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Abstract

We consider normal form games in which two players decide on their strategies before the

start of play and Player 1 can purchase noisy information about his opponent’s decisions concern-

ing future response policies (i.e., spy on his opponent’s decision). We give a full characterization

of the set of distributions over the players’ payo¤s that can be induced by such equilibria, as

well as describe their welfare and Pareto properties. In 2 £ 2 games we …nd three phenomena

that occur in equilibrium: (i) when the game is non-degenerate, the information purchased is

independent of its cost. The cost determines only whether information is purchased or not, (ii)

the player who spies treats his information as if it were deterministic, even though it is correct

only probabilistically, and (iii) in chain store models, espionage is used if and only if the per-

fect equilibrium payo¤ di¤ers from the Stackelberg equilibrium payo¤ with Player 2 being the
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“There is no place where espionage is not possible.”

- Sun Tzu, The Art of War, approximately 500BC.

1 Introduction

In many real world interactions, players decide what to do long before they have to play the chosen

action — an army prepares for di¤erent situations in the battle…eld years before a war begins; a

government decides on its policy and reactions to various scenarios before starting negotiations; an

incumbent …rm decides on its reactions to new market entries before entrants appear.

Once decisions are made in advance, espionage comes to mind. Suppose Players 1 and 2 engage

in a two-stage sequential game that prescribes Player 1 to be the …rst to play an action and Player

2 to be the second. If Player 2 decides on her reactions to Player 1’s move at the outset of the

game, Player 1 might bene…t by sending spies who will reveal the decisions made by Player 2. In

fact, even if espionage is costly and provides a noisy signal of Player 2’s decisions, Player 1 may

still pro…t by utilizing it.

In essence, if it is common knowledge that Player 1 spies on Player 2, it is as if the order of

actions were switched. Espionage then allows Player 2 to commit herself to an action and Player

1 to subsequently react. Thus, employment of espionage involves an interplay between the “…rst

mover advantage” of Player 2 and the “second mover advantage” of Player 1.

More formally, in the present paper we study one-shot games that are extended with the ability

to spy. The game is comprised of three stages. In stage 1, Player 2 chooses an action. In stage 2,

Player 1 purchases an information device that reveals some information on the action chosen by

Player 2. Finally, in stage 3, Player 1 chooses an action, and the original one-shot game is played.

The payo¤ of Player 2 is her payo¤ in the original one-shot game, whereas the payo¤ of Player 1

is the di¤erence between his payo¤ in the original one-shot game and the cost of the information

device he purchased.

The set of available information devices, as well as their cost, are exogenous. We assume that

Player 1 can always purchase a trivial device that reveals no information and costs nothing.

When concentrating on games where each player has two actions we …nd three phenomena that

occur in equilibrium: (i) when a game is non-degenerate, the information purchased is independent

of its cost. The cost determines only whether the information is purchased or not, (ii) the player who

spies treats his information as if it were deterministic, even though it is correct only probabilistically,
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and (iii) in chain store models, espionage is used if and only if the perfect equilibrium payo¤ di¤ers

from the Stackelberg equilibrium payo¤ with Player 2 being the Stackelberg leader. We also study

the welfare and Pareto properties of such equilibria.

The motivation for our inquiry comes from the attempt to explain the employment of di¤er-

ent institutions providing information in a variety of economic environments. To mention a few

examples, investors can employ experts who report on di¤erent attributes of …rms to allow better

stock investments; in certain industries, engagement in industrial espionage is common practice1;

specialists are often hired to give forecasts before certain projects are undertaken (e.g., political

advisors for defense projects).

When Player 2 knows of Player 1’s espionage opportunities, Player 1’s mere option to spy may

in fact reduce his pro…t. Indeed, the option to spy can allow Player 2 to exploit a …rst mover

advantage in the game. In such cases Player 1 would prefer not to have the ability to spy, since this

ability reduces his expected payo¤ in equilibrium. Nonetheless, not utilizing his spying capabilities

may make him even worse o¤, when it is impossible to commit himself not to spy.

