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Abstract

In this Online Appendix we review the results from the queuing theory literature

that are relevant to our analysis. We also present the proof of Lemma A1 and provide

comparative statics on the welfare impacts of centralization.

1 Primer on Queueing

The limited-monitoring case in Section 4 employs what is termed the M/M/1 queue in the

queueing literature, while the perfect-monitoring case in Section 3 employs an M/M/1/k queue.

Here we provide a summary of the results relevant to our analysis. For more details, see, for

example, Leon-Garcia (2008).

1.1 M/M/1 Queue

Clients seeking service arrive at the market over time t ∈ [0,∞) according to a Poisson process

with arrival rate ρ. One provider can serve at most one client at any given time. Service

completion times are independent across clients and follow an exponential distribution with

parameter µ. Upon arrival, each client joins a queue until the provider becomes available. If

the provider is not busy helping other clients, the client is served immediately. There is no limit

on the possible length of the clients’queue. Clients are served according to a first-in-first-out

(FIFO) protocol.

The total number of clients in the system, either waiting in the queue or being served, at

time t, Nt, is a continuous-time Markov chain and takes values in {0, 1, . . . , }. When Nt = 0,

there are no clients being served or waiting. When Nt = 1, the system has only one client who



is being served. When Nt ≥ 2, at least one client is waiting in the queue. The number of clients

Nt increases by one when a client arrives, which occurs at a rate ρ. It decreases by one when

the service of a client is completed, which occurs at a rate µ. The ratio ψ ≡ ρ
µ
denotes the

provider’s utilization. As long as ψ < 1, Nt has a stationary distribution denoted by {p0, p1, . . . }
such that exactly i clients are in the system with probability pi.1 The inflow-outflow equalities,

known as the global balance equations, are

ρp0 = µp1,

(ρ+ µ)pj = ρpj−1 + µpj+1, ∀j = 1, 2, . . .

They yield the stationary distribution

pj = (1− ψ)ψj, j = 0, 1, 2, . . .

The average number of clients waiting in the queue, excluding the client currently being

served, is

E[Q] ≡
∞∑
j=1

(j − 1)pj =
ψ

1− ψ − p0 =
ψ2

1− ψ.

Let E[W ] be the average waiting time in the queue. Little’s formula guarantees that

E[W ] =
E[Q]

ρ
=

1

µ− ρ −
1

µ
.

The intuition behind the formula is the following. Take any time interval, say [s, s+ t), during

which the system is at the steady state. The total time clients spend waiting in the queue is

approximately ρtE[W ], so the average number of clients waiting in the queue at any given time

is E[Q] = ρE[W ].

1.2 M/M/1/k Queue

An M/M/1/k queue is similar to an M/M/1 queue but constrains the service provider to

accommodate up to k clients, with one client being served, and at most k− 1 clients waiting in

the queue. If a client finds k others present upon arrival, she is turned away. As before, clients’

arrival follows a Poisson distribution with parameter ρ, and the provider completes each client’s

service at times following an exponential distribution with parameter µ. Since, by construction,

1The restriction ψ < 1 is necessary because, if ψ → 1, the average wait time, which we address shortly,
diverges.
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the length of the queue is bounded, ψ ≡ ρ
µ
need not be lower than 1.

The total number Nt of clients in the system at time t follows a continuous-time Markov

chain over {0, 1, 2, . . . , k}. The inflow-outflow equalities, which we omit, yield the following

restrictions on the stationary distribution:

pj = ψjp0, ∀j = 1, . . . , k.

Since

1 =

k∑
j=0

pj = p0

k∑
j=0

ψj =

{
p0(k + 1) if ψ= 1,

p0

(
1−ψk+1
1−ψ

)
if ψ 6= 1,

the stationary distribution is given by:

pj =

{
1

k+1
if ψ= 1,

ψj(1−ψ)
1−ψk+1 if ψ 6= 1.

∀j = 0, 1, . . . , k

Similarly, the average number of clients in the queue is

E[Q] =
k∑
j=1

(j − 1)pj =
k∑
j=1

(j − 1)ψjp0

=

{
k(k−1)
2(k+1)

if ψ= 1,

p0
(
ψ2 + 2ψ3 + · · ·+ (k − 1)ψk

)
if ψ 6= 1.

In particular, if ψ 6= 1, the above expression can be written as:

E[Q] =
1

1− ψk+1
(
ψ2 − ψk+1

1− ψ − (k − 1)ψk+1
)
.

Finally, in the steady state, since a new client is turned away only when Nt = k, the average

number of clients that join the queue over a unit of time is ρ(1 − pk). Let E[W ] denote those

clients’average waiting time. By Little’s formula, we have E[W ] = E[Q]
ρ(1−pk) .

