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use experiments of decision making under uncertainty as a case study. Absent restric-

tions on subjects’framing of the experiment, we show that any behavior is consistent

with standard updating ("anything goes"), including that suggestive of anomalies such

as over-confidence, excess belief stickiness, etc. When the experimental protocol restricts

subjects’conjectures (plausibly, by generating information during the experiment), stan-

dard updating has non-trivial testable implications.
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1. Overview

1.1 Introduction

Experiments studying behavior under uncertainty (be it regarding some underlying state,

such as income in consumption-saving problems, or regarding others’behavior, as is the case

in practically all strategic interactions) usually consist of three stages. First, the uncertainty is

realized; Second, subjects are provided with partial information about that realization; Third,

subjects choose an action. When analyzing data of such experiments, one essentially tests

joint hypotheses regarding responses to the experimental design (namely, the realization of

uncertainty and the information generation procedure) and subjects’beliefs about the design

itself. The focus of this paper is the analysis of the potential consequences of such joint tests.

We allow subjects to hold arbitrary conjectures about the experimental design and identify

links between classes of conjectures subjects hold and the testable implications of theoretical

predictions in the lab.

The idea that subjects may form (potentially inaccurate) beliefs about an experiment’s

design to which they respond is long standing in the social sciences. It falls under the general

umbrella of experimenter demand, suggesting that the design itself makes subjects (consciously

or subconsciously) frame the problem at hand in a particular way that makes them believe cer-

tain responses are more appropriate than others. It has not only been a concern for economists

(Zizzo, 2010, and references therein). It is also considered a potential source of distortion in

responses to psychological surveys (see Paulhus, 1991) and a channel through which subjects

in sociological experiments choose their actions (see Gillespie, 1991). Experimenter demand

may even play a role in the generation of placebo effects in medicine (see Beecher, 1955 and

work that followed). Despite its importance for experimental deductions, the literature has

offered little in the form of a theoretical framework for inspecting the testable implications of

experiments accounting for experimenter demand effects. Our goal is to take a step in that

direction.

We concentrate on a general case study of laboratory decision making under uncertainty.

Most experiments in this class involve some form of updating. Consequently, a natural first

step in the theoretical analysis of such experiments pertains to experiments having to do with
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elicitation of beliefs, which are the experiments we study in this paper.

We consider experiments in which payoffs depend on some unknown state. After the state

is realized, a subject is provided with some information regarding the state in the form of

a sequence of potentially informative signals. Ultimately, the subject chooses one of several

alternatives. Many extant experiments fall under this category (particularly when thinking of

other subjects’actions as part of the state). For instance, consumption-saving experiments,

individual experimentation and learning experiments, herding, and sequential voting exper-

iments all naturally fall under this rubric (see, for example, Kagel and Roth, 1997 for an

overview of experiments in different fields of economics).

1.2 A Motivating Example

Before describing our formal results, consider the following example, providing a simple

caricature of the structure of experiments of decision making under uncertainty.

There are two states of nature, a and b, realized at the outset of the experiment. For

example, a and b can stand for whether or not going on vacation is a good idea, as in Tversky

and Shafir’s (1992) disjunction effect experiments. The subject’s goal is to report which

of the states is most likely given different amounts of information.1 For simplicity, assume

that initially, she is given no information. Then she receives some information, say in the

form of a signal taking the values u or d. For example, in Tversky and Shafir’s (1992)

experiments subjects were asked to contemplate either failing or passing an important exam.

Figure 1 captures, up to relabeling, the three types of responses one could observe in such

an experiment. The actions at the roots of each tree correspond to the reports absent any

signals, while actions at the other two nodes correspond to the subject’s responses following

the respective signals.

In panel (1), the subject does not change her mind regardless of which signal she observes.

This is consistent with Bayesian updating. For instance, the subject may have a strong prior

favoring the state a and view the signals as uninformative. In panel (2), the subject changes

her mind when the signal is d. This can also be explained with Bayesian updating by assuming,

1For instance, she may be paid a fixed amount only when her response matches the realized state.
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Figure 1: Simple Reversal

e.g., that the prior for a is p > 1/2 while the signal s1 follows the following distribution:

P (s1 = u | a) = P (s1 = d | b) = q and P (s1 = d | a) = P (s1 = u | b) = 1− q,

where q > p. Thus, upon observing the signal u, the subject views a as more likely and upon

observing the signal d, the subject views the state b as more likely.2

Panel (3) describes a situation in which regardless of what the signal is, the subject changes

her view of what is the most likely state. These observations cannot be explained with

simple Bayesian updating. Indeed, if the subject updates in a standard manner, absent any

information, she must put some weight on the realization of s1 being u and complementary

weight on the realization of s1 being d. In particular, her belief that the state is a when she

does not observe a signal must be a convex combination of her beliefs following the realization

of the signal. Thus, unless the subject is indifferent, a belief that puts weight lower than 1/2

on the state a must be a convex combination of two beliefs that put weight greater than 1/2

on the state a, which is not possible.3

2In fact, one can come up with many belief structures for the subject that would be consistent with the
observed reports and Bayesian updating for either Panel (1) or Panel (2).

3This is reminiscent of a simple violation of Savage’s (1954) “Sure Thing Principle.”We elaborate on the
comparison below (see Section 3).
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In fact, many experiments that are used to illustrate updating anomalies exhibit obser-

vations of the form of Panel (3) —Tversky and Shafir’s (1992) disjunction effect experiments

take this format4, as do an assortment of experiments on over-confidence, belief polarization,

etc. (for an overview, see, e.g., Camerer, Loewenstein, and Rabin, 2006 or Nisbett and Ross,

1980).

To summarize, even without placing any restrictions on the subject’s belief about the

initial distribution of states and the signal generation process, Bayesian updating has clear

testable implications. Panels (1) and (2) can be explained, while Panel (3) cannot.

In the current paper we also entertain the idea that the subject conjectures the amount

of information revealed to her by the experimenter is a function of the realized uncertainty:

the state and the signals. Then, Panel (3) can easily be explained with Bayesian updating

with such richer conjectures. For instance, the subject could conjecture that a-priori the

states are equally likely, but that when the state is b (or when the appropriate response is

b), the experimenter does not reveal any information to her, while when the state is a, the

experimenter reveals either signal with equal probability. In particular, behavior that seems

to suggest anomalous updating procedures may be attributed to the subject’s framing of the

experiment instead.

Nonetheless, note that in explaining Panel (3), we only need the subject to conjecture the

amount of information depends on the realized state (and not necessarily on the realized sig-

nals). Such restricted conjectures are relevant for experiments of decisions under uncertainty

in which there is transparency regarding how signals are generated (for example, signals may

be generated during the experiment, after their number had been determined, as is common

practice in, e.g., voting experiments). Interestingly, they do entail testable implications.

Consider Figure 2 that illustrates reports from an experiment as above in which there are

two signal realizations, each taking the value of u or d. Note that the sub-tree corresponding

to s1 = u is of the form appearing in Panel (3) of Figure 1. In particular, in order to explain

4Specifically, Tversky and Shafir (1992) asked students whether they would be interested in a vacation
package that would take place after the results of an exam would be revealed. 32% of the subjects were
interested, 7% of the subjects were not interested, and the remaining 61% were willing to pay $5 to have
the option to cancel the vacation after realizing whether they had passed or failed. Nonetheless, when asked
whether they would buy the same vacation package after discovering they had failed or passed the exam, 57%
or 54%, resepectively, of the subjects reported affi rmatively.
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Figure 2: Reversal Not Explained by a Partially Restricted Conjectured Experiment

the reversal following either signal s2, we need to assume the subject conjectures that the mere

observation of two signals is more likely when the state is b. However, switch to the other

sub-tree corresponding to s1 = d. Here, we see a similar reversal, but now the subject reports

the state a regardless of s2. The only way to explain this would be with a conjecture that

makes the observation of two signals more likely when the state is a. It is therefore impossible

to explain these observations with such restricted conjectures. Thus, transparency of the

signal generation procedure assures that Bayesian updating has clear testable implications,

even without restricting the subject’s conjecture on the distribution of the underlying state,

signal generation process, and the experimenter’s strategy of information revelation (that may

depend on the realized state).

