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A Note on Repeated Games with Non-Monotonic Value 
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Abstract: We show that even when the information structure is independent of the state of nature, the 
value of the n-stage zero-sum game with incomplete information is not necessarily monotonic with 
respect to the length of the game. More precisely, we give an example of such an n-stage game in which 
v~>v~<v~. 
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1 Introduction 

Suppose K is a finite set of  states of nature, each corresponding to a payoffmat r ix  
of a zero-sum game. Two players, P I  and PII ,  take part  in the n-stage game, 
denoted G,, played as follows: nature chooses a state k f rom the set K according 
to a probabil i ty distribution P. PI  is informed about  the state chosen. P I I  has only 
the knowledge of P. Then, the players repeat n times the zero-sum game defined 
by the payoff  matrix A k. 

If  the information is standard,  that  is, after each stage all past actions of  both  
players are announced,  then the value V, of the above described game is 
mono ton ic  (decreasing) with respect to n. This is due to a recursive structure 
inherent to the sequence V,, n _> 1. The intuitive reasoning for this is that  the 
information P I I  receives f rom P!  increases with the number  of stages played. This 
information is utilized by P I I  to improve his average payoff  (see Sorin [1980]). 

Suppose now that  the game is played with imperfect monitoring.  There exist 
two information functions, L 1 and L 2 such that  after each stage in which player 
i played action ai, player j gets the information signal L~(al, a2). No te  that  games 
with perfect moni tor ing  are a special case of  games with imperfect moni tor ing  
taking the information functions to be one- to-one on the set of ordered pairs of 
actions. 

In  general games with imperfect moni tor ing,  a recursive structure fails to 
exist since PI  might be unable to estimate precisely the information gathered 

1 I am very grateful to Ehud Lehrer who introduced this question to me. 
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by PII during the game. Therefore, the proof of monotonicity of V, is no longer 
valid. 

It has been shown by Lehrer [1987] that if the information functions are 
dependent on the state of nature, then the sequence 1/", may be non-monotonic. 
The example Lehrer gives hinges heavilly on the fact that the information is 
state-dependent. This note is devoted to the case of state-independent informa- 
tion structure. Therefore, the signals received during the game imply only the 
actions taken by both players and cannot reveal directly the state of nature. We 
show that V, may be non-monotonic also when restricting the signalling to be 
state-independent. 

2 T h e  E x a m p l e  

Let S = 6 5 (si)i=l and T =  (tj)j= 1 be the possible actions of players PI and PII, 
respectively, in the game where the state space is K = (1, 2, 3} and the distribution 
over K is P = ~• ! _~ t.3~ 3~ 3J" 

Let the payoff matrices be: 

A I =  

40 4 0 4 4" 

- 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  

- 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  

40 0 4 4 4 

- 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  

--100 - 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  

A 2 = 

--100 - 1 0 0  --100 - 1 0 0  - 1 0 0 -  

0 40 4 4 4 

--100 --100 --100 --100 100 

--100 --100 --100 --100 --100 

4 40 0 4 4 

- 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  -100_  

A 3 = 

--100 - 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0 "  

- 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  - 1 0 0  

4 0 40 4 4 

--100 --100 --100 --100 --100 

- -100 --100 - - I00  --100 - - t00  

0 4 40 4 4. 
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Suppose that the information matrices are: 

"1 2 
1 2 
1 2 

B I =  1 2 

1 2 
1 2 

3 N N" "N 
3 N N N 
3 N N N 
3 N N B 2 =  N 

3 N N N 
3 N N N 

N N 12 31 
N N 12 32 
N N 23 31 
N N 13 21 
N N 23 21 
N N 13 32 

In other words, when PI plays action sj and PII plays action t m player i receives 
the signal Li(sj, tm)= Bi(j, m) for all ie{1, 2} j e{1 , . . . ,  6} me{ l , . . . ,  5}. 

Note that in each information matrix, there is an informative part (containing 
the signals 12, 13, 23, 21, 23, 32, 1, 2, 3) and a non-informative part (in which the 
signal is null: N). 

It is assumed that at each stage the players know, in addition to the signals 
announced, the actions they themselves chose in all previous stages. 