2 Proof of Lemma A1

We divide our arguments into two steps. The first step shows that E[Q] is continuously differ-

entiable at φ = 1, which allows us to focus on the functional form for the case of φ 6= 1, by

taking the value at φ = 1 as limφ→1E[Q], and similarly for dE[Q]
dφ

at φ = 1. The second step

shows that E[Q] is strictly convex.
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1. Step 1: E[Q] is continuously differentiable at φ = 1.

To show Step 1, we first present Lemmas A-C below. To ease expositions, we denote

z ≡ a(1−φ)+1 and note that dz/dφ = −a, limφ→1 z = 1, and limφ→1
log z
1−φ = limφ→1

a
z

= a.

Lemma A E[Q] is continuous at φ = 1.

Proof of Lemma A: Using L’Hopital’s rule, we obtain

lim
φ→1

E[Q] =
1

a
+ lim

φ→1

1

1− φ

(
(φ2 − 1) + 1 +

log z

a log φ

)
=

(a− 1)(a− 2)

2a
.

�

Lemma B Let εφ ≡ φ
φ−1 −

1
log φ
− 1

2
. Then, limφ→1

εφ
log φ

= 1
12
.

Proof of Lemma B: The proof follows directly from repeat applications of L’Hopital’s

rule. �

Lemma C limφ→1
dE[Q]
dφ

exists in R.

Proof of Lemma C: For φ 6= 1, we have

dE[Q]

dφ
=

d

dφ

(
φ2

1− φ +
log z

a(1− φ) log φ

)
=

2φ− φ2

(1− φ)2
+

−a/z
a(1− φ) log φ

− log z

a(1− φ)2(log φ)2

(
− log φ+

1− φ
φ

)
= −1 +

1

(1− φ)2
− 1

z(1− φ) log φ
− log z

aφ(1− φ) log φ

(
3φ+ 1

2(φ− 1)
− εφ

)
.

It follows from limφ→1
log z
1−φ = a and Lemma B that

lim
φ→1

εφ log z

aφ(1− φ) log φ
= lim

φ→1

1

aφ

log z

1− φ
εφ

log φ
=

1

12
.

Therefore,

lim
φ→1

dE[Q]

dφ
= −11

12
+ lim

φ→1

(
log φ

1− φ

)2
· lim
φ→1

h(φ) = −11

12
+ lim

φ→1
h(φ),
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where

h(φ) ≡ 1

(log φ)3

[
log φ− 1− φ

z
+

(
3φ+ 1

2aφ

)
log z

]
.

Using L’Hopital’s rule repeatedly,

lim
φ→1

h(φ) = lim
φ→1

φ

3(log φ)2

[
1

φ
+

1

z2
+
−2a

4a2φ2
log z +

3φ+ 1

2aφ

(−a)

z

]
=

2a2 + (3/2)a− 1

6
.

Therefore, limφ→1
dE[Q]
dφ

exists in R, which proves Lemma C. �

By Lemma A, E[Q] is continuous at φ = 1. It is also differentiable at every φ 6= 1.

The Mean Value Theorem implies that, for any φ 6= 1, there exists xφ ∈ (1, φ) such

that E[Q](φ)−E[Q](1)
φ−1 =

dE[Q](xφ)

dφ
. As φ → 1, we have xφ → 1. Hence, by Lemma C,

dE[Q](1)
dφ

≡ limφ→1
E[Q](φ)−E[Q](1)

φ−1 = limxφ→1
E[Q](xφ)

dφ
exists in R. That is, E[Q] is continu-

ously differentiable at φ = 1, which concludes the proof of Step 1.

Step 2: E[Q] is strictly convex.

To show Step 2, we first present the Lemmas D-G below.

Lemma D The function r(x) = x
log(1−x) is increasing in x and strictly convex on (−∞, 0)

and (0, 1).

Proof of Lemma D: Derivating,

r′(x) =
1

log(1− x)
+

x

(1− x) log2(1− x)
=

1

log2(1− x)

(
log(1− x) +

x

1− x

)
> 0.2

Derivating again,

r′′(x) =

(
1

log(1− x)
+

x

(1− x) log2(1− x)

)′
=

(2− x) log(1− x) + 2x

(1− x)2 log3(1− x)
.

If x < 0, we have (2− x) log(1− x) + 2x > 0, so r′′(x) > 0. If 0 < x < 1, we have g(x) ≡
log(1− x) + 2x

2−x < 0, because g(0) = 0 and g′(x) = −1
1−x + 4

(2−x)2 = (−x2+4x−4)+4(1−x)
(1−x)(2−x)2 < 0.