In other words, espionage creates two opposing e¤ects. A direct e¤ect of espionage is the

improvement of the spying party’s information concerning his opponent’s actions. This is, in a

sense, a “second mover advantage.” An indirect e¤ect of espionage is driven by the opponent’s

knowledge that she is being spied upon. She therefore has the ability to (probabilistically) commit

herself to a certain policy and take advantage of a “…rst mover advantage.” This latter e¤ect hinges

on a common knowledge assumption that is crucial for the analysis and will be assumed throughout

the paper. The interplay between the two forces determines the outcome of the game.

This intuitive tradeo¤ comes to light in the standard chain store model. There is a subgame

perfect equilibrium where the Incumbent, serving as Player 2 in our framework, accommodates

or …ghts, both with positive probability, and the Entrant, who serves as Player 1, purchases an

espionage device and enters or stays out according to the signal he receives from the device. Indeed,

if the Incumbent randomizes her actions, the Entrant is better o¤ purchasing information on the

Incumbent’s action realization, when the cost of such information is su¢ciently low. Once the

Entrant employs espionage, the Incumbent can (probabilistically) commit herself to …ght and best

responds with a randomization between her actions.2
1From the 1997 U.S. State Department and Canadian Security and Intelligence Service Reports, corporate espi-

onage costs U.S. businesses over $8.16 billion per year. Moreover, 43% of American corporations have had at least

six incidents of corporate espionage.
2This di¤ers from reputational explanations (see, e.g., Kreps et al. [1982] and Fudenberg and Levine [1989, 1992])
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In this equilibrium the payo¤ of the Entrant is smaller than his payo¤ in the subgame perfect

equilibrium of the original game, but (utilitarian) welfare increases when the cost of espionage is

low enough. It turns out that, contingent on the Entrant purchasing information, the device that

he purchases (i.e., the information acquired) does not depend on its cost. The cost of the device

only in‡uences the probability that the Incumbent will …ght. However, if the cost of the device is

too high, the Entrant will not pro…t by purchasing it, and there will be no equilibrium where the

option to spy is used.

In the standard chain store example, Player 2 has a …rst mover advantage. This aspect of the

game ends up playing a crucial role in the general existence of equilibria with non-trivial use of

espionage. Generally, any pure perfect equilibrium in the original game is also a perfect Bayesian

equilibrium in the extended game, where the players do not utilize their option of spying. Indeed, if

the opponent’s strategy is pure, no information can be gained by way of costly espionage. Theorem

4.13 asserts that in general chain store models (corresponding to 2 £ 2 normal form games in

which one of the rows has constant payo¤s), espionage is used if and only if Player 2 has the …rst

mover advantage; that is, the perfect equilibrium of the original game di¤ers from the Stackelberg

equilibrium with Player 2 being the Stackelberg leader. We call this phenomenon the principle of

…rst mover. Interestingly, the principle of …rst mover is in fact peculiar to chain store models and

does not hold for all 2 £ 2 games. Intuitively, the second mover advantage of Player 1 is sometimes

su¢ciently strong to assure the existence of equilibria with non-trivial use of espionage even when

Player 2 does not have a …rst mover advantage.

Another interesting phenomenon is that in practically all 2 £ 2 games (excluding degenerate

cases) the cost function of information in‡uences the decision whether to purchase information or

not, but not which device to purchase. We call this phenomenon the principle of cost-independence.

We generalize the chain store example and characterize general chain store models for which

only one player pro…ts from the existence of espionage and such games for which both players pro…t

from the availability of espionage. These two classes turn out to be exhaustive. We also discover

that for both classes, for a su¢ciently low cost of information, espionage provides an e¢ciency

improvement.

The game structure we propose enables players to correlate their actions. Indeed, when a player

receives some information on his opponent’s realized action, making use of this information would

both in assumptions and results. We do not assume anything about the distribution of types of Incumbents. Hence,

the somewhat problematic assumption of “irrational Incumbents” is not needed in this model. Moreover, our results

predict that a non-vanishing portion of the population of Incumbents will in fact accommodate.
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imply a correlation between the players’ actions. Unlike the correlated equilibria scenario, in which

both players receive a signal from a third party, here only Player 2 can e¤ectively send a signal. In

Theorem 4.6 we provide a full characterization of equilibria with espionage as a modi…ed set of the

correlated equilibria of the original game.