The intuitive description of the proof is as follows. For  each state keK, very 
low payoffs appear in four rows of the payoff matrix A k. This forces PI to use, 
throughout games in which the number of stages is small, one out of two actions 
(depending on the state k). PII, knowing this, can deduce after the first stage of 
any short enough game a new partition of the space of states. Namely, he can 
"cross out" one of the states and consider only two out of the three states as being 
possibly played. Moreover, the information structure allowes PII to do so 
without enabling PI to evaluate exactly which state has been "crossed out" by 
PII. An action of PII which realizes the information he has gathered contributes 
no additional information to PII. However, such an action discloses completely 
his information to PI, who can play optimally against PII from then, on, and 
hence increase the payoffs. 

Specifically, in the 2-stage game PII, realizing the information he has gathered 
during the first stage of the game, can decrease the payoffin the second stage and 
hence V 1 > V 2. 

In the 3-stage game, if PII uses the information he has gathered on the second 
stage, his private knowledge is revealed to PI and the payoffon the third stage will 
increase. Otherwise, during stage 2, PII will have to ignore the information he has 
already gathered. This leads to the inequality V 2 < V 3. 

Note that such a construction can not be made when the number of possible 
states of nature is two. "Crossing out" of a matrix in that case is equivalent to PII 
knowing exactly which state has been chosen (having a degenerate partition of 
the space of states). 

3 F o r m a l  P r o o f  

Denote by G n the n-fold repeated game. 
In G 1, if PII plays his pure strategy t~, he guarantees a payoff < 4. If PI plays his 
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pure  s trategy s k when informed that  state k has been chosen, he ensures himself 
a payoff  _> 4. Hence,  V 1 = 4. 

In  G2, P I I  can ensure a payoff  < 3 by using the following strategy: 

Stage 1: play 
Stage 2: play 

play 
play 

t 4 or t 5 with an equal  probabi l i ty  of �89 
t~ if 23 or 32 have been signalled. 
t 2 if 13 or 31 have been signalled. 
t 3 if 12 or 21 have been signalled. 

The  logical in terpre ta t ion of this s trategy is that  the differences between the 
payoffs appear ing  in the game matr ices make  deceiving for PI  (playing as if the 
state of na ture  were different f rom the state k actually chosen, i.e. not  playing s k or  
sk+ 3) unworthy.  Thus,  if the signal 10,i + j ,  1 < i,j < 3, has been announced  to P I I  
after the first stage of the game, the state of nature  is very likely to be i o r j .  

Mathemat ica l ly ,  we m a y  assume, f rom symmet ry  considerations,  that  k = 1. If 
at the first stage P I  has chosen s2, s 3, s 5, or s 6, the lump payoff  doesn ' t  exceed 
- 1 0 0 + 4 0  

- 30 < 3. Otherwise,  again f rom symmet ry  considerations,  we m a y  
2 

assume sl was played at the first stage. Thus  P I I  got  the signal 12 or 31. PI  does 
not  k n o w  which of these signals P I I  got, but  he knows P I I  got  each of these 
signals with probabi l i ty  �89 Therefore,  PI  can do no better  then to expect P I I  to 
p lay  t 2 or  t 3 with probabi l i ty  �89 each and to ensure an expected payoff  of 2 in the 

second stage. Hence, V 2 < m a x (  ~0 (4+2) '~ _ \ - 5  , ~ - ) = , .  

In G 3, PI  can ensure himself a payoff  > ~  by playing the following strategy, 
assuming k is the state of nature  tha t  has been chosen: 

Stages 1,2: play each one of s k, sk+ 3 with probabi l i ty  ~ 3- 
Stage 3: If N was signalled in the second stage play s~, sk+ 3 with probabi l i ty  �89 

each. Otherwise,  play the following: 

0 ! 0 0) or  s~ or s 4 for 1 or 2 or 3 respectively; k = l : ( ~ ,  ,0 ,  2, , 
k = 2: (0, �89 0, 0, �89 0) or s 2 or s s for 2 or 3 or 1 respectively; 
k = 3: (0, 0, �89 0, 0, �89 or s 3 or s 6 for 3 or 1 or  2 respectively; 

(the no ta t ion  (q l , . . . ,  q6), ~6= lqi = 1, is used to denote  the one-stage mixed 
act ion of P I  where the act ion si is played with probabi l i ty  q~, 1 _< i _< 6) 

It  suffices to show that  PI,  using the above  strategy, gets payoff  of at least ~o 
against  any pure  s trategy of PII .  Let a = {al,  a2, a3} be a pure  strategy of PII .  o- i is 
a function f rom PI I ' s  histories of  length i -  1 stages to the space of actions 
available for him. 