Thus, r′′(x) > 0. �
2For any y 6= 1, − log y < 1

y − 1, which implies that log y >
1−y
y . We substitute 1− x for y.
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Lemma E The function (a(φ+ 1)−1) φ−1
log(a(1−φ)+1) is strictly convex on [φ, 1) and (1, 1 +

1/a).

Proof of Lemma E: Let r(φ) = a(φ+ 1)− 1 and g(φ) = φ−1
log(a(1−φ)+1) . Note that aφ ≥ 1

because of the training constraint a(1 − q)φ = 1. Thus, r(φ) > 0. Moreover, Lemma D

implies that g is increasing and strictly convex (using x = a(φ− 1)). Therefore,

(r(φ)g(φ))′′ = r′′(φ)g(φ) + 2r′(φ)g′(φ) + r(φ)g′′(φ) ≥ r(φ)g′′(φ) > 0.

�

Lemma F The function r(φ) = 1
log(a(1−φ)+1)+

1
a log φ

is strictly convex on [φ, 1) and (1, 1+

1/a).

Proof of Lemma F: Recall that z ≡ a(1− φ) + 1, and that z′ ≡ dz
dφ

= −a. The second
derivative of r(φ) follows from(

1

log φ

)′′
= −

(
1

φ log φ

)′
=

1

φ2 log2 φ
+

2

φ2 log3 φ
, and(

1

log(a(1− φ) + 1)

)′′
= a2

(
1

log z

)′′
= a2

(
1

z2 log2 z
+

2

z2 log3 z

)
.

Thus,

r′′(φ) =
a2

z2 log2 z

(
1 +

2

log z

)
+

1

aφ2 log2 φ

(
1 +

2

log φ

)
=⇒ (log2 φ)r′′(φ) =

a2

z2

(
log φ

log z

)2(
1 +

2

log z

)
+

1

aφ2

(
1 +

2

log φ

)
.

We make two claims:

Claim 1 : − log φ
log z

> 1 for every φ 6= 1.

Proof of Claim 1: By the training constraint, a(1− q)φ = 1, so aφ ≥ 1. Hence, if φ > 1,

then (aφ)(1 − φ) > (1 − φ) and φ > 1
a(1−φ)+1 . If φ < 1, then (1 − φ) > (aφ)(1 − φ), so

1
φ
> a(1− φ) + 1.

Claim 2: limφ→1− log z
log φ

= a and is increasing in φ.
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Proof of Claim 2: First, limφ→1− log z
log φ

= limφ→1
a/(a(1−φ)+1)

1/φ
= a. For any φ 6= 1, define

h(φ) ≡ φ

(
− log z

log φ

)′
=

aφ log φ

a(1− φ) + 1
+ log(a(1− φ) + 1).

Then,

h′(φ) =
a log φ

a(1− φ) + 1
+

a2φ log φ

(a(1− φ) + 1)2
,

which is strictly negative for φ < 1 and strictly positive for φ > 1. Thus, for any φ 6= 1,

h(φ) > limφ→1 h(φ) = 0, which concludes the proof of Claim 2.

If φ ∈ [φ, 1), then log φ < 0, log z > 0, and

(log2 φ)(log x)r′′(φ) =
a2

z2

(
log φ

log z

)2
(log z + 2) +

1

aφ2

(
log z +

2 log z

log φ

)
>

(
a2

z2
+

1

aφ2

)
log x+ 2

(
a2

z2
+

1

aφ2
log z

log φ

)
>

(
a2

z2
+

1

aφ2

)
log x+ 2

(
a2

z2
− 1

φ2

)
,

where the first inequality follows from Claim 1 and the second from Claim 2. Since

φ ≥ φ = 1+
√
1+4a
2a

implies (aφ)2− z2 = (aφ)2− (a(1− φ) + 1)2 = (2aφ− a− 1)(a+ 1) > 0,

we obtain r′′(φ) > 0.

If φ ∈ (1, 1 + 1/a), then log φ > 0, log z < 0, and

(log2 φ)φ2r′′(φ) =

(
aφ log φ

z(− log z)

)2(
1 +

2

log z

)
+

1

a

(
1 +

2

log φ

)
.