This example highlights two important methodological messages of the paper. First, when

no restrictions are placed on subjects’framing of the experiment, any behavior is consistent

with standard updating (“anything goes”). Second, when the experimental protocol restricts

subjects’conjectures (say, by generating information during the experiment), standard up-

dating entails non-trivial testable implications. Namely, such protocols restrict the type of

action reversals that Bayesian subjects may exhibit when they are provided with additional

information.
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1.3 Description of Results

In general, the design of an experiment dictates how much information, i.e., the number

of signals, subjects observe prior to making choices. Subjects may hold a wide range of

beliefs regarding the link between the amount of information they observe and the underlying

uncertainty. We use the term conjectured experiment to denote the subject’s beliefs about the

design of the experiment. We study the impacts of two types of conjectured experiments: one

in which the amount of information is perceived independent of any realized uncertainty and

another in which the amount of information can be correlated (in an arbitrary manner) with

the realized uncertainty.

We emphasize that in experiments of decision making under uncertainty, the amount of

information per-se is usually independent of the actual state and the signals’ realizations.

There are many reasons why a subject’s conjecture may not coincide with the actual experi-

mental design. For instance, subjects may arrive at the lab with real-world recipes of behavior

that affect their interpretation of experimental instructions, subjects may misunderstand the

notion of independence, or theorize about the experimenter’s goals and selective choice of in-

formation (see Friedman and Sunder, 1994, Kagel and Roth, 1997, and Zizzo, 2010). Subjects’

conjectures do not reflect suspicions regarding how the experiment is carried out.5

We assume subjects report to the experimenter the state they view as most likely. This

is a natural starting point for our analysis since looking at reports of the most likely state

requires the subject to go through very simple calculations that do not require expected utility

maximization. The entire analysis here is based on ordinal utilities (a monotonic transforma-

tion of the subject’s utility will not change her optimal response). In particular, the analysis

is not sensitive to subjects’risk preferences. In contrast, in order to elicit the full beliefs a

subject holds, choosing the proper utility would require certain behavioral assumptions, e.g.,

a quadratic scoring rule combined with maximization of expected utility.

Suppose first that subjects’conjectured experiments are restricted so that the amount of

information revealed to them is independent of both the realized state and the realized signals.

5Indeed, most economic experiments are preceded by a set of instructions, and the prevailing norm in the
profession banning deception would presumably trickle down to subjects.
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In that case, there is a natural restriction on subjects’reports for them to be consistent with

Bayesian updating (generalizing our introductory example). Indeed, Theorem 1 shows that

the subject is Bayesian if and only if the following condition holds: The subject chooses the

action a for signal sequence s whenever all continuation signal sequences lead her to choose

a.6

The other polar case of subjects’ conjectures occurs when no restrictions are put and

subjects’conjectures are allowed to entail correlations between the realization of all uncertainty

(on the state and signals) and the number of signals observed; Subjects are free to frame the

experiment however way they like. In that case, in line with the example above, Theorem 2

illustrates an “anything goes”result —any responses of subjects can be explained as arising

from a particular conjectured experiment and Bayesian updating of the released information.

In other words, in that case the theoretical predictions have no bite once jointly tested with

the conjectured experiment.

From a positive and prescriptive point of view, certain experimental protocols are likely to

place restrictions on the conjectures subjects hold. For instance, in many voting experiments,

the number of signals is determined at the outset, but subjects produce their own signals, e.g.,

by drawing a ball from a physical urn (the composition of which represents the underlying

state), during the experiment.7 In terms of the subjects’conjectures, such designs are likely

to entail independence between the realized signals and the number of signals provided.

In Section 5 we study the intermediate case in which subjects’conjectures allow for cor-

relations between the amount of information revealed and realized state, but the amount of

information is independent of the signal realizations. Such partially restricted conjectures

allow for the volume of information to be associated with the state realization. Theorem

3 generalizes the example corresponding to Figure 2 and provides a characterization of the

class of reversals that violate Bayesian updating when subjects hold partially restricted con-

jectures. Much as in the example, the reversals that are consistent with Bayesian updating

6This is reminiscent of the “Sure Thing Principle”a-la Savage (1954) and dynamic consistency. However,
the experimental observations are mappings from sequences of signals. Thus, they consist a subset of elements
considered by the Savage (1954) type of analysis. In particular, the suffi ciency of the condition cannot be
deduced from the work on foundations of expected utility. We elaborate on this point in Section 3.

7See Palfrey (2006) for a description of various experiments on voting behavior.
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are roughly described by going “in the same direction”(or tending to a specific report) for a

particular length of signal sequence. The theorem provides the tools for deducing departures

from Bayesian updating when the signal generation process is transparent in the lab.

The underlying assumption in our analysis is that there is a natural sequencing of signals.

This is why the experimental design is captured by the number of signals reported to the

subject. This assumption is applicable in many situations (indeed, any context in which

signals are tied with time), and eases the presentation. In the Online Appendix we provide

a similar analysis for environments in which there is no natural ordering of signals and a

general conjectured experiment pertains to the dimensions of information that are reported

(or which elements of the set of signals are reported) and their correlation with the underlying

uncertainty.8

As mentioned, our analysis is very closely related to the unformalized notion of experi-

menter demand, the idea that the design itself makes subjects (consciously or subconsciously)

frame the problem at hand in a particular way that makes them believe certain responses are

more appropriate than others (see, e.g., Friedman and Sunder, 1994, Kagel and Roth, 1997,

and Zizzo, 2010). Experimenter demand type of arguments broadly take one of two forms.

The first suggests that the way the experimenter phrases problems indicates something to

the subject about the realized uncertainty and the correct response. The second refers to the

subject trying to “help”or “satisfy”the experimenter by aiming at the answers the experi-

menter is seeking. Our approach provides a first step in formalizing the former manifestation

of experimenter demand, by contemplating a large class of conjectures, or ways to frame the

experimental design. It is a necessary step for future models of the second demand manifes-

tation as well, that potentially requires more behavioral and strategic assumptions on both

experimenter and subject.

The idea that individuals may exhibit a variety of non-standard behaviors in the presence

of uncertainty, such as excess stickiness of beliefs, over-confidence, etc., has received much

8Our “anything goes” result still holds when conjectured experiments are unrestricted. However, the
implications imposed by the natural analogue of restricted conjectured experiments do not carry through.
In fact, we identify stronger observational restrictions that are in the spirit of “Dutch books.”Experimental
observations can be explained if and only if, after observing the subjects’responses, the experimenter cannot
design a sequence of bets that would lead the agent to lose money for sure.
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attention in both psychology and economics (see, for example, Part 1 in Brocas and Carrillo,

2004, Kahneman, Slovic, and Tversky, 1982, and Nisbett and Ross, 1980).9 The economics

literature has taken two approaches for utilizing these observations:

1. Suggest alternative models of belief updating to that prescribed by Bayes’ rule (e.g.,

Rabin and Schrag, 1999 and Compte and Postlewaite, 2004);

2. Modify the subjects’ utilities to account for arguments going beyond pure monetary

rewards and directly depending on held beliefs (e.g., Benabou and Tirole, 2002, Part 3

in Brocas and Carrillo, 2003, Koszegi, 2006, Yariv, 2005, and references therein).