We denote  cp(23) = cp(32) = tl ,  q)(13) = ~o(31) = t2, and (p(12) = (p(21) = t 3. 0 i 
symbolizes the signal received by P I I  after stage i. 



A Note on Repeated Games with Non-Monotonic Value 233 

If al  ~ {t 1, t2, t 3} then PI  gets payoff of 40 with probability �89 and so the expected 
.40 10 

3-stage payoff is >�89 >--3- 

Thus, we may assume al~{ t4 , t s} ,  guaranteeing a payoff of 4 and a signal 
01 • N on the first stage. 

If a2(01)e {re, t 5}, then the payoff in the second stage is 4 and, since PI ensures 
4 + 4 + 2  10 

himself a payoff of 2 on the third stage, the payoff in G 3 is _> - -  
3 3" 

Suppose now that cr2(01)6{tl, t;, t3} and 0"2(01) 5~- (P(01) , then with probability 
1 ~2(01) = tk ' where k is the state of nature that has been chosen, and the payoff in 
the second stage of the game is 40. Thus the expected payoff in G 3 is at least 
4 + � 89  10 

> 
3 - 3  

If o-2(01)= q0(00, PII ensures a payoff of 2 in the second stage, but no 
information is augmented for him (02 = N). Moreover, all the information PII 
has is revealed. PI is, therefore, able to play optimally on the third stage according 
to the following two cases: 

1. If a3(01, N)~{ t l ,  tz, t3} and a3(0t, N) ~= a~(01), then the payoffin the third stage 
and hence gives expected total payoff of at least is 40 with probability v 

4 + 2 + � 8 9  26 10 
3 - 3 - > 3  - in  G3" 

2. If a3(O ~, N)~  {a2(01), t4, t5 }, then the above strategy of PI clearly ensures a pay- 

off of 4 on the third stage and so guarantees a payoff of (4 + 2 + 4) 10. 3 =~-m G3. 

Finally, we deduce V 3 >_ ~- > 3 _> V 2 < 4 = V I and the sequence V, is non- 
monotonic. 

4 Comments 

4.1 It is easily verified that restricting the information signals to be common to 
both players (as well as independent of the state of nature) does not guarantee 
monotonicity of the value. For  instance, suppose we add to each payoff  matrix in 
the game described above four columns on the right identical to the right most 
column in the original matrix. Furthermore, suppose the information matrix is: 

ii23aabbc;la 1 2 3 a b b c c a 

B =  2 3 b b c c a 
2 3  b c c a a 
2 3 c c a a b 
2 3 c a a b b 



234 L. Yariv 

Then we get a game with a sequence of values (V,) identical to the one obtained in 
the original example. In particular, the values are not  monotonic .  

4.2 Similar considerations m a y  be used to construct  a game with observable 
payoffs (i.e., the signals, for both  players at each stage, being the payoffs achieved ) 
where the corresponding sequence (V,) is non-monotonic .  For  example, consider 

/1 1 1~ and the game with state space K = {1, 2, 3}, distribution over K: P = ~ , 5 , ~ ,  
payoff  matrices: 

A1 

4-41122h 3i lh 
- - h  - h  - h  - h  - h  - h  - h  - 

- 4  4 2 3 3 1 1 
- h  - h  - h  - h  - h  - h  - h  
- h  - h  - h  - h  - h  - h  - h  

A2 [  ilh 
" - h  - h  - h  - h  - h  h - h  - h  

- 4  h 4 2 2 3 3 1 1 
- h  - h  - h  - h  - h  - h  - h  - h  - 

= - h  - h  - h  - h  - h  - h  - h  - h  
4 h - 4  3 1 1 2 2 

. - h  - h  - h  - h  - h  - h  - h  - h  

- h  - h  - h  - h  - h  
- h  - h  - h  - h  - h  

4 - -4  h 3 3 
A3 = - h  - -h  - h  - h  - h  

- h  - h  - h  - h  - h  
- 4  4 h 1 2 

where h = 100. 
Analogous  calculations to those introduced in 

that for this game, V 1 = 2 > V 2 = 1 < V a = ~-. 

h h h  ;12 
- h  - h  - h  - h  

1 1 2 
- h  - h  - h  
- h  - h  - h  

2 3 3 

this note lead to the conclusion 
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