Our model has some similarities to games with communication (see, e.g., Forges [1986], Myerson

[1991], and the references therein). There are two main di¤erences between the models. First, in

our framework the signal is a stochastic function of Player 2’s (irreversible) action, whereas in

games with communication signals precede the players’ action choices. Second, the scope of the

noise characterizing the signal is a costly choice of Player 1, whereas in games with communication

the signals are determined via cheap (in fact, free) messages that players send according to an

exogenously speci…ed communication protocol.

Nonetheless, it is worth noting that Crawford and Sobel [1982] considered a communication

protocol related to the current setup. They described a sender-receiver game in which a better-

informed sender sends a noisy signal to a receiver, who then chooses an action that a¤ects the

utility levels of both players. The analysis presented in this paper could be used to extend the

Crawford and Sobel setup. Namely, the receiver would be allowed to choose the type of messages,

in terms of their noisiness and corresponding cost, that the sender sends.

The literature on espionage per se appears to be very sparse. Matsui’s [1989] starting point is

similar to ours. He is interested in analyzing a game in which a player may receive information

on her opponent’s strategy and be able to subsequently revise her own choice of actions. However,

Matsui approaches this general issue from a di¤erent angle than us. He considers the case of an

in…nitely repeated two-person game in which there is an exogenous small probability that one or

both of the players will be perfectly informed of the other’s supergame strategy at the outset of the

game. The players have a chance to revise their strategies on the basis of this information before

actual play begins. Matsui’s main result is that any subgame perfect equilibrium pair of payo¤s is

Pareto e¢cient, provided that the probability of espionage is su¢ciently small.

Matsui’s [1989] result hinges on the fact that the same game is being repeated. This enables a

player who acquires his opponent’s supergame strategy to signal this information to his opponent,

whereby both players switch to a Pareto e¢cient strategy pair. Thus, all subgame perfect equilibria

entail playing a Pareto e¢cient strategy pair right from the outset.

In our framework, since there is only one stage, no signaling is possible. To bene…t from being

spied upon, Player 2 must commit herself, with positive probability, to play actions that are bad
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for herself (if she plays only actions that are good for herself, Player 1 can anticipate that, and does

not need to purchase information). Player 2 hopes to pro…t by playing actions that are bad for

herself, but also bad for her opponent: once Player 1 …nds out that a bad action was chosen, he will

play an action which is better for Player 2. This implies that a commitment to bad actions might

be necessary. In particular, in contrast to Matsui’s [1989] result, utilizing espionage in a one-shot

game does not imply e¢ciency.

Another related paper is Perea y Monsuwe and Swinkels [1997]. They studied a model of

extensive form games, where at every information set, players can purchase a device from an

information seller who is a participant in the game. The available devices di¤er in accuracy, and

their cost is determined by the information seller. Thus, in their model, the cost of information

is endogenous. Each player’s purchasing decision, as well as the cost function he faces, are not

revealed to the other participants of the game. Perea y Monsuwe and Swinkels are concerned with

problems of evaluating information in such scenarios – what the value of the information is, how

it can be computed, and how the ‡exibility of the information seller in setting the price of the

information devices in‡uences the play: whether it is worthwhile to set up the price in advance,

or whether it is better to negotiate at every information set. Despite the underlying similarity to

the model studied by Perea y Monsuwe and Swinkels [1997], our paper examines a di¤erent set of

questions. We take the information seller as given and study her e¤ects on the outcomes of the

game. We concentrate on properties of equilibria from the point of view of the players and of a

social planner.

Games with espionage are related to games with endogenous timing, that have been tackled with

in the Industrial Organization literature. Timing of output choice in the market determines the

competition structure. Sequential choice corresponds to a Stackelberg game, where the …rst …rm to

make a choice is termed the Stackelberg leader and the second is termed the Stackelberg follower.