Our approach is very different in that we fix utilities and the belief updating algorithm,

but allow for a wide range of theories subjects hold on the design of the experiment itself.10

The analysis of this paper does not propose a particular model describing subjects’behavior.

Rather, it focuses on the testable implications of existing (standard) models. In particular, it

suggests the class of circumstances under which new descriptive models may be useful.

2. Description of the Model

2.1 Setup

Let A be a finite set of alternatives and S a finite set of signals. Let N be the number

of available signals and N = {0, 1, . . . , N}. We denote by S6N the set of all instances, i.e.,

sequences of elements of S of length no greater than N , including the empty sequence e:

S6N =
⋃

0≤n≤N
Sn.

Experimental observations are summarized by a mapping σ : S6N → A. For every signal

9In fact, some work suggests that certain biases in probability assessments are associated with mental
health, see Taylor and Brown, 1988.
10There is an old and wide literature going back to Savage (1954) and Anscombe and Aumann (1963)

that considers the question of when experimental observations match some form of optimization (allowing
utilities to be arbitrary) together with standard probabilistic assessments/updating, essentially restricting the
conjectured experiment to coincide with the actual design (for recent references, see Green and Park, 1996).
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sequence s, σ(s) is the subject’s report of the most probable alternative given s.11 The reason

for focusing on these sorts of reports is that we want to identify behaviors that cannot be

rationalized by means that are not related to experimental demand (for instance, via risk

aversion). Reports of the most likely state are not sensitive to the shape of a subject’s utility

(in particular, his/her risk attitudes).

For x = (s1, . . . , sN) ∈ SN and 1 ≤ n ≤ N , let x|n be the truncation of x to the first n

signals: x|n = (s1, . . . , sn).

If s = (s1, . . . , sn) is an instance and s ∈ S we denote by ŝ s the concatenation of s with

s: ŝ s = (s1, . . . , sn, s).

The set S6N of instances has a natural rooted tree structure: The root is the empty

sequence, the depth d(s) of an instance s = (s1, . . . , sn) is d(s) = n and the children of s are

instances of the form ŝ s for s ∈ S. The n-th layer of the tree is the set of nodes of depth n.

Technically, all our results and proofs depend only on the rooted tree structure of the set of

instances. In particular, the results remain true if the number of available signals is infinite.

2.2 Conjectured Experiment

We consider subjects who hold beliefs regarding the experimental procedures, namely

about the link between the signals they observe and the underlying realized alternative (and

their preferred action). We call such a belief a conjectured experiment, defined formally as:

Definition 1. [Conjectured Experiment] A conjectured experiment is given by a triplet

(α, τ , ζ = {ζn}1≤n≤N) of random variables over some probability space (Ω,A,P) with values

in A,N, S≤N , respectively.

The random variable α denotes the conjecture about the set of alternatives A, τ stands for

the length of the observed signal sequence that, therefore, takes values in N, and ζ captures

the random variables corresponding to the realization of any signal sequence.12

11Our primitive, the experimental observations, or the mapping from all possible signal collections to alter-
natives chosen, is reminiscent of what is observed in experiments utilizing the strategy method, an experimental
procedure dating back to Selten (1967) under which subjects report contingent choices, thereby eliciting their
preferred alternatives for any observed realization of uncertainty in the lab.
12Note that the set A of alternatives, the number N of signals, and the set S from which signals are drawn

are fixed. The only element of the experimental design about which the subject conjectures regards the
distribution over A,N, and SN .
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Our results inspect the impacts of different restrictions on the conjectured experiment

(that are consequences of either the transparency of the experimental design, or the subjective

interpretations of subjects).13

In Definition 1 we pose no restrictions on the dependence between the variables α, τ , and ζ.

To emphasize this fact we will often refer to such a conjectured experiment as an unrestricted

conjectured experiment.

In particular, the opposite polar case to that of an unrestricted conjectured experiment

is a restricted conjectured experiment in which the subject believes the number of signals she

sees is uncorrelated with neither the realized alternative nor with the realization of the signals

themselves. This is the case, for example, when the subject believes that the experimenter

does not know both the realized alternative and realized signals when determining how many

signals to provide. Formally,

Definition 2. [Restricted Conjectured Experiment] A restricted conjectured experiment is a

conjectured experiment (α, τ , ζ) such that τ is independent of the pair (α, ζ).

We are interested in conjectured experiments —structures of information with which the

subject interprets observations —that explain a subject’s behavior as arising from Bayesian

updating given the number of signals available to her and their realizations. That is,

Definition 3. [Explaining Observations] A conjectured experiment (α, τ , ζ = {ζn}1≤n≤N) ex-

plains the experimental observations σ if:

1. for every n ∈ N and every s1, . . . , sn ∈ S,

P(τ = n, ζ i = si for 1 ≤ i ≤ n) > 0.

2. For every instance s = (s1, . . . , sn),

σ(s) = arg max
a∈A

P (α = a | τ = n, ζ i = si for 1 ≤ i ≤ n) . (1)

13Throughout, we assume a natural sequencing of signals. This assumption is applicable in most Economics
experiments (for instance, it holds whenever signals are provided in sequence) and eases the presentation. In
the Online Appendix we analyze environments in which there is no natural ordering of signals and a general
conjectured experiment pertains to the dimensions of information reported.
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Here and elsewhere, when we use the arg max notation, we implicitly assert the uniqueness

of the maximizer.14

The first condition in the definition requires that every finite sequence of signals the sub-

ject is faced with is indeed conceivable (has positive probability) under her conjectured ex-

periment.15

The second condition requires that under the conjectured experiment, the subject (Bayesian)

updates on which alternative is most likely, conditioning on the signals she receives, and selects

that alternative.

We note that the signals in our framework have no content per-se. We chose this setting

since we want to focus on how different assumptions about the role of the experimenter in

providing those signals might affect a subject’s behavior, rather than inspect subjects’beliefs

about how signals are generated for any alternative. For this reason, we give the subject as

much freedom as possible in interpreting the signals, and we show that, even with this freedom,

there is a gap between the behaviors that can be explained under different assumptions on the

experimenter’s role. Nonetheless, often signals are associated with a natural interpretation

and it is reasonable to restrict subjects’conjectures to particular plausible ones. In the Online

Appendix we detail instances of two types of such plausible conjectures: conditionally i.i.d

and conditionally exchangeable.

3. Restricted Conjectured Experiments

We start with the case in which subjects’conjectures are restricted. That is, subjects believe

that the amount of information they observe is independent of the realized alternative and the

realized signals. In that case, conjectured experiments can be written in a simplified manner:

14In principle, we could also assume that σ is a correspondence. In that case, σ(s) would stand for the set
of all alternatives the agent views as most likely after a sequence s of observations. If we assume that the set
σ(s) is observed after every sequence s and modify Definition 3 accordingly then our main results continue
to hold, but notation becomes cumbersome. If, on the other hand, we assume that only one alternative in
σ(s) is observed (which is the case in an experiment, where the subject has to select one alternative), then
any observations can be trivially rationalized if we assume that the subject believes that all alternatives are
equally likely and that the signals are independent of the alternatives.
15The Bayesian paradigm is silent on what should happen when a Bayesian agent observes a sequence

of signals to which she attaches probability 0. Since we want to perform our analysis completely within the
Bayesian paradigm, we assume that this cannot happen. Without imposing this assumption, we would have to
pose an ad-hoc alternative assumption about what a Bayesian agent should do when facing a zero-probability
event.
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Remark 1. [Restricted Conjectures — Simplified Notation] If τ is independent of the pair

(ζ, α) then (1) becomes

σ(s) = arg max
a∈A

P (α = a | ζ i = si for 1 ≤ i ≤ n) . (2)

Thus, a restricted conjectured experiment that explains the experimental observations is iden-

tified by a pair (α, ζ) of random variables with values in A, SN such that (2) is satisfied.

