 100 tokens for (if it is drawn from the urn in
the following questions)? Note that this means you will be paid 0 tokens if the other
color is drawn.

(a) red

(b) black
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2. Urn with Uncertain Number of Red and Black Balls

The composition of the urn is randomly determined. That is, we will first randomly
determine a number between 0 and 20 (all equally likely). That number will be the
number of red balls, the rest of the 20 balls (if any) will be black.

The urn gamble pays 100 tokens if the ball drawn is [red].

What do you prefer? (make sure a radio button in each row is selected)

[Multiple price list with “Urn Gamble” on the left side, and “X tokens” on the right
side, with X in increments of 10 from 0 to 100.]

3. The next choice will involve an urn containing 30 red and black balls. The composition
of the urn is randomly determined. That is, we will first randomly draw a number
between 0 and 30 (all equally likely). That number will be the number of red balls.
The remaining balls will be black.

Which color ball would you like to paid 150 tokens for (if it is drawn from the urn in
the following questions)? Note that this means you will be paid 0 tokens if the other
color is drawn.

(a) red

(b) black

4. Urn with Uncertain Number of Red and Black Balls

The composition of the urn is randomly determined. That is, we will first randomly
determine a number between 0 and 30 (all equally likely). That number will be the
number of red balls, the rest of the 30 balls (if any) will be black.

The urn gamble pays 150 tokens if the ball drawn is [red].

What do you prefer? (make sure a radio button in each row is selected)

[Multiple price list with “Urn Gamble” on the left side, and “X tokens” on the right
side, with X in increments of 10 from 0 to 150.]

5. The next choice will involve an urn containing ,0 balls, each of which could be red or
black. Dean Dabiri has chosen the exact composition of the urn: the balls could all be
red, they could all be black, or there could be any combination of red and black balls.

Which color ball would you like to paid 100 tokens for (if it is drawn from the urn in
the following questions)? Note that this means you will be paid 0 tokens if the other
color is drawn.

(a) red

(b) black

6. Urn with Unknown Number of Red and Black Balls

The urn has a combination of 20 red and black balls chosen by Dean Dabiri.
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The urn gamble pays 100 tokens if the ball drawn is [red].

What do you prefer? (make sure a radio button in each row is selected)

[Multiple price list with “Urn Gamble” on the left side, and “X tokens” on the right
side, with X in increments of 10 from 0 to 100.]

7. The next choice will involve an urn containing 30 balls, each of which could be red or
black. Dean Dabiri has chosen the exact composition of the urn: the balls could all be
red, they could all be black, or there could be any combination of red and black balls.

Which color ball would you like to paid 150 tokens for (if it is drawn from the urn in
the following questions)? Note that this means you will be paid 0 tokens if the other
color is drawn.

(a) red

(b) black

8. Urn with Unknown Number of Red and Black Balls

The urn has a combination of 20 red and black balls chosen by Dean Dabiri.

The urn gamble pays 150 tokens if the ball drawn is [red].

What do you prefer? (make sure a radio button in each row is selected)

[Multiple price list with “Urn Gamble” on the left side, and “X tokens” on the right
side, with X in increments of 10 from 0 to 150.]
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