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Abstract. This online appendix accompanies the paper “Experiments on De-

cisions Under Uncertainty: A Theoretical Framework.” It provides an analysis of the

consequences of restricting subjects’conjectures and a detailed model of data derived

from aggregating observations. It also considers a variant of the model studied in the

paper in which dimensions of signals are unordered. Last, it presents the formal proofs

for the results in Section 4 of the paper.

1. Plausibility of Conjectures

We start with the notion of conditionally independent and identically distributed (i.i.d.) sig-

nals. In a wide array of economic models, ranging from strategic voting to private value

auctions, private signals are often assumed to be conditionally independent. Furthermore, in

the statistics literature, the term Bayesian is frequently used to indicate conditional indepen-

dence, the idea being that the sequence of signals s1, s2, . . . are samples from some distribution

that depends on the state, or parameter, k. The statistician has some prior belief over the true

parameter that governs the distribution of the sample, and she updates her belief given the

observations (much like questions leading to maximum likelihood methods in econometrics,

see, e.g., Greene, 1993).

In analogy to our original definitions, we say that an updating rule σ : S∗ → ∆(K) is

conditionally i.i.d. Bayesian if there exists a probability measure µ over K × S∞ such that,

for every n, signals s1, s2, ... are conditionally i.i.d. given the state of nature k and for every

Borel subset B of K, σ[s1, . . . , sn](B) = µ(B|s1, . . . , sn).
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As the following example illustrates, the restrictions of Theorem 1 do not generally assure

that an updating rule that is Bayesian is conditionally i.i.d.1

Example Assume that K = S = {0, 1}. Then ∆(K) can be identified with the interval

[0, 1], where an element p ∈ [0, 1] stands for the probability measure over K that assigns

probability 1− p to 0 and probability p to 1. Consider the updating rule σ given by

σ [s1, . . . , sn] (1) =

1/(n+ 2), if s1 + · · ·+ sn is even

1− 1/(n+ 2), if s1 + · · ·+ sn is odd.

In particular, σ [] (1) = 1/2. This updating rule is such that a signal ‘0’strengthens

the agent’s previous opinion about the state of nature, whereas a signal ‘1’changes it

drastically in the other direction. A Bayesian statistician, who believes the signals to

be i.i.d., cannot exhibit such behavior. However, σ clearly satisfies the condition of

Theorem 1 and is therefore Bayesian according to our definition.

Requiring an updating rule to be derived from a belief that signals are conditionally i.i.d.

translates directly into a formula derived from Bayes rule. A necessary and suffi cient condition

for an updating rule to be conditionally i.i.d. Bayesian is then immediate.2

One natural extension of i.i.d. processes is to the class of exchangeable processes. These

are processes in which the joint distribution of each set of signals does not depend on the

order at which they arrive (see Feller, 1966):

1Naturally, the number of degrees of freedom allowed by a conditionally i.i.d. signal generation process is
lower than the number of degrees of freedom corresponding to an arbitrary signal generation process. Indeed,
recall that the number of degrees of freedom available for specifying a belief µ over K × ST is |K| × |S|T − 1.
However, the number of (non-linear) degrees of freedom corresponding to a measure µ that corresponds to
i.i.d. signals given the state of nature (according to the statistics paradigm) is (|K| − 1) + |K| × (|S| − 1),
which is much smaller.

2For the sake of illustration, suppose K = S = {0, 1}. For any updating rule σ : S∗ → ∆(K), denote
by L(s1, ..., sn) = ln σ[s1,...,sn](1)

σ[s1,...,sn](0)
the log-likelihood corresponding to reported beliefs. σ is conditionally i.i.d.

Bayesian if and only if there exist a, b ∈ R, sign(a)sign(b) = −1, such that

L(s1, ..., sn+1)− L(r1, ..., rn) = a whenever
n+1∑
i=1

si =

n∑
i=1

ri, and

L(s1, ..., sn)− L(r1, ..., rn) = b− a whenever
n∑
i=1

si =

n∑
i=1

ri + 1.

(1)



Online Appendix 2

Definition (Exchangeability) A measure µ over K×S∞ is called conditionally exchange-

able if for any k ∈ K, for any i1, .., im and permutation π : {i1, ...im} → {i1, ...im} ,

and any s, r ∈ S∞ such that for all i /∈ {i1, ...im} , si = ri and for all j = 1, ...,m,

rij = sπ(ij), µ(k, s) = µ(k, r).

In keeping with terminology, we say that an updating rule σ : S∗ → ∆(K) is condition-

ally exchangeable Bayesian if there exists a conditionally exchangeable probability measure

µ over K × S∞ such that, for every n and every Borel subset B of K, σ[s1, . . . , sn](B) =

µ(B|s1, . . . , sn).

If an updating rule σ is conditionally exchangeable Bayesian, it must be the case that for

any n, and permutation π : {1, ..., n} → {1, ..., n} , σ[s1, . . . , sn](B) = σ[sπ(1), . . . , sπ(n)](B) for

all Borel subsets B of K. As it turns out, this condition is not suffi cient.