Let s be an instance and suppose that no matter what additional signal s ∈ S is observed,

the subject reports the alternative a∗ to be the most likely. That is, σ(ŝ s) = a∗ for every s ∈ S.

If the subject is updating using Bayes rule, with a restricted conjecture, she cannot deduce

anything regarding the realized state by the sheer volume of signals she observes. Thus, her

assessment of each realized alternative under s is a convex combination of the corresponding

assessments over all continuations ŝ s. In particular, the most likely alternative must be a∗.

This suggests a clear necessary requirement for observations to be explained. Theorem 1

illustrates that this requirement is, in fact, also suffi cient. That is,

Theorem 1. [Restricted Conjectured Experiments] The experimental observations σ can be

explained by a restricted conjectured experiment if and only if the following condition is

satisfied:

Let s be an instance. If, for some a∗ ∈ A, one has σ(ŝ s) = a∗ for every s ∈ S, then σ(s) = a∗.

The idea underlying the proof of the theorem is instructive for some of the future analysis

in the paper. While some details appear in the Appendix, we stress that illustrating the

suffi ciency of the requirement is done in two steps. First, we consider an auxiliary (and

hypothetical) experiment in which subjects report full posteriors over states for every instance

(generating a mapping from S6N to ∆(A)) and identify the responses consistent with Bayes

rule. Second, for any experimental observations satisfying the requirement of Theorem 1,

we construct recursively a set of posteriors satisfying these identified restrictions that are

consistent with the experimental observations.16

16The assumption that the subject is Bayesian is important for Theorem 1. For instance, were we to
use a multiple prior updating rule a-la Gilboa and Schmeidler (1993), one can show that any experimental
observations could be rationalized.
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The first step, then, is captured by the following lemma, which addresses the question of

which assignments of posterior distributions over states of nature can be explained.

Lemma 1. [Explainable Posteriors —Restricted] For every instance s ∈ S6N , let ps ∈ ∆(A).

Then there exist random variables {α, ζ} over some probability space (Ω,A,P) with values in

A, SN respectively such that:

1. P(ζ1 = s1, . . . , ζN = sN) > 0 for every (s1, . . . , sN) ∈ SN ; and

2. For every instance s = (s1, . . . , sn) and every a ∈ A

P {α = a | ζ i = si for 1 ≤ i ≤ n} = ps[a] (3)

if and only if for every n < N and every s = (s1, . . . , sn) one has17

ps ∈ ri(Conv{pŝ s|s ∈ S}). (4)

The proof of the lemma appears in the Appendix. The lemma effectively provides the

testable implications of Bayesian updating. It suggests that an individual is Bayesian if and

only if the following holds: The probability distribution that represents the agent’s belief after

observing any finite sequence of signals is a convex combination of the probability distributions

that represent her beliefs conditional on observing sequences of signals that are the possible

continuations of the original sequence.

It is interesting to note that the lemma implies that a large class of updating rules that

exhibit stickiness to prior beliefs (i.e., rules in which the reported beliefs are always tilted

toward previous reports) is observationally equivalent to Bayesian updating. Indeed, consider

17Recall that the relative interior ri(C) of a convex set C in finite dimensional real vector space is the
interior of C with respect to the smallest affi ne space that contains C. If F is a finite set of points then
ri(ConvF ) is given by the set of all convex combinations of elements of F with strictly positive coeffi cients:

ri(ConvF ) =

{∑
v∈F

λvv|λv > 0 ∀v ∈ F and
∑
v∈F

λv = 1

}
.
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an agent who holds a prior µ on A× S∞ and provides reports σ̃ as follows:

σ̃[s1, s2, ..., sn](B) = αn(s1, ..., sn)µ(B|s1, s2, ..., sn) + (1− αn(s1, ..., sn)) σ̃[s1, ..., sn−1](B),

for any subset B of A, where αn(s1, ..., sn) ∈ [0, 1] for all n and s1, ..., sn ∈ S.

That is, the agent weighs the correct posterior with her previous prediction. It is straight-

forward to show that σ̃ would, in fact, satisfy the lemma’s condition. In particular, it would

be indistinguishable from Bayesian updating (with a prior different than µ).18

As a technical note, the relative interior ri appearing in condition (4) assures that there

is positive weight on any instance observed, which will be useful for constructing conjectured

experiments that entail this type of restriction. Simply requiring ps ∈Conv{pŝ s|s ∈ S} would

correspond to consistent posterior reports, but ones that may place zero probability on certain

instances.

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1. It follows directly from Lemma 1 that the experimental observations

σ : S6N → A that can be explained by restricted conjectured experiments must satisfy the

condition in Theorem 1. Indeed, let (α, τ , ζ) be a restricted conjectured experiment that

explains σ, and let

ps[a] = P (α = a | ζ i = si for 1 ≤ i ≤ n) .

From (2), σ(s) = arg maxa ps[a], and from Lemma 1 we get that ps satisfies (4). Assume that

for some instance s and some a∗ ∈ A one has σ(ŝ s) = a∗ for every s ∈ S. Then it follows

that arg maxa pŝ s[a] = a∗ for every s. Therefore, σ(s) = arg maxa ps[a] = a∗, where the last

equality follows from the previous equality and (4).

To prove the other direction, we start with experimental observations that satisfy the

condition of Theorem 1 and construct posterior distributions ps for every instance s such that

(4) is satisfied and, in addition, σ(s) = arg maxa ps[a] for every s.

18If signals were assumed to be conditionally independent, an equally sensible model for stickiness would
be one in which current belief reports are a convex combination of last period’s reports and a Bayesian
posterior based on these reported beliefs and the current signal. Such a model would generate predictions
indistinguishable from Bayesian updating as well.
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We will use the following additional lemma:

Lemma 2. [One Period Construction] Let∆∗(A) =
{
p ∈ ∆(A)|p[a] < 1

|A|−1 for every a ∈ A
}

and let p ∈ ∆∗(A). Suppose a1, . . . , am ∈ A are such that either ai 6= aj for some 1 ≤

i, j ≤ m or a1 = · · · = am = arg max p. Then there exists p1, . . . , pm ∈ ∆∗(A) such that

p ∈ ri(Conv{p1, . . . , pm}) and arg max pi = ai.

The proof of Lemma 2 is technical and is deferred to the Appendix. It follows from the

lemma that we can inductively assign posterior probabilities ps ∈ ∆∗(A) for every instance s

such that (4) is satisfied and, in addition,

arg max
a
ps[a] = σ(a) (5)

for every instance s (indeed, assuming we already defined ps, we define pŝ S using the lemma,

with m = |S|). By Lemma 1 there exists random variables α, ζ over some probability space

with values in A, SN , respectively, such that ζ has full support and (3) is satisfied. Let τ

be some random variable with values in N, independent of (α, ζ) whose distribution has full

support. Then for every a ∈ A and s = (s1, . . . , sn) ∈ S6N ,

P(α = a | τ = n, ζ1 = s1, . . . , ζn = sn) = P(α = a | ζ1 = s1, . . . , ζn = sn) = ps[a].