Simultaneous choice of output corresponds to a Cournot competition. Mailath [1993] allows a …rm

with superior information to delay its quantity decision until the decision of the less informed …rm

(so that decisions are made simultaneously). The unique stable equilibrium turns out to be one

in which the informed …rm moves …rst, even though the leader may earn lower ex-ante pro…ts

than it would earn if it were choosing quantities simultaneously with the follower. Sadanand and

Sadanand [1996] generalized Mailath’s results and showed that when there is demand uncertainty

and …rms endogenously choose entry timing, relative …rm sizes and uncertainty jointly determine

the equilibrium. Van Damme and Hurkens [1996, 1997] study the endogenous timing problem in
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the context of commitment. In their model, players can see the actions of players who moved before

them. Thus, a player can turn the underlying simultaneous game into a sequential game in which

she is the …rst to move. A player will then choose an action early in the game if she has a “…rst

mover advantage.” Our paper adds to this branch of literature in that the underlying game can be

sequential and the change of turns is both probabilistic and costly. Thus, part of the optimization

problem is the determination of how much resources are to be allocated to switching turns and

exploiting the “second mover advantage,” if it exists.

In our model the cost of information is exogenous. There is a vast literature dealing with the

value of information. Several authors (e.g., Hirshleifer [1971], Green and Stokey [1981], and Allen

[1986]) studied the value of private information to a player. Others (e.g. Kamien et al. [1990] and

the references therein) considered a situation in which an agent possesses information relevant to

the players of a game in which he is not a participant. The value of information is then de…ned

according to what this agent can achieve by behaving strategically. We view these theories as

possible foundations for the cost function which we take as given.

We begin by providing the general framework for our analysis in Section 2. We then analyze

a few motivating examples in Section 3. In Section 4 we study properties of espionage equilibria:

we start with existence properties that hold for general n £ m one-shot games in normal form

in Section 4.1. We then provide a full characterization of the set of equilibria with espionage in

one-shot normal form games in Section 4.2. In Sections 4.3 and 4.4 we concentrate on general 2£ 2

one-shot games in normal form and on chain store models. This allows us to point out some of

the driving forces in the current setup. Section 5 summarizes the paper and suggests some possible

avenues for future research. Technical proofs are relegated to the Appendix.

2 General Framework

For every …nite set K , jK j is the number of elements in K , and ¢(K) is the set of probability

distributions over K. For every ¹ 2 ¢(K), ¹[k] is the probability of k 2 K under ¹, and ¹[K0] =
P
k2K0 ¹[k], for every K0 µ K. We identify each k 2 K with the probability distribution in ¢(K)

that gives unit weight to k:
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2.1 The Model

We consider two-player non-zero sum games in normal form. Player 1 is the row player and Player

2 is the column player. We denote by I = f1; : : : ; ng and J = f1; : : : ; mg the actions of the two

players, and by A = (aij) and B = (bij) the two payo¤ matrices. The game in normal form (A; B)

will be referred to as the base game. A game in normal form with espionage, or simply the extended

game, is a tuple G = (A; B; S;Q;') where (i) (A; B) is a base game, (ii) S is a …nite set of signals,

(iii) Q is a set of functions q : J ! ¢(S). For each q 2 Q there corresponds an information device

©(q), which, when action j is chosen by Player 2, gives a (probabilistic) signal s with probability

q(j)[s]. Note that an information device q can be represented by an m£jSj Markov matrix, in which

the entry (j; s) is equal to q(j)[s]. In particular, Q is (equivalent to) a subset of a Euclidean space.

In the sequel we identify each function q 2 Q with the corresponding information device ©(q), and

with the corresponding matrix. Finally, (iv) ' : Q ! R represents the cost of information, that is,

'(q) is the cost of information device ©(q). We assume ' ¸ 0. Finally, the description of the game

is common knowledge.

The extended game is played as follows:

Stage 1 - Player 2 chooses an action j 2 J.

Stage 2 - Player 1 purchases an espionage device ©(q) from the set Q of available devices.

Stage 3 - Player 1 receives a signal s 2 S, where Prob(s j j) = q(j)[s].

Stage 4 - Player 1 chooses an action i 2 I .

The players’ payo¤s are (aij ¡ '(q); bij).

A pure strategy for Player 2 is a pure action j 2 J , and a mixed strategy is a probability

distribution y over J. A pure strategy for Player 1 is a pair (q; x) where q 2 Q is the information

device he purchases in stage 2, and x = (x(s))s2S 2 IS is a function that assigns a pure action to

be played in stage 4 for any given signal received in stage 3. A mixed strategy for Player 1 is a

probability distribution ¹ over Q £ IS.