Example (Continued) Consider the environment of the Example above and note that

τ(s1, . . . , sn, sn+1) 6= τ(s1, . . . , sn, 1 − sn+1) for every s1, . . . , sn+1 ∈ S. This implies

that the coeffi cients appearing in the proof of Theorem 1 are determined uniquely. That

is, for a convex hull condition of the form:

τ (s1, ..., sn) = λ(sn+1; s1, ..., sn)τ(s1, ..., sn, sn+1)+λ(1−sn+1; s1, ..., sn)τ(s1, ..., sn, 1−sn+1),

where λ(sn+1; s1, ..., sn) + λ(1− sn+1; s1, ..., sn) = 1, it follows that

λ(sn+1; s1, ..., sn) =
τ (s1, ..., sn)− τ(s1, ..., sn, 1− sn+1)

τ(s1, ..., sn, sn+1)− τ(s1, ..., sn, 1− sn+1)
.

Consider two signals s1, s2.We can use the construction of Theorem 1 to derive conditions

assuring that the underlying belief µ satisfies µ(k, s1, s2) = µ (k, s2, s1) for k = 0, 1. These

translate into:

τ (·)− τ(1)

τ(0)− τ(1)
· τ (0)− τ(0, 0)

τ(0, 1)− τ(0, 0)
=
τ (·)− τ(0)

τ(1)− τ(0)
· τ (1)− τ(1, 1)

τ(1, 0)− τ(1, 1)
.

While the updating rule in the Example is consistent with Bayesian updating and sat-

isfies τ(s1, s2) = τ(s2, s1) for all s1, s2, it does not satisfy the above equality and is

therefore inconsistent with conditional exchangeable Bayesian updating.
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Requiring an updating rule to be derived from a belief satisfying conditional exchangeabil-

ity of signals necessitates the updating rule to be independent of the order by which signals

arrive, as well as satisfy more stringent conditions on the marginal effects of different signals

that follow directly from the conditional exchangeability conditions, as in the Example above.3

2. Aggregate Observations

Assume, for example, that A = {a, b}, S = {u, d}, and N = 1. Let Σ be the set of all possible

responses σ : S → A and let Σ0 ⊆ Σ be the set of all responses that can be rationalized by

some restricted conjectured experiment (i.e., responses satisfying the condition of Theorem 1).

Note that |Σ| = 8 and |Σ0| = 6. We assume that subjects’responses σ1, σ2, ... are i.i.d draws

from Σ according to some unknown parameter µ ∈ ∆(Σ). This is a parametric model, and

the dimension of the parameter space ∆(Σ) is 7. We are interested in testing the hypothesis

that µ(Σ0) = 1.

Assume now that we only observe, for every subject i, the choice σi(si), where s1, s2, ...

are fixed and exogenous. With this information, µ is only partially identified: we can only

identify the proportion of subjects in the population that choose each action a after any

given sequence. Formally, let Θ = [0, 1]{∅,u,d} be a three-dimensional parameter space and let

T : ∆(Σ)→ Θ be given by

T (µ)[s] = µ ({σ ∈ Σ | σ[s] = a})

for every s ∈ {∅, u, d}. Then, using the observable information, we can identify θ = T (µ).

That is, a pair µ, µ′ of parameters induces the same distribution over observables if and only

3Indeed, for the sake of illustration, suppose K = S = {0, 1} and assume that τ(s1, . . . , sn, sn+1) 6=
τ(s1, . . . , sn, 1− sn+1) for every s1, . . . , sn+1 ∈ S. Then, it can be readily seen that an updating rule σ : S∗ →
∆(K) is conditionally exchangeable Bayesian if and only if for every sequences (s1, . . . , sn) and (r1, . . . , rn) of
signals such that

∑n
i=1 si =

∑n
i=1 ri one has

τ (s1, ..., sn) = τ (r1, ..., rn) , and

n∏
i=1

τ(s1, ..., si−1)− τ(s1, ..., si−1, 1− si)
τ(s1, ..., si−1, si)− τ(s1, ..., si−1, 1− si)

=

n∏
i=1

τ(r1, ..., ri−1)− τ(r1, ..., ri−1, 1− ri)
τ(r1, ..., ri−1, ri)− τ(r1, ..., ri−1, 1− ri)

.
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if T (µ) = T (µ′). Using the characterization in the paper, it is straightforward to verify that

Θ0 = T ({µ | µ(Σ0) = 1}) =
{
θ ∈ [0, 1]{∅,u,d} | θ(∅) ≤ θ(u) + θ(d) ≤ θ(∅) + 1

}
.

So, instead of testing µ(Σ0) = 1 we can test θ ∈ Θ0.

3. Unordered Dimensions

Throughout the paper, we have assumed there is a natural sequencing of signals. This is

why the experimental design was captured by the number of signals reported to the subject.