By (5) and the last equation it follows that (α, ζ, τ) explains σ, as desired. �

Since the proof that the condition in Theorem 1 is necessary was based solely on (2), it

bears on a larger set of conjectures that allow for some correlation between the volume of

information and the realization of signals. Indeed, let us say that a conjectured experiment

(α, τ , ζ) is adapted if τ is measurable with respect to ζ1, . . . , ζn, i.e., if

P(τ = n|α = a, ζ1 = s1, . . . , ζN = sN) = P(τ = n|ζ1 = s1, . . . , ζn = sn),

for every n ∈ N, a ∈ A, and s1, . . . , sN ∈ S (see page 113 in Prokhorov and Shirayev, 1997

for a general definition of adaptable stopping times). This means that when the experimenter

decides whether to continue providing signals after stage n, he can base his decision upon the
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already released signals s1, . . . , sn (which were observed by the subject). Importantly, every

restricted conjectured experiment is adapted.

It is easy to verify that (2) is still valid for adapted conjectured experiments. Therefore,

even though the set of adapted conjectured experiments is larger than the set of restricted

conjectured experiments, both sets of conjectured experiments have the same explanatory

power and we get the following corollary:

Corollary 1. [Adapted Conjectured Experiments] If experimental observations can be ex-

plained by an adapted conjectured experiment then they can also be explained by a restricted

conjectured experiment.

In particular, the Corollary implies that allowing subjects to conjecture that the exper-

imenter provides information using a sequential procedure, one in which the experimenter

decides whether or not to provide an additional signal depending on the signals that have

been revealed thus far, leads to the same testable implications described in Theorem 1.

The Sure Thing Principle and Dynamic Consistency. The condition of Theorem 1 is

reminiscent of the “Sure Thing Principle”and the notion of dynamic consistency. Dynamic

consistency suggests that if the decision maker knows that given additional information to-

morrow she will prefer action a to b regardless of what that information will be, then she

should prefer a to b today (see, e.g., Epstein and Le Breton, 1993, Ghirardato, 2002, and ref-

erences therein, as well as Savage, 1954). Note, however, that while the condition in Theorem

1 is expressed solely in terms of the maximal element within the agent’s conditional beliefs,

dynamic consistency is a property of a preference relation over contingent plans. Moreover,

our primitive σ determines only the subject’s action conditioned on a certain class of events,

i.e., events that are given by the assignment of values to certain sets of signals. The condition

of the theorem is therefore weaker than dynamic consistency: if the order induced by observa-

tions σ over actions can be extended to an order over contingent plans that satisfies dynamic

consistency, then σ must satisfy the condition. The Theorem implies that the converse is also

true: if σ satisfies the condition, then it can be explained by Bayesian updating, and therefore

it can be extended to an order over contingent plans that satisfies dynamic consistency. We
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emphasize that the suffi ciency part of Theorem 1 cannot be derived from results regarding

dynamic consistency. In fact, without imposing the fixed ordering of signals (thereby allowing

information to be provided via arbitrary sets of signals), the condition of the theorem is not

suffi cient for the observations to be explained by a restricted conjectured experiment. As

mentioned, we provide an analysis of this more general setup in the Online Appendix.

Generating Restricted Conjectures in the Lab. While it is diffi cult to control the

subjective beliefs of subjects in the lab, some experiments are more likely to induce restricted

conjectures by specifying the number of signals subjects will observe at the outset and later

determining both the state and the signals in a transparent manner. We mention two examples

that match our setting particularly well.

The first has to do with the formation of herd behavior in the lab. For instance, in the

classic experiments of Anderson and Holt (1997), the original cascade model of Bikhchandani,

Hirshleifer, and Welch (1992) was tested. In the main treatment, there were six subjects

in each session, one of which was randomly designated as the “monitor” and helped the

experimenters generate the uncertainty and signals in the experiment. In each of 15 periods,

the monitor used a die to determine which of two urns would be used for that period. Urn A

contained two ‘a’balls and one ‘b’ball, and urn B contained two ‘b’balls and one ‘a’ball. Urn

A was used if the throw of the die was one, two, or three; urn B was used otherwise. Subjects

were randomly ordered and each saw one private draw from the selected urn. After seeing

their private draw, each subject had to guess which urn was selected. This guess was then

announced to other subjects. In this way, each subject knew his or her own private draw and

the prior decisions of others, if any, before making a guess. This process continued until all

subjects had made guesses. At the end of each period, the monitor announced which urn had

been selected and each subject was paid $2 if their guess was correct and nothing otherwise.

In this design, the number of signals was determined at the outset and one of the subjects, the

“monitor,”helped assure subjects the experimenters did not release information selectively.

Furthermore, as in our theoretical setting, it was in the best interest of the subjects to report

the alternative, which urn had been selected, they thought was more likely.19

19The use of subjects as “monitors”may be a useful way to restrict subjects’conjectures and appears in
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The results suggested about half as many reverse cascades as there were normal cascades

that theory predicts with Bayesian updating based on the underlying uncertainty and equi-

librium behavior. The authors suggested a model of errors, which is consistent with subjects

relying more on their own private information. However, they also noted that about a third

of their subjects seem to rely on a simple count of signals, which is consistent with Bayesian

updating with a different information generation process (e.g., one in which each preceding

subject’s guess reflects their private draw and is not impacted by previous guesses).

The second example of an experiment that fits our restricted conjectures setting is provided

by the recent work of Mobius et al. (2014), who look at the evolution of subjects’beliefs about

being among the top half of performers in an IQ quiz. At the outset, subjects responded to

an IQ quiz. Their beliefs about being among the top half of performers were elicited after the

quiz. There were then four stages, which were announced at the outset. At each stage, each

subject initially received a binary signal that indicated whether the subject was among the

top half of performers; that signal was correct with 75% probability. Subjects then reported

their belief about being among the top half of performers. That is, subjects received four

conditionally independent signals that depended on their own performance and others’. Since

both the realized state and the signals were generated by the subjects themselves, this design

was likely to induce restricted conjectures.

The results illustrate that subjects over-weigh positive feedback relative to negative feed-

back and are conservative —they have sticky beliefs in that they update too little in response

to both positive and negative feedback. The authors suggest, in line with our results, that sub-

jects update as if they misinterpret signal distributions in a self-serving manner, but process

these modified signals using Bayes’rule.

We now turn to analyze the testable implications derived when conjectured experiments

are fully unrestricted.

several other experimental designs. For another experiment in the context of Bayesian updating, see El-Gamal
and Grether (1995).
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4. Unrestricted Conjectured Experiments

When conjectured experiments are unrestricted, the amount of information observed can be

perceived as correlated with the realization of uncertainty. The requirement appearing in

Theorem 1 is then too strong. As an example, consider the classical experiment of Tversky

and Kahneman (1983). In their experiment, subjects were told that “Linda is 31 years old,

single, outspoken, and very bright. She majored in philosophy. As a student, she was deeply

concerned with issues of discrimination and social justice, and also participated in anti-nuclear

demonstrations.”Subjects were then asked to determine which is more likely: 1. Linda is a

bank teller; or 2. Linda is a bank teller and is active in the feminist movement. 85% of the

subjects chose the second option. This was taken as evidence for the failure of conjunction

of probabilities. However, a different interpretation is that the mere fact the experimenter

chose to expose Linda’s participation in demonstrations suggests that 2 is the appropriate

answer. In other words, the information revealed (captured by the details appearing in the

blurb describing Linda) could be perceived to be correlated with the underlying state (which

answer the experimenter expects). In fact, many experiments falling under the general rubric

of the Representative Heuristic (see Tversky and Kahneman, 1974) have this feature of a

scenario, or a person’s profile, that is described in some detail and followed by a classification

query.