We denote by ¼l(y; ¹); l = 1;2; the payo¤ to Player l when Player 2 plays the mixed strategy

y, and Player 1 plays the mixed strategy ¹. Formally,

¼1(y; ¹) =
X

(i;j;s)2I£J£S
yj

Z

(q;x)2Q£IS
(q(j)[s]aij ¡ '(q))I(x(s) = i)d¹; and
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¼2(y;¹) =
X

(i;j;s)2I£J£S
yj

Z

(q;x)2Q£IS
q(j)[s]bijI(x(s) = i)d¹;

where I(x(s) = i) is equal to 1 if x(s) = i, and is equal to 0 otherwise. The functions ¼1 and ¼2

are continuous. Moreover, ¼1 is linear in ¹, and ¼2 is linear in y.

De…nition 2.1 An information device q is trivial if it gives no information to Player 1; that is,

q(j)[s] = q(j0)[s] for every s 2 S and every j; j0 2 J .

We make the following assumptions on the components of the game:

A.1 Q contains a trivial device.

A.2 The cost of any trivial device is zero.

A.3 The set of available devices Q (which is equivalent to a subset of a Euclidean space) is convex

and compact.

A.4 The cost function ' is continuous and convex over Q.

In some situations it is natural that the signals coincide with the actions of Player 2.

De…nition 2.2 The extended game is canonical if S = J ; that is, the set of signals coincides with

the set of actions of Player 2.

If Player 2 has only two actions (say, Left and Right), jJ j = 2, and a canonical device is

characterized by two numbers: the probability that it reports Left when the actual action chosen

by Player 2 is Left, and the probability that it reports Right when the actual action chosen by

Player 2 is Right. A device in which these two probabilities are the same is called symmetric.

Thus, a symmetric device is characterized by its accuracy: the probability with which it reports

the correct action. Formally, the set of symmetric information devices in a 2£ 2 canonical game is

de…ned by

Q¤ = fq : J ! ¢(J) j q(j)[j] = q(j0)[j0] 8j; j0 2 Jg:

2.2 Espionage Equilibria

De…nition 2.3 Espionage equilibria are perfect Bayesian equilibria (PBE) of the extended game.

An espionage equilibrium is true if Player 1 purchases a costly information device with positive

probability.
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Note that if there is a non-trivial information device that costs nothing, then Player 1 cannot

lose by purchasing it. The question is, then, whether Player 1 will also purchase a costly device.

As we see later (Theorem 4.1), assumptions A.3 and A.4 are su¢cient for the extended game

to admit an espionage equilibrium.

A strategy of Player 1 may involve choosing an information device from countably many, or

even a continuum, of possible devices. We will be interested in those strategies in which he chooses

a device from a …nite set of devices.

De…nition 2.4 A strategy ¹ of Player 1 has …nite support if there exist K 2 N and q1; : : : ; qK 2 Q

such that ¹[fq1; : : : ; qKg £ IS] = 1. The strategy is simple if K = 1; that is, ¹[fqg £ IS ] = 1 for

some q 2 Q.

If ¹ has …nite support, so that ¹[fq1; : : : ; qKg £ IS] = 1 for some q1; : : : ; qK 2 Q, we de…ne

®k = ¹[fqkg£ IS] to be the probability that the device qk is chosen, and zk = (zk(s))s2S 2 (¢(I))S

by

zk(s)[i] = ¹[fqkg £ fx : S ! I j x(s) = ig]=®k

whenever ®k > 0: If ®k = 0, zk may be chosen arbitrarily. zk(s)[i] is the probability that, conditional

on qk being purchased, if the signal s is received, the action i is played by Player 1. Thus, if qk
is purchased and the signal s is received, Player 1 essentially plays the mixed action zk(s). For

simplicity we write ¹ =
PK
k=1 ®k(qk; zk). If ¹ is simple, we write ¹ = (q; z).

As we prove below (Theorem 4.2), in every extended game there exists an espionage equilibrium

where the strategy of Player 1 has …nite support.

Consider a canonical game and a strategy ¹ =
PK
k=1 ®k(qk; zk) of Player 1 with …nite support.