This assumption is applicable in many situations (indeed, any context in which signals are

tied with time), and eases the presentation. Nonetheless, in certain environments there is no

natural ordering of signals and a general conjectured experiment pertains to the dimensions

of information that are reported (or which elements of the set of signals are reported) and

their correlation with the underlying states and realized signals.

Many classical experiments in Psychology exhibit this feature when they entail a descrip-

tion of an individual that contains a selected set of dimensions that are described. For instance,

in the classical experiment of Darley and Gross (1983) on stereotypes, subjects were divided

into two groups. Both groups were informed about the wealth of a fourth-grader —the first

group was told the girl came from a very wealthy family, the second group was told she came

from a very poor family.4 Both groups then watched an ambiguous video of the girl taking an

oral test and answering some questions correctly, some not. Subjects were ultimately asked

to assess the grade level of the girl’s performance. Subjects in the first group rated the girl’s

grade level as significantly lower than subjects in the second group.5 While this may indicate

subjects’ stereotypes, it might also reflect beliefs of subjects regarding the dimensions the

experimenter chooses to reveal when expecting a particular response. Even in the “Linda

Experiment”(Kahneman and Tversky, 1983) described in Section 4 of the paper there was, in

fact, no natural order of the items appearing in the description of Linda and our assumption

that the dimensions revealed in the blurb were ordered was a simplifying assumption. The lack

4Unlike Economic experiments, deception is common in Psychology experiments.
5This experiment is tied to a significant amount of work in Economics on “confirmatory bias.”See Rabin

and Schrag (1999) and references that followed.
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of natural order in revealed signals is also present in political economy experiments in which

candidates select which issues to highlight and subjects consequently come to an assessment

of the candidates (see, for instance, Ansolabehere and Iyengar, 1994).

In this section we extend our analysis to contexts in which there is no natural sequencing

of signals. Our “anything goes”result still holds when signals are unordered and conjectured

experiments are unrestricted. However, the implications imposed by the natural analogue of

restricted conjectured experiments do not carry through from the sequential-signal environ-

ment. In fact, we identify stronger observational restrictions that are in the spirit of “Dutch

books.”Experimental observations can be explained if and only if, after observing the sub-

jects’responses, the experimenter cannot design a sequence of bets that would lead the agent

to lose money for sure.

We now require notation in which there is no natural order between dimensions, and the

experimenter decides which dimensions to reveal, and not only how many of them. Formally,

let A, S,N be, as in our original setting, the set of alternatives (finite, but arbitrary), the set

of possible realizations of signals, and the number of dimensions. An instance is now given by

a pair (D, δ), where D ⊆ {1, . . . , N} and δ : D → S. The interpretation is that the subject

observes the realization of the signals pertaining only to dimensions in D. Let O be the set

of instances. As before, experimental observations are summarized by a mapping σ : O → A.

A conjectured experiment is given by a triplet (α, τ , ζ) with values in A,P(N), and SN

respectively, where P(N) is the set of subsets of {1, . . . , N}. As before, a conjectured ex-

periment is restricted if τ is independent of (α, ζ). A conjectured experiment explains the

experimental observations σ if for every instance (D, δ) one has

P(τ = D, ζ i = δ(d) for every d ∈ D) > 0 and (2)

σ(s) = arg max
a
P(α = a|τ = D, ζd = δ(d) for every d ∈ D) (3)

The “anything goes”result captured in Theorem 2, and its proof, are valid, mutatis mutan-

dis, in the unordered model: for every σ : O → A, the experimental observations summarized

by σ can be explained with an unrestricted conjectured experiment.

In the rest of this section, we focus on the case of restricted conjectured experiments.
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Say that an instance s′ = (D′, δ′) extends an instance s = (D, δ) if D ⊆ D′ and δ′(d) = δ(d)

for every d ∈ D. The condition in Theorem 1 can be adapted to a necessary condition for

existence of an explanation by a restricted conjectured experiment in the unordered model.

Namely, suppose the experimental observations are given by σ : O → A. If σ can be explained

by a restricted conjectured experiment then for any instance s = (D, δ), if for some a∗ ∈ A,

σ(s′) = a∗ for every instance s′ = (D′, δ′) that extends s, then σ(s) = a∗.

The proof that the above condition is necessary to the existence of an explanation by a

restricted conjectured experiment follows that shown in the ordered model. However, we will

soon see that in the unordered model, this condition is not suffi cient. First, we require some

additional definitions.