The following is an example in the same spirit utilizing our notation.

Example 1. [Explanatory Power of Unrestricted Conjectures] Assume that N = 1, S =

{u, d}, A = {a, b}, and consider the experimental observations σ given by:

σ(e) = a and σ(u) = σ(d) = b,

as depicted in tree form in Figure 1, Panel (3). Note that the condition of Theorem 1 is

not satisfied, and therefore σ cannot be explained by a restricted conjectured experiment.

However, σ can be explained by an unrestricted conjectured experiment (α, τ , ζ) such that τ

and ζ are independent conditional on the realized alternative α and, in addition, characterized
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by the following:

P(α = a) = P(α = b) =
1

2

P(τ = 0|α = a) = 1− P(τ = 1|α = a) = 0.9

P(τ = 0|α = b) = 1− P(τ = 1|α = b) = 0.1

P(ζ = u | α = ã) = P(ζ = d | α = ã) = 0.5 for every ã ∈ {a, b}.

As explained in the paper’s introductory example, the conjectured experiment is such

that when the realized alternative is α = a, the subject perceives receiving no signals as

extremely likely, whereas when the realized alternative is α = b, the subject perceives receiving

a signal as very likely. However, the determination of the number of signals observed is done

independently of the generation of the signals themselves. In fact, the signals in and of

themselves are uninformative.

It turns out that any experimental observations can be explained with an unrestricted

conjectured experiment, formally captured in the following “anything goes”result:

Theorem 2. [Unrestricted Conjectured Experiments] For every σ : S6N → A the experi-

mental observations σ admit an explanation by an unrestricted conjectured experiment.

From the theorem, when subjects’ conjectures are unconstrained, anomalous updating

behavior is indistinguishable from particular framing of the experimental design itself.

The proof of Theorem 2, as the proof of Theorem 1, follows two steps. We first show that

any set of posteriors can be explained with an unrestricted conjectured experiment. This is

the crucial step in the proof, since it is then immediate to choose a sequence of posteriors

that is consistent with the observations, and therefore rationalizes them with an unrestricted

conjecture. Formally, the analogue of Lemma 1 is the following:

Lemma 3. [Explainable Posteriors —Unrestricted] Let ps ∈ ∆(A) be an assignment of prob-

ability distribution over A for every instance s ∈ S6N . Then there exist random variables

(α, τ , ζ) over some probability space (Ω,A,P), with values in A,N, SN respectively, such that



Experiments on Decisions Under Uncertainty: A Theoretical Framework 22

1. for every n ∈ N and every s1, . . . , sn ∈ S,

P(τ = n, ζ i = si for 1 ≤ i ≤ n) > 0;

2. For every instance s = (s1, . . . , sn) and every a ∈ A

P (α = a | τ = n, ζ i = si for 1 ≤ i ≤ n) = ps[a]. (6)

The lemma is conceptually important in that it highlights how robust the message of The-

orem 2 is to what is elicited by the experimenter when subjects’conjectures are unrestricted.

Indeed, even if for each instance the full belief were elicited (instead of the most likely state),

Lemma 3 assures that an analogous “anything goes”result would still hold and any experi-

mental observations (now entailing posterior beliefs for all instances) could be explained with

an unrestricted conjecture.

The proof of Lemma 3, appearing in the Appendix, is at the root of our “anything goes”

result. Intuitively, an unrestricted conjectured experiment ultimately corresponds to a joint

distribution µ over A×N×SN . For any assignment of posteriors {ps}s∈S6N , ps ∈ ∆(A), pick

an arbitrary distribution ν over N× SN and define µ as:

µ(k, n, s1, ..., sN) = ν (n, s1, ..., sN) p(s1,...,sN ) [a] .

Then, the conditional distribution of µ given the number of signals n and full realization

(s1, ..., sN) is p(s1,...,sN ). It follows that the conditional distribution of µ given n and (s1, ..., sn)

is ps, where s = (s1, ..., sn) , as required. The proof of Theorem 2 now follows immediately:

Proof of Theorem 2. For experimental observations σ : S6N → A we choose arbitrarily, for

every instance s ∈ S6N , a probability distribution ps ∈ ∆(A) such that arg maxa ps[a] = σ(s).

The corresponding random variables α, τ , and ζ, whose existence is asserted in Lemma 3,

explain σ. �

Aggregate Data. Theorems 1 and 2 pin down the testable implications of restricted and

unrestricted conjectured experiments when we observe the response of a single subject after
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every sequence of signals. In practice, experimenters usually work with aggregate data from

responses of a random sample of subjects, each of whom has responded only to some sequences

of signals.

Suppose each subject is asked to make a decision after a single signal sequence s. Theorem

1 can be used to deduce the testable implications of such data, assuming the hypotheti-

cal (unobserved) responses of every subject are rationalized by some conjectured experiment

(though not necessarily the same conjecture for every subject). In the Online Appendix we

provide a detailed model of such a setting. Here, assume, for example, that A = {a, b} and

S = {u, d} and, for every sequence s of signals, let θ(s) be the proportion of subjects who

pick a when provided with the signal sequence s. Assume further that each of these subjects

respond to the experimental queries using a function σ : S6N → A that can be rational-

ized by some restricted conjectured experiment (i.e., satisfies the condition of Theorem 1).

Then, it must be the case that θ(s) 6 θ(sˆu) + θ(sˆd) 6 θ(s) + 1 for every s ∈ SN . Indeed,

θ(s) ≤ θ(sˆu) + θ(sˆd) since every subject who chooses a after s must be either among the

subjects who would choose a after sˆu or among the subjects who would choose a after sˆd.

Similarly, 1− θ(s) ≤ (1− θ(sˆu)) + (1− θ(sˆd)) (or, equivalently, θ(sˆu) + θ(sˆd) ≤ θ(s) + 1)

since every subject who chooses b after s must be either among the subjects who would choose

b after sˆu or among the subjects who would choose b after sˆd.

We can estimate θ(s) from the sample. Statistically significant violations of this inequality

will therefore refute the hypothesis that subjects respond according to some restricted con-

jectured experiment. On the other hand, it follows from Theorem 2 that every distribution of

subjects’responses can be rationalized as the aggregation of responses of subjects associated

with some unrestricted conjectured experiment.

To summarize our results up to now, we have characterized the testable implications of

Bayesian updating for two polar cases pertaining to subjects’ freedom regarding the fram-

ing of the experimental design. When conjectures are fully restricted, standard updating is

equivalent to a type of dynamic consistency condition. When conjectures are unrestricted,

standard updating has no testable implications. In what follows, we analyze testable implica-

tions derived from intermediate restrictions.
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5. Partially Restricted Conjectured Experiments

In this section, we consider intermediate restrictions that may correspond to experimental

designs in which signals (but not states) are determined in the lab in front of the subjects

(and the number of signals is a design choice). Indeed, many of the recent social learning

and voting experiments follow protocols of this nature. In these experiments, two uncertain

alternatives are often manifested in two jars that contain a majority of either, say, red or blue

balls. Subjects, not knowing which jar had been selected can then draw a pre-determined

number of balls, often with replacement, from the chosen jar and observe their color20 (for a

survey of such experiments, see Palfrey, 2006, 2013).