As discussed above, since S = J, when Player 1 purchases a non-trivial device qk and receives the

signal j, he essentially plays the mixed action zk(j). One can then ask whether zk(j) is a best reply

against j in the base game. If this is the case, Player 1 plays as if he completely believes the report

of the device, treating it as if it were deterministic.

De…nition 2.5 A strategy with …nite support ¹ =
PK
k=1 ®k(qk; zk) in a canonical game has com-

plete belief if for every k = 1; : : : ; K such that '(qk) > 0 and every j 2 J , zk(j) is a best reply of

Player 1 against j in the base game.

Since the accuracy of the signal Player 1 receives is not perfect, a best reply of Player 1 in the

extended game need not have complete belief. In what follows we show that in 2£2 canonical games
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with symmetric information devices, every equilibrium with …nite support has complete belief (see

Lemma 4.8). Example 4.10 below shows that this phenomenon does not hold in general.

2.3 On the Cost Function

The cost function ' is a function from the set of Markov matrices to the real numbers. One might

want to impose conditions on this function. For example, swapping two columns in the matrix does

not change the information of Player 1 whatsoever, but changes the device we are dealing with.

One would like the cost function to give the same cost to two such matrices.

We would expect that if one information device is “more informative” in some sense than

another, it should also cost at least as much. To make this idea more rigorous, we use the Blackwell

[1950] partial ordering on information devices (known also as “garbling” in the information theory

literature).

Denote by Mnm the space of all n £ m Markov matrices. Then Mnm is a compact convex

subset of Rnm.

De…nition 2.6 Let P1; P2 2 Mnm. P1 < P2 if and only if there exists a Markov matrix M 2 Mmm

such that P2 = P1M .

Intuitively, P1 is de…ned to be at least as good as P2 if P2 is a noisy distortion of P1. Alterna-

tively, P1 is at least as good as P2 if a player who receives information according to P1 can pretend

to be playing according to P2 by ignoring some of his information. In particular, Player 1 will

achieve at least as high a payo¤ with device P1 as with device P2, for any game.

An example of a continuous and convex cost function that preserves the Blackwell relation is

the following. Let Q0 be the set of all non-informative n £m Markov matrices; that is,

Q0 = fq 2 Mnm j all rows of q are identicalg:

Q0 is a compact and convex subset of Rnm, and any q 2 Q0 corresponds to a trivial information

device.

De…ne a continuous function c : Mnm ! R by:

c(q) = dist(q;Q0) = min
q02Q0

k q ¡ q0 k1;

where for every matrix x = (xij); k x k1=
P
i;j jxi;j j.

11



Since Q0 is convex, c is a convex function. Moreover, c preserves the Blackwell relation. Indeed,

let q0 2 Q0 such that dist(q; Q0) =k q ¡ q0 k1, and denote r = q ¡ q0. Then for any Markov matrix

M , q0M 2 Q0,
P
t2SMst = 1 for every …xed s 2 S; and

c(qM) = dist(qM;Q0) ·k qM ¡ q0M k1=k rM k1=
X

j;t

¯̄
¯̄
¯
X

s
rjsMst

¯̄
¯̄
¯ 6

X

j;t

X

s
jrjsj Mst =

=
X

s

0
@X

j
jrjsj

1
A

ÃX

t
Mst

!
=

X

j;s
jrjsj =k q ¡ q0 k1= dist(q;Q0) = c(q):

Note that for every non-negative, continuous and convex function f : [0; 1) ! [0;1) with f(0) = 0,

the composition f ± c preserves the Blackwell relation, and is convex. Indeed, any such function f

is monotonically increasing. Let ® 2 [0; 1] and x;y 2 Mnm. Then, from the monotonicity of f and

the convexity of c and f,

(f ± c)(®x+ (1 ¡ ®)y) 6 f(®c(x) + (1 ¡®)c(y)) 6 ®(f ± c)(x) + (1 ¡®)(f ± c)(y);

and therefore f ± c is convex.

3 Examples

In this section we provide several motivating examples that illustrate the main results of the paper.

All the examples are of canonical games in which each player has only two possible actions, and the

information devices are symmetric – they report the correct action with some …xed probability and

the incorrect action otherwise. We therefore identify Q with the interval [1=2;1], where q 2 [1=2; 1]

is the accuracy of the device ©(q). Note that q = 1=2 corresponds to the trivial device, and hence

'(1=2) = 0. Moreover, ' : [1=2; 1] ! [0;1) is non-decreasing.