Let σ : O → A be experimental observations. Let us say that an instance s = (D, δ) agrees

with a realization (s1, . . . , sN) of the signals if δ(d) = sd for every d ∈ D. A positive bet is

given by a triplet (z, s, c) such that z is a positive real number, s = (D, δ) is an instance, and

c ∈ A is such that c 6= σ(s). A bet of this form is activated when s agrees with the realization

of the signals and provides the subject z if the state of nature is σ(s) and −z if the state of

nature is c. Since σ(s) is the subjectively most probable state of nature given s, the subject’s

subjective expected payoff from the bet is strictly positive. For a bet β = (z, s, c), we denote

by p(β, ã, s1, . . . , sN) the payoff under β if the state of nature is ã and the realization of the

signals is s1, . . . , sN . Thus,

p(β, ã, s1, . . . , sN) =


z if s agrees with (s1, . . . , sN) and ã = σ(s)

−z if s agrees with (s1, . . . , sN) and ã = c

0 otherwise.

A Dutch book is given by a non-empty set B of positive bets such that

∑
β∈B

p(β, ã, s1, . . . , sN) ≤ 0

for every ã ∈ A and every s1, . . . , sN ∈ S. Thus, if the subject accepts all the bets in B, her

final payoff would be non-positive for all realizations of the state and signals.

If the subject had accurate beliefs regarding the underlying process, she would never accept
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a Dutch book. It follows intuitively that if the experimental observations can be explained

with a restricted conjectured experiment, the subject would never accept a Dutch book. As

it turns out, the absence of Dutch books is, in fact, a necessary and suffi cient condition for

explaining observations with restricted conjectured experiments:

Theorem (Unordered Dimensions): Experimental observations admit an explanation by

a restricted conjectured experiment if and only if they do not entail a Dutch book.

Proof of Theorem. We will use the following version of the alternative theorem (see Bor-

der(2003), Theorem 10).

Theorem of the Alternative: Let M be a matrix. Then exactly one of the following alter-

natives holds. Either xM ≤ 0 for some row vector x > 0 or My � 0 for some column

vector y ≥ 0.6

Fix experimental observations σ. Let M be the (|O| · (|A| − 1)) × (|A| · |S|N) matrix

whose rows are indexed (s, c) for an instance s = (D, δ) and c 6= σ(s), columns are indexed

(a, s1, . . . , sN) for a ∈ A and s1, . . . , sN ∈ S, and such the matrix entry M [s, c][a, s1, . . . , sN ]

at row (s, c) and column (a, s1, . . . , sN) is given by

M [s, c][a, s1, . . . , sN ] =


1, if s agrees with s1, . . . , sN and a = σ(s)

−1, if s agrees with s1, . . . , sN and a = c

0, otherwise.

The assertion of the theorem follows from the Theorem of the Alternative and from the

following two simple lemmas.

Lemma A.1 (Explainable σ —Matrix Form): There exists y ≥ 0 such that My � 0 if

and only if σ can be explained by a restricted conjectured experiment.

6For a vector x, x ≥ 0 means that all coordinates of x are nonnegative, x > 0 means that x ≥ 0 and x 6= 0
and x� 0 means that all coordinates of x are strictly positive.
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Proof. Assume that (α, τ , ζ1, . . . , ζN) is a restricted conjectured experiment that explains

σ. Then for every instance s and every c 6= σ(s) it follows from the definition of explanation

and the fact that τ is independent of (α, ζ) that

P(α = σ(s)|s agrees with ζ1, . . . , ζN) > P(α = c|s agrees with ζ1, . . . , ζN).

Since by (3) P(ζ1 = s1, . . . , ζN = sN) > 0, the last equation is equivalent to

P(α = σ(s), s agrees with ζ1, . . . , ζN) > P(α = c, s agrees with ζ1, . . . , ζN).

Thus, for every instance s and every c 6= σ(s), we get that

∑
s1,...,sN and s agrees with s1,...,sN

P(α = σ(s), ζ1 = s1, . . . , ζN = sN)−P(α = c, ζ1 = s1, . . . , ζN = sN) > 0.

Therefore, My � 0 when y is the column vector such that

y[a, s1, . . . , sN ] = P(α = a, ζ1 = s1, . . . , ζN = sN). (4)

Conversely, assume that My � 0 for some y ≥ 0. Since the set of solutions to My � 0 is

open, we can assume without loss of generality that y � 0. Moreover, we can assume without

loss of generality that y is normalized so that the sum of its entries is 1. Let α, ζ be random

variables whose joint distribution is given by (4) and let τ be a random variable with values

in P(N) and full support, which is independent of (α, ζ). Then the above argument can be

reversed to show that the restricted conjectured experiment (α, τ , ζ) explains σ. �

Lemma A.2 (Duth Books —Matrix Form): There exists x > 0 such that xM ≤ 0 if and

only if σ admits a Dutch book.

Proof. Let x > 0 such that xM ≤ 0. Then every coordinate (s, c) of x where s ∈ O and

c 6= σ(s) such that z = x[s, c] > 0 gives rise to a positive bet (z, s, σ(s)). Since x > 0, the set

of coordinates is non-empty. Since xM ≤ 0, the corresponding set of bets is a Dutch book.