With such designs, it is natural to assume the subject believes the number of signals she

receives is uncorrelated with the realizations of the signals (but may be correlated with the

realized alternative). We formalize such conjectures as follows:

Definition 4. [Partially Restricted Conjectured Experiment] A partially restricted conjec-

tured experiment is a conjectured experiment (α, τ , ζ) such that τ and ζ are conditionally

independent given α, i.e.,

P(τ = n, ζ = x|α = a) = P(τ = n|α = a) · P(ζ = x|α = a),

for every n ∈ N, x ∈ SN , and a ∈ A.

We assume hereafter a binary state space, A = {a, b}.21 Note that the conjecture proposed

in Example 1 is partially restricted and so that example illustrates that the explanatory power

of partially restricted conjectured experiments is larger than that of restricted conjectured

experiments. However, not all experimental observations can be explained by a partially

restricted conjectured experiment, as illustrated by the following example, formalizing the

example we discussed in our introduction:

20Our framework encompasses such strategic interactions since we can always rename the alternatives ap-
propriately. Namely, in strategic interaction experiments, subjects select the action (which serves as our
alternative) that is more likely to deliver higher payoffs.
21Our characterization in this section relies on techniques tailored for a binary set of alternatives. While

many experiments satisfy this restriction (for instance, much of the experimental literature on voting focuses
on binary elections), we view the extension to richer sets of alternatives as an interesting direction for future
research.
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Example 2. [Unexplainable Reversals] Assume that N = 2, S = {u, d} and consider the

experimental observations σ depicted in Figure 2. Let s and t be the signal sequences (u) and

(d) respectively (so d(s) = d(t) = 1). On the one hand, controlling for any learning from the

sheer amount of information released, s is more supportive of the alternative a than t (from

the subject’s point of view) since σ(s) = a and σ(t) = b. On the other hand, the same can

be said in reverse, since conditioning on depth 2 of the tree, σ(ŝ s) = b and σ(t̂ t) = a for

every s, t ∈ {u, d}. This inconsistency implies that the experimental observations cannot be

explained by a partially restricted conjectured experiment.

Examples 1 and 2 illustrate that the explanatory power of partially restricted conjectured

experiments is strictly between that of unrestricted and restricted conjectured experiments.

Our characterization of the class of observations that are explainable with partially re-

stricted conjectures entails ruling out a generalized set of reversals of the type appearing

in Example 2. Roughly speaking, reversals that are consistent with Bayesian updating are

described by “tending to a specific report”for a particular length of signal sequence.

Formally, fix experimental observations σ. For a pair of instances s, t of the same depth

we define recursively what we mean by “the conditional probability of state ‘a’given s is

behaviorally revealed higher than the conditional probability of state ‘a’given t,”where the

conditioning is on the value of signals received, but not their number. We say shortly that s

is revealed higher than t.22

Definition 5. [Revealed Higher Relation] Let σ : S6N → {a, b} be experimental observa-

tions. For a pair of instances s, t ∈ S6N of the same depth the relation ‘s is revealed higher

than t under σ’is recursively defined using the following rules:

1. If σ(s) = a and σ(t) = b, then s is revealed higher than t.

2. If ŝ s is revealed higher than t̂ t for every s, t ∈ S, then s is revealed higher than t.

The following lemma illustrates the implication of one instance being revealed higher than

another in terms of probabilistic assessments.

22Note that “revealed higher”need not be a complete relation, nor is it necessarily anti-symmetric.
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Lemma 4. [Revealed Higher —Probabilities] Let σ : S6N → {a, b} be experimental obser-

vations, and let (α, τ , ζ) be a partially restricted conjectured experiment that explains σ. If

s = (s1, . . . , sn) and t = (t1, . . . , tn) ∈ S6N are a pair of instances such that s is revealed

higher than t under σ, then

P(α = a|ζ1 = s1, . . . , ζn = sn) > P(α = a|ζ1 = t1, . . . , ζn = tn).

Lemma 4 assures that if the experimental observations can be explained by a partially

restricted conjectured experiment, it cannot be the case that there are reversals of the form s

is revealed higher than t and t is revealed higher than s for some instances s and t. As it turns

out, the reverse is also true. Indeed, the following theorem characterizes the set of experimental

observations that can be explained by a partially restricted conjectured experiment.

Theorem 3. [Partially Restricted Conjectured Experiments] The experimental observations

σ : S6N → {a, b} can be explained by a partially restricted conjectured experiment if and only

if the order revealed higher is anti-symmetric. That is, there exists no pair s, t of instances

such that s is revealed higher than t and t is revealed higher than s.

The formal proof of the suffi ciency of the condition is intricate and appears in the Online

Appendix, together with the formal proof of Lemma 4.

In order to provide the reader with some intuition, we provide here a sketch of the proof

of the theorem. Assume that the experimental observations σ : S6N → {a, b} satisfy the

theorem’s condition. We construct the partially restricted conjectured experiment (α, τ , ζ)

that explains σ in two steps. First, we construct random variables (α, ζ) such that

P(α = a|ζ1 = s1, . . . , ζn = sn) > P(α = a|ζ1 = t1, . . . , ζn = tn).

for every pair s = (s1, . . . , sn) and t = (t1, . . . , tn) of instances of the same length such that

σ(s) = a and σ(t) = b. In the second step, we add a random variable τ that is independent

of ζ given α and, for every n, we choose the probabilities P(α = a|τ = n) so that

P(α = a|τ = n, ζ1 = s1, . . . , ζn = sn) > 1/2
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for all instances s = (s1, . . . , sn) such that σ(s) = a and

P(α = a|τ = n, ζ1 = t1, . . . , ζn = tn) < 1/2

for all instances t = (t1, . . . , tn) such that σ(t) = b.

In words, we first construct conjectures that are consistent within each layer of the tree

of observations (that is, for a fixed number of signals). We then construct the correlation

between the number of signals observed and underlying state so that the assessments across

layers are consistent.

The main diffi culty is in the first stage. The proof makes use of the tree structure over

the set of instances. For every instance s = (s1, . . . , sn) ∈ S6N we assign a number ps ∈ [0, 1]

such that ps ∈ ri(Conv{pŝ s|s ∈ S}) and ps > pt whenever s, t are two instances of the same

length and s is revealed higher than t. Then, by Lemma 1 we can construct random variables

α, ζ such that

ps = P(α = a|τ = n, ζ1 = s1, . . . , ζn = sn)

for every instance s = (s1, . . . , sn).

We assign the numbers ps to nodes s by induction over the depth of s, working from the

root of the tree to the leafs. Assume that we have already defined the values ps for nodes of

depth n − 1 and consider now the set X of nodes of depth n. The relation revealed higher

induces a partial order over X, which we denote by ≤. In addition, there is a natural partition

A over the set X, whose atoms are the set of instances with a common source in the tree.

Thus, the atoms of A correspond to nodes of depth n − 1. Since we have already defined ps

over these nodes, we need to “lift”p to a function over X that is monotone with respect to

≤. Much of the technical aspects of the proof are dedicated to showing that this is indeed

possible, using the fact that the order “revealed higher”is an interval order.23

We note that Theorem 3 gives rise to a simple algorithm for checking whether experimental

observations in a finite tree can be explained by a partially restricted conjectured experiment:

Go over all the layers of the tree of instances, from the layer of depth d = N to the layer of

23In terms of technical generality, we note that Theorems 1, 2, and 3 all easily extend to environments in
which the number of signals is not bounded.
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Figure 3: Algorithmically Checking Consistency

depth d = 0 (i.e., from the leafs to the root of the corresponding tree). For every layer d,

construct the relation “s is higher than t”for instances s, t of that layer (using Definition 5

and the already constructed relation over layer d+ 1) and check that the condition is satisfied

over nodes in that layer. Using this algorithm, the reader can verify that the experimental

observation in the following example cannot be explained by a partially restricted conjectured

experiment.