For the examples it is convenient to assume furthermore that the cost function '(q) is twice

di¤erentiable and strictly convex.

We begin with studying the “Matching Pennies” game. For this game, we …nd the set of simple

espionage equilibria for every given cost function. In particular, we identify when espionage is

utilized. Moreover, we characterize the set of all distributions over the entries of the payo¤ matrix

that can be induced by an espionage equilibrium for some cost function. This characterization is

carried out for general games in Theorem 4.6.

We also provide an example where simple espionage equilibria do not exist.
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We then study chain store models; we characterize when there is a true espionage equilibrium,

and when this new equilibrium is more e¢cient.

We will see that in this case the principle of cost-independence holds: the device that is pur-

chased in equilibrium is independent of its cost. The cost only in‡uences the decision whether or

not to purchase an information device.

Finally, we provide a game where both players bene…t if Player 1 uses his ability to spy.

Example 3.1 (Matching Pennies) We look at the standard Matching Pennies game.

Left Right

Top 1;0 0;1

Bottom 0;1 1;0

If Player 2 assigns probability y¤ to Left in equilibrium, Player 1 solves:

max
q

fy¤q +(1 ¡ y¤)q ¡'(q);maxfy¤;1 ¡ y¤gg = max
q

fq ¡'(q); maxfy¤;1 ¡ y¤gg: (1)

The …rst term in the maximization refers to the payo¤ achieved by purchasing information and the

second term corresponds to the maximal payo¤ achievable without purchasing information.

We look for a true simple espionage equilibrium. Denote by ©(q¤) the information device pur-

chased by Player 1 in such an equilibrium (if it exists).

q¤ is chosen to maximize the …rst term in (1). The …rst order condition implies that if q¤ < 1

then 1 = '0(q¤), and q¤ depends on the cost function. In Theorem 4.11 we will see that only rarely

does the information device purchased at equilibrium depend on the cost function. The “Matching

Pennies” game is such a degenerate game.

If q¤ < 1, for a true espionage equilibrium we need '0¡1(1)¡'('0¡1(1)) ¸ maxfy¤; 1¡y¤g ¸ 1=2,

so that the right-hand side of (1) will be equal to q¤ ¡ '(q¤), and Player 1 will not bene…t by not

purchasing a device.

Note that for this speci…c game, any y 2 [1¡ q¤+'(q¤); q¤¡'(q¤)] is part of an equilibrium. In

particular, the set of distributions over the entries of the matrix that can be induced by an espionage

equilibrium is
Left Right

Top yq (1 ¡ y)(1 ¡ q)

Bottom y(1 ¡ q) (1 ¡ y)q

13



where 1=2 < q · 1 and 1 ¡ q < y < q. In Theorem 4.6 we characterize for every one-shot game the

set of distributions over the entries of the matrix that can be induced by some espionage equilibrium

(without the restriction to canonical games or symmetric information devices).

Example 3.2 (Non-existence of a simple espionage equilibrium) Consider the following zero-

sum game:
Left Right

Top 1;¡1 0;0

Bottom 0;0 2; ¡2

This is the Matching Pennies game with di¤erent payo¤s for di¤erent matchings. We claim that

there is no simple espionage equilibrium in this game.

The mixed equilibrium in the base game is ((2=3; 1=3); (2=3; 1=3)). For ' small enough (e.g.,

'(3=4) < 1=3), this mixed equilibrium is no longer an equilibrium in the extended game. Suppose

Player 2 plays a mixed strategy (y; 1¡y). If information of quality q > 1=2 is purchased, the payo¤

of Player 2 is ¡yq ¡ 2(1 ¡ y)q = yq ¡ 2q, which is maximized at y = 1. If y = 1 no espionage is

needed, but if espionage is not used, the only possible equilibrium is the mixed equilibrium of the

base game. Hence, for su¢ciently low cost functions there is no simple espionage equilibrium.

The next examples are of chain store models.

Example 3.3 (Standard chain store model) The game is played by an Entrant and an In-

cumbent. The Entrant