The argument is reversible and so the claim follows. �

The proof of the Theorem now follows directly. �
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Dutch Books and Conditional Probabilities. There is a literature using Dutch book

arguments as a tool for deriving standard conditional probability assessments (see, e.g., de

Finetti, 1937 and Regazzini, 1987).7 The results of this section do not, however, follow from the

analysis presented in that long line of work. Indeed, in our setup experimental observations

indicate only the (subjectively) most likely state, and so the set of bets our hypothetical

bookie can choose is restricted to bets of the form (z, s, c), a strict subset of the set of bets

the extant literature considers. Consequently, our characterization result allows for multiple

posteriors that are consistent with Bayesian updating and the experimental observations,

whereas previous analysis pinned down a unique conditional probability system.

4. Proofs Pertaining to Partially Restricted Conjectured Experiments

4.1. Proof of Lemma 4. The proof follows several additional lemmas.

Lemma A.3 (Conditioning on Independent Events): Let X, Y, Z be events in some prob-

ability space such that Y, Z are independent given the partition (X,Xc). Then

P(X|Y, Z) = ρ

(
P(Y |Xc)

P(Y |X)
,P(X|Z)

)
,

where

ρ(r, q) =
q

q + r · (1− q) . (5)

Proof. One has

P(X|Y, Z) =
P(X, Y |Z)

P(Y |Z)
=

P(X|Z)P(Y |X,Z)

P(X|Z)P(Y |X,Z) + P(Xc|Z)P(Y |Xc, Z)
=

P(X|Z)P(Y |X)

P(X|Z)P(Y |X) + P(Xc|Z)P(Y |Xc)
= ρ

(
P(Y |Xc)

P(Y |X)
,P(X|Z)

)
,

where we used the facts that P(Y |X,Z) = P(Y |X) and P(Y |Xc, Z) = P(Y |Xc)), which follow

from Y and Z being independent given X and Xc. �

7Recently, Weinstein (2013) pointed to the link between dynamic consistency and the impossibility of Dutch
books.
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Lemma A.4 (Ranking of Conditional Probabilities): Let X, Y, Z1, Z2 be events in some

probability space such that

1. Y and Z1 are independent given the partition (X,Xc).

2. Y and Z2 are independent given the partition (X,Xc).

If P (X|Y, Z1) > P (X|Y, Z2) then P (X|Z1) > P (X|Z2).

Proof. Let r = P(Y |Xc)/P(Y |X) and qi = P(X|Zi) for i = 1, 2. By the previous lemma

P(X|Y, Zi) = ρ(r, qi), where ρ is given by (5). The assertion follows from the fact that ρ(r, q)

is monotone in q. �

Proof of Lemma 4. Following the structure of Definition 5, we prove the lemma by induc-

tion on the number of remaining layers in the tree describing the experimental observations.

Assume first that σ(s) = a and σ(t) = b. Then, by Definition 3, since (α, τ , ζ) explains σ, it

follows that

P(α = a|τ = n, ζ1 = s1, . . . , ζs = sn) > 1/2 > P(α = a|τ = n, ζ1 = t1, . . . , ζn = tn).

Applying Lemma A.4 we get

P(α = a|ζ1 = s1, . . . , ζn = sn) > P(α = a|ζ1 = t1, . . . , ζn = tn),

as desired. In particular, this also provides the first induction step pertaining to instances of

length N (with no remaining signals that can be observed).

Assume now that ŝ s is revealed higher than t̂ t for s, t ∈ S. By the induction hypothesis,

it follows that

P(α = a|ζ1 = s1, . . . , ζn = sn, ζn+1 = s) > P(α = a|ζ1 = t1, . . . , ζn = tn, ζn+1 = t), (6)
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for every s, t ∈ S. From Lemma 1 it follows that

P(α = a|ζ1 = s1, . . . , ζn = sn)

∈ Conv{P(α = a|ζ1 = s1, . . . , ζn = sn, ζn+1 = s)|s ∈ S} and

P(α = a|ζ1 = t1, . . . , ζn = tn)

∈ Conv{P(α = a|ζ1 = t1, . . . , ζn = tn, ζn+1 = t)|t ∈ S}.

(7)

From (6) and (7) we get

P(α = a|ζ1 = s1, . . . , ζn = sn) > P(α = a|ζ1 = t1, . . . , ζn = tn),

as desired. �

4.2. Preliminaries. Before turning to the proof of Theorem 3, we require some results

on interval orders, which we now present.

We use the standard terminology of a partial order ≤ over a set X being a reflexive,

transitive, and antisymmetric relation. A function f : X → R is called strictly monotone if

f(x) < f(y) whenever x < y for every x, y ∈ X. If ≤,≤′ are partial orders over X, we say

that ≤′ is an extension of ≤ if x ≤′ y whenever x ≤ y. If U, V ⊆ X then we write U < V if

x < y for every x ∈ U and y ∈ V . If x ∈ X and V ⊆ X we write x < V when {x} < V .