Suppose that 1 + 2
log z

< 0, as for otherwise it is clear that r′′(φ) > 0. It must be

that aφ log φ + z log z > 0 since the left-hand-side is zero at φ = 1, and the derivative

a(log φ+ 1)− a(log z + 1) = a(log φ− log z) > 0. Thus, by Claim 1 above,

(log2 φ)φ2r′′(φ) >

(
1 +

2

log z

)
+

1

a

(
1 +

2

log φ

)
= 1 +

1

a
+ 2

(
1

log z
+

1

a log φ

)
> 0,

and r′′(φ) > 0, which concludes the proof of Lemma F. �

Lemma G Suppose that r : R → R, is positive and decreasing in x and satisfies

g(x)r(x) = h(x), with h(x) strictly convex and g(x) strictly positive, concave, and

decreasing in x. Then, r(x) is strictly convex.
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Proof of Lemma G: Take any x1, x2 ∈ R and x̄ = βx1 + (1− β)x2 for some β ∈ (0, 1).

Then,

g(x̄) · (βr(x1) + (1− β)r(x2))

≥ (βg(x1) + (1− β)g(x2)) · (βr(x1) + (1− β)r(x2))

= β2g(x1)r(x1) + (1− β)2g(x2)r(x2) + β(1− β)(g(x1)r(x2) + g(x2)r(x1)),

where the first inequality is guaranteed by the concavity of g. Since r(x) is increasing and

g(x) is decreasing in x,

g(x1)r(x2) + g(x2)r(x1) ≥ g(x1)r(x1) + g(x2)r(x2).

=⇒ g(x̄) · (βr(x1) + (1− β)r(x2)) ≥ βg(x1)r(x1) + (1− β)g(x2)r(x2)

= βh(x1) + (1− β)h(x2) > h(x̄) = g(x̄)r(x̄),

which implies βr(x1) + (1− β)r(x2) > r(x̄). �

We are now ready to show that

E[Q] =
1

a
+

1

1− φ

(
φ2 +

log(a(1− φ) + 1)

a log φ

)
,

where the value at φ = 1 is given by limφ→1E[Q] is strictly convex in φ.

For any φ ∈ [φ, 1) ∪ (1, 1 + 1/a), we have(
1− φ

log(a(1− φ) + 1)

)
E[Q] = (a(φ+1)−1)

φ− 1

a log(a(1− φ) + 1)
+

(
1

log(a(1− φ) + 1)
+

1

a log φ

)
.

By Lemma D, 1−φ
log(a(1−φ)+1) is decreasing and concave. By Lemmas E and F, the right-hand

side is strictly convex. It follows from Lemma G that E[Q] is strictly convex on [φ, 1) and

(1, 1 + 1/a). Last, by Lemmas A and C, we know that E[Q] is continuously differentiable

at φ = 1, which completes the proof of Step 2. �
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3 Impacts of Centralization: Comparative Statics

We now describe the impact of some parameters of our limited-monitoring case on clients’

expected welfare. The average welfare per client can be written as:

V = q (h− cE[W ]) + (1− q)l = l + q(h− l)− qcE[W ].

Denote by V e
L and V

∗
L the average utility per client under the discretionary equilibrium and

under the optimal policy, respectively. In the discretionary setting, since in equilibrium clients

are indifferent between junior and senior service, V e
L = l. In particular, the welfare gap, V ∗L−V e

L ,

exhibits the same comparative statics as those of the welfare generated by the socially optimal

protocol, V ∗L .

Suppose the value for senior service increases from h1 to h2, h2 > h1, while all other

parameters stay fixed. The planner can certainly emulate whatever optimal policy she was

following when the value from senior service was h1. This would yield the same expected

waiting costs but increase service quality. Thus, V ∗L , and thereby V
∗
L − V e

L , increase in h. A

similar argument holds for an increase in the waiting cost c.

The impacts of an increase in arrival rates is more subtle. More rapid arrivals yield more

opportunities for training, but also generate more congestion. In general, the effects of increases

in λ could go either way. However, for linear training technologies, Proposition 4 in the main

text indicates that wait times decrease, implying that all clients served by seniors are better

off, and that the optimal fraction of clients served by seniors increases. Consequently, V ∗L , and

thus V ∗L − V e
L , increase in λ. Similar comparative statics follow for the training effi cacy. We

therefore have the following corollary.

Corollary (Welfare Gap Comparative Statics) Suppose f(x) = ax, for some a > 0. The

relative welfare gain from centralization, V ∗L − V e
L , is increasing in both λ and a.

Our discussion above considers the average welfare. One may also wish to consider the

volume of clients served, thereby focusing on λ (V ∗L − V e
L). The comparative statics of Corollary

1 would continue to hold. However, as arrival rates increase, the benefits of centralization would

become even more pronounced as more clients are impacted.

This discussion implies that, with limited monitoring, organizations obtain greater advant-

ages from centralization when the quality of senior service improves, when waiting costs de-

crease, or when either the arrival rate or the training technology effi cacy increase.
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