Example 3. [Explainability Algorithm] Consider the Example depicted in Figure 3 (notation

following that of our previous examples). Note that (u) is revealed higher than (d) . However,

algorithmically proceeding from the leafs to layer 1 we see that, from layer 3, (d, u) and

(d, d) are revealed higher than (u, u), and from layer 2, (d, u) and (d, d) are also revealed

higher than (u,d), which therefore implies that (d) is revealed higher than (u) . In particular,

the condition of Theorem 3 is not satisfied and these observations cannot be explained by a

partially restricted conjectured experiment.

Example 3 also demonstrates that lack of “simple reversals”of the type of Example 2 is

not suffi cient for experimental observations to admit an explanation by a partially restricted

conjectured experiment.
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6. Conclusions

This paper provides a theoretical framework for analyzing experimental data accounting for

subjects’conjectures regarding the experimental design itself. When subjects’conjectures are

unrestricted, we illustrate an “anything goes” result: any experimental observations can be

explained with standard updating and the appropriate choice of a conjectured experiment (in

fact, generically, multiple conjectured experiments would explain the observations). When

subjects’conjectures are restricted, in terms of the perceived correlation between the amount

of information revealed to them in the lab and the underlying realized uncertainty, our results

provide a full characterization of the testable implications standard updating entails. To

the extent that experimental transparency (say, regarding the way information is generated

in the lab) yields more restricted conjectures, the overwhelming message from our results

is that transparency is crucial for meaningful testable implications of theoretical predictions

pertaining to decision making under uncertainty.

A. Appendix

A.1. Restricted Conjectured Experiments.

Proof of Lemma 1. Let {α, ζ} be random variables that satisfy the condition of the Lemma.
Then, for every n < N and every s = (s1, . . . , sn) ∈ Sn it follows from condition 2 and the
law of total probability that

ps[a] = P (α = a | ζ i = si for 1 ≤ i ≤ n) =∑
s∈S

P
(
ζn+1 = s | ζ i = si for 1 ≤ i ≤ n

)
·P
(
α = a | ζ i = si for 1 ≤ i ≤ n, ζn+1 = s

)
=
∑
s∈S

λspsŝ[a],

where λs = P
(
ζn+1 = s | ζ i = si for 1 ≤ i ≤ n

)
> 0 by condition 1. Therefore, ps ∈ ri(Conv{pŝ s|s ∈

S}) as desired.
Assume now that for every s = (s1, . . . , sn) one has ps ∈ ri(Conv{pŝ s|s ∈ S}), so that

ps =
∑
s∈S

λs,spsŝ. (7)

for some λs,s > 0 such that
∑

s λs,s = 1. Let ζ1, . . . , ζn, α be random variables such that

P
(
ζn+1 = s | ζ1 = s1, . . . , ζn = sn

)
= λs,s (8)
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for every n < N , s = (s1, . . . , sn), s ∈ S, and

P (α = a | ζ1 = s1, . . . , ζN = sN) = ps[a] (9)

for every s = (s1, . . . , sN). Since λs,s > 0, it follows from (8) that

P (ζ1 = s1, . . . , ζN = sN) = Πn<NP
(
ζn+1 = sn+1 | ζ1 = s1, . . . , ζn = sn

)
> 0,

so that the first condition in Lemma 1 is satisfied. We now prove the second condition
by backward induction over n. For n = N the condition follows from (9). Let n < N ,
s = (s1, . . . , sn) ∈ S, and assume the condition is true for n+ 1. Then,

P (α = a|ζ i = si for 1 ≤ i ≤ n) =
=
∑

s P
(
ζn+1 = s | ζ i = si for 1 ≤ i ≤ n

)
· P (α = a|ζ i = si for 1 ≤ i ≤ n+ 1) =

=
∑

s λs,spsŝ[a] = ps[a],

where the first equality follows from the law of total probability, the second from (8) and the
induction hypothesis, and the third from (7). �
Proof of Lemma 2. If a1 = · · · = am = arg max p then we can choose pi = p for 1 ≤ i ≤ m.
Assume now that a1 6= a2. We choose p3, . . . , pm ∈ ∆∗(A) arbitrarily such that arg maxa pi[a] =

ai. Let ε > 0 be suffi ciently small so that (m− 2)ε < 1 and p′ ∈ ∆∗(A), where

p′ =
1

1− (m− 2)ε
(p− ε(p3 + · · ·+ pm)) . (10)

The existence of such ε follows from the fact that ∆∗(A) is an open set and the right hand
side of (10) converges to p ∈ ∆∗(A) as ε goes to 0.
We now define p1 and p2. Choose q such that

max
a
p[a] < q <

1

|A| − 1
, (11)

and let r = 1 −
∑

a6=a1,a2 p
′[a] − q. Note that from the fact that p′[a] < 1

|A|−1 for every a ∈ A
and q < 1

|A|−1 it follows that r > 0. Moreover, since q > p′[a1] it follows that

r = 1−
∑

a6=a1,a2

p′[a]− q < 1−
∑
a6=a2

p′[a] = p′[a2] < q <
1

|A| − 1
. (12)

For i = 1, 2 and j = 3− i, let

pi[a] = p′[a] for a 6= a1, a2 (13)

pi[ai] = q (14)

pi[aj] = r. (15)

Then, it follows from (12) that pi ∈ ∆∗(A) and arg maxa pi[a] = ai.
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In addition, it follows from (11) and (12) that r < p′[a2] < q. Therefore,

p′[a2] = λr + (1− λ)q (16)

for some 0 < λ < 1. We claim that

p′ = λp1 + (1− λ)p2 (17)

i.e., p′[a] = λp1[a] + (1− λ)p2[a] for every a ∈ A. (18)

Indeed, for a 6= a1, a2, the equality follows from the fact that, by (13), p1[a] = p2[a] = p′[a].
For a = a2, the equality follows from (14),(15), and (16). For a = a1, the equality follows
from the equality in all other coordinates and the fact that both sides of (18) sum to 1 (over
a ∈ A). Finally, it follows from (10) and (17) that

p = (1− (m− 2)ε) p′ + ε(p3 + · · ·+ pm) = λ1p1 + λ2p2 + λ3p3 + · · ·+ λmpm,

where

λ1 = (1− (m− 2)ε) · λ,
λ2 = (1− (m− 2)ε) · (1− λ), and

λ3 = · · · = λm = ε.

.

Therefore, p ∈ ri(Conv{p1, . . . , pm}), as desired. �

A.2. Unrestricted Conjectured Experiments.

Proof of Lemma 3. Choose arbitrarily a distribution ν over N × SN with full support.
Let α, τ , ζ be random variables over some probability space (Ω,A,P) with values in A,N, SN

such that:

1. The joint distribution of τ and ζ is ν.

2. The conditional distribution of α given τ = n and ζ = x is ps, where s = x|n:

P (α = a|τ = n, ζ = x) = ps[a] (19)

We proceed to prove that (6) is satisfied for every instance s = (s1, . . . , sn). The event
{τ = n, ζ i = si for every 1 ≤ i ≤ n} is the disjoint union of the events {τ = n, ζ = x},
ranging over all x ∈ SN such that x|n = s. Therefore, by the law of total probability,

P (α = a | τ = n, ζ i = si ∀1 ≤ i ≤ n) =∑
x∈SN and x|n=s

P (ζ = x|τ = n, ζ i = si ∀1 ≤ i ≤ n)P (α = a|τ = n, ζ = x) = ps[a],

where the last equality follows from (19). �
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