A partial order ≤ is called a linear order if, for every x, y ∈ X, either x ≤ y or y ≤ x.

A partial order ≤ over a finite set X is called an interval order (see Fishburn, 1985) if there

is an assignment of closed real intervals Ix = [l(x), r(x)], where l(x), r(x) are real numbers

and l(x) ≤ r(x), to the elements x of X such that x ≤ y if and only if Iy is to the right of Ix

(i.e., r(x) ≤ l(y)). Such an assignment is called an interval representation of ≤. If ≤ is an

interval order then it admits an interval representation such that Ix and Iy have no common

endpoints for any distinct x and y in X. Note that if all the intervals Ix in a representation

of ≤ are distinct and degenerate then ≤ is a linear order, and every linear order admits such

a representation.

A partition of a set X is a collection A of non-empty mutually disjoint subsets of X such

that X =
⋃
U∈A U . Elements of A are called atoms.
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A partial order ≤ over a set X is called a ranking if its elements can be partitioned into

ranks X1, . . . , Xm such that two elements are incomparable if and only if they belong to the

same rank. Every ranking is an interval order.

Lemma A.5 (Representation): Let (X,≤) be a finite set equipped with an interval order,

A a partition of X, and F : A → (0, 1) a real-valued one-to-one function such that

0 < F (U) < 1 for every atom U of A. Assume that the following condition is satisfied:

If V, U are atoms of A and V < U then F (V ) < F (U). (8)

Then there exists a strictly monotone, one-to-one function f : X → R such that

min{f(x)|x ∈ U} ≤ F (U) ≤ max{f(x)|x ∈ U} (9)

for every atom U of A, and the inequalities in (9) are strict whenever |U | > 1.

Proof. We first prove the lemma under the stronger assumption that ≤ is a linear order

over X. Under this assumption, we can assume without loss of generality that X = {1, . . . , n}

with the standard order over numbers. For every r ∈ R let

U(r) = min{F (U)|U is an atom of A, F (U) > r},

where we define the minimum over the empty set ∅ to be 1. From the definition of U(r) it

follows that

r < U(r) and (10)

if r < F (U) then U(r) ≤ F (U), (11)

for every r ∈ R and every atom U of A.

For x ∈ X, let π(x) be the atom of A that contains x. Call elements x, y ∈ X siblings if

π(x) = π(y).

We now define f : X → R inductively so that f is strictly monotone and the following
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condition is satisfied for every x ∈ X and every atom U of A:

If x < U then f(x) < F (U) (12)

Let f(0) = 0 and let z ≥ 1. Suppose we have already defined f(1) < · · · < f(z − 1), such

that (12) is satisfied for x = 1, . . . , z − 1.

Case 1. [|π(z)| = 1] Choose f(z) = F (π(z)). Note that in this case z − 1 < {z} = π(z),

where the inequality follows from (12) for x = z − 1 and U = {z}. Therefore, f(z − 1) <

F (π(z)) = f(z). In addition, if U is an atom of A and z < U then π(z) = {z} < U and

therefore F (π(z)) < F (U) by (8). Thus, (12) is satisfied for x = z.

Case 2. [|π(z)| > 1 and z = max π(z)] Let r = f(z − 1) ∨ F (π(z)). We choose f(z) such

that r < f(z) < U(r). In particular f(z − 1) < f(z). Let U be an atom of A such that

z < U . Then, z − 1 < U and, therefore, f(z − 1) < F (U) by (12) with x = z − 1. Also, since

z = maxπ(z), it follows that π(z) < U and, therefore, F (π(z)) < F (U) by (8). This implies

that r < F (U) and so f(z) < U(r) ≤ F (U), where the second inequality follows from (11).

Thus, (12) is satisfied for x = z.

Case 3. [|π(z) > 1| and z < maxπ(z)] Choose f(z) so that f(z − 1) < f(z) < U(f(z − 1)).

Let U be an atom of A such that z < U . Then, z − 1 < U and therefore f(z − 1) < F (U)

by (12) with x = z − 1. Hence, f(z) < U(f(z − 1)) ≤ F (U), where the second inequality

follows from (11).

We now claim that the function f defined above satisfies (9). Indeed, let U be an atom ofA.

Suppose first that |U | = 1, so that U = {z∗} for some z∗ ∈ X. Then π(z∗) = U and therefore

f(z∗) = F (U) by Case 1 in the construction of f . In particular, (9) is satisfied with equalities.

Suppose now that |U | > 1 and let zmax and zmin be the maximal and minimal elements of U .

Then π(zmin) = π(zmax) = U . From Case 2 above, F (U) < f(zmax). In addition, zmin− 1 < U

so that f(zmin − 1) < F (U) by (12), and therefore f(zmin) < U(f(zmin − 1)) ≤ F (U), where

the first inequality follows from Case 3 in the construction of f and the second inequality

follows from (11). In particular, (9) is satisfied with strict inequalities. Finally, note that f
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is one-to-one because it is strictly monotone. The proof of the lemma for linear orders is now

complete.

We now turn to environments in which the order relation ≤ overX is an interval order. We

will show that ≤ can be extended to a linear order ≤′ over X that satisfies (8). Then, by the

previous argument, there exists a (≤′-strictly monotone and therefore) ≤-strictly monotone

function f that satisfies (9). Let Ix = [l(x), r(x)] be a representation of ≤ and assume, without

loss of generality, that Ix and Iy have no common endpoints whenever x, y ∈ X and x 6= y.

For an atom U of A let L(U) = min{l(x)|x ∈ U} and R(U) = max{r(x)|x ∈ U}. Fix

x∗ ∈ X such that Ix∗ is not degenerate. We will find p∗ ∈ Ix∗ such that the extension ≤′ that

is induced by the interval representation I ′x given by

I ′x =

[p∗, p∗], if x = x∗

Ix, otherwise

satisfies (8). If r(x∗) < R(π(x∗)), we choose p∗ = l(x∗). Then I ′ and I induce the same

order over atoms of A and therefore (8) holds. Otherwise, if l(x∗) > L(π(x∗)), we choose

p∗ = r(x∗) and again I ′ and I induce the same order over atoms of A. If r(X∗) = R(π(x∗))

and l(x∗) = L(π(x∗)) we proceed as follows: Let

pmax = min{R(V )|V ∈ A, F (π(x∗)) ≤ F (V )} and

pmin = max{L(W )|W ∈ A, F (W ) ≤ F (π(x∗))},
(13)

where the minimum and maximum over the empty set ∅ are taken as 1 and 0 respectively.

We claim that pmin < pmax. Indeed, let V,W ∈ A such that F (W ) ≤ F (π(x∗)) ≤ F (V ). We

distinguish between two cases:

Case 4. [V = W ] Since F is one-to-one it follows that W = π(x∗) = V . Since Ix∗ is not

degenerate it follows that

L(W ) ≤ l(x∗) < r(x∗) ≤ R(V ).

Case 5. [V 6= W ] By (8) there exists y ∈ V and z ∈ W such that y ≮ z (i.e., it is not the

case that y < z.) Since V 6= W it follows that y 6= z. Since Ix is a representation of ≤, it

follows that l(z) < r(y). In particular, L(W ) < R(V ).
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Thus, L(W ) < R(V ) in both cases. As V,W were arbitrary, it follows that pmin < pmax

as desired. Let p∗ be chosen so that pmin < p∗ < pmax and Ix 6= [p∗, p∗] for every x ∈ X. We

claim that ≤′ satisfies (8). For atoms U, V of A which are different from π(x∗), ≤′ satisfies

(8) because ≤ does. Assume now that U = π(x∗), V ∈ A, and V <′ U . We have to show

that F (V ) < F (U). Indeed, if F (U) ≤ F (V ) then pmax ≤ R(V ) by (13), which leads to a

contradiction, since R(V ) ≤ p∗ < pmax, where the first inequality follows from the definition

of ≤′. By a similar argument, (8) is satisfied when U = π(x∗), V ∈ A, and U <′ V .

We showed that if ≤ is an interval order over X with representation Ix that satisfies (8)

and x∗ ∈ X, then ≤ can be extended to an interval order over X with representation I ′x that

satisfies (8) such that I ′x ⊆ Ix for every x ∈ X and Ix∗ is degenerate. Going over all the

elements of X, we get an extension ≤′ of ≤ which satisfies (8) such that all the intervals in

the representation ≤′ are degenerate. Therefore, ≤′ is a linear order. �

Remark The assumption that ≤ is an interval order is essential in Lemma A.5. As a coun-

terexample, let X = {a, b, c, d} with a < b and c < d and let A = {{a}, {c}, {b, d}} and

F : A → (0, 1) be such that F ({b, d}) < F ({a}) < F ({c}). Then F is one-to-one and (8)

is trivially satisfied, but there exists no strictly monotone f : X → R satisfying (9).

4.3. Proof of Theorem 3. Let σ : S6N → {a, b} represent experimental observations

that satisfy the condition of Theorem 3. We assume, without loss of generality, that σ(e) = a.

Let π : Sn → Sn−1 be the parent function of the tree of instances: π(s1, . . . , sn) =

(s1, . . . , sn−1). Let≤n stand for the relation “revealed higher”over Sn: For two nodes s, t ∈ Sn,

t ≤n s whenever s is revealed higher than t.

We claim first that ≤n is an interval order for every n. We prove this assertion by induction

over N − n (the remaining layers in the tree). For n = N the order over Sn is, in fact, a

ranking, the ranks being the sets {s ∈ SN |σ(s) = a} and {s ∈ SN |σ(s) = b}. Assume now

that ≤n is represented by Ins = [ln(s), rn(s)]. Without loss of generality, suppose also that
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0 < ln(s) ≤ rn(s) < 1 for every s ∈ Sn. For s ∈ Sn−1 let In−1s = [ln−1(s), rn−1(s)], where

ln−1(s) = λ(s) + min{ln(s′)|s′ ∈ Sn and π(s′) = s}, and

rn−1(s) = λ(s) + max{rn(s′)|s′ ∈ Sn and π(s′) = s}, where

λ(s) =

1, if σ(s) = a

0, if σ(s) = b
.

Then rn−1(t) ≤ ln−1(s) if one of the following is satisfied:

• σ(s) = a and σ(t) = b.

• σ(s) = σ(t) and s′ <n t′ for every child s′ of s and every child t′ of t.

It follows from the recursive definition of ≤n that In−1 is a representation of ≤n−1.

We now construct an assignment ps ∈ (0, 1) of probabilities for every s ∈ S6N such that

pe > 1/2, (14)

ps ∈ ri (conv{p(s′)|s′ is a child of s}) for every s ∈ S<N , and (15)

p is strictly− ≤n monotone. (16)

To construct p, we go over the nodes from the root to the leafs. Choose pe arbitrarily so that

pe > 1/2. Assume we defined ps for s ∈ Sn−1 such that s 7→ ps is ≤n−1-strictly monotone.

The set Sn is equipped with an interval order ≤n. The parent function π : Sn → Sn−1 induces

a partition over Sn (the atoms of the partition are π−1(s) for s ∈ Sn−1). Let U = π−1(s) and

V = π−1(t) be two such atoms. If V <n U then, by Definition 5, it follows that t <n−1< s

and therefore pt < ps. Thus, Condition (8) of Lemma A.5 is satisfied and p can be defined

over Sn such that (15) and (16) are satisfied. Note that (16) and the definition of ≤n imply

that

ps > pt whenever σ(s) = a, σ(t) = b and d(s) = d(t). (17)

We now claim that for every 1 ≤ n ≤ N , there exists some 0 < rn <∞ such that

ρ(rn, ps) > 1/2 for every s ∈ Sn such that σ(s) = a, and

ρ(rn, pt) < 1/2 for every t ∈ Sn such that σ(t) = b,
(18)
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where ρ is given by (5). Indeed, fix 1 ≤ n ≤ N and let q be a real number such that

q < ps for every s ∈ Sn such that σ(s) = a, and

pt < q for every t ∈ Sn such that σ(t) = b.
(19)

The existence of such a q follows from (17). Since the function ρ is continuous and monotone

in the first argument, and since limr→0 ρ(q, r) = 0 and limr→∞ ρ(q, r) = 1, it follows that

there exists some rn such that ρ(rn, q) = 1/2. Since the function ρ is monotone in the second

argument, (19) implies that

ρ(rn, ps) > ρ(rn, q) = 1/2 for every s ∈ Sn such that σ(s) = a, and

ρ(rn, pt) < ρ(rn, q) = 1/2 for every t ∈ Sn such that σ(t) = b,

as desired. We now define r0 > 0 such that (18) is also satisfied for n = 0, and moreover,

1 ∈ri(conv{rn|n = 0, . . . , N}) . To achieve this, choose r0 > 1 arbitrarily if rn < 1 for some

n ∈ {1, . . . , N}; choose r0 < 1 such that ρ(r0, pe) > 1/2 if rn ≥ 1 for every n ∈ {1, . . . , N} and

rn > 1 for some n ∈ {1, . . . , N}; and choose r0 = 1 if rn = 1 for every n ∈ {1, . . . , N}. Since

pe > 1/2, such a choice can be made and, furthermore, (18) is satisfied (recall that σ(e) = a).

Let λn > 0 be such that
∑N

n=0 λn = 1 and
∑N

n=0 λnrn = 1.

We now construct (α, τ , ζ) such that τ and ζ are independent given α,

P (α = a|ζ i = si for 1 ≤ i ≤ n) = ps, (20)

for every s = (s1, . . . , sn) ∈ S≤N , and

P(τ = n|α = b)

P(τ = n|α = a)
= rn (21)

for every n ∈ {1, . . . , N}. The existence of such a triplet follows from the following argument.

By Lemma 1 there exists random variables (α, ζ) over some probability space with values in U

and SN respectively such that (20) is satisfied. Possibly augmenting the underlying probability

space, we introduce the random variable τ with values in N such that τ is independent of ζ
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given α,

P (τ = n|α = a) = λn, and

P (τ = n|α = b) = λnrn.

Then (21) is satisfied. By Lemma A.3, (20), and (21), we get that

P (α = a|τ = n, ζ i = si for 1 ≤ i ≤ n) = ρ(rn, ps).

Finally, from the latter equation and (19) it follows that

P (α = a|τ = n, ζ = s) > 1/2 for every s ∈ Sn such that σ(s) = a, and

P (α = b|τ = n, ζ = t) < 1/2 for every t ∈ Sn such that σ(t) = b,

as desired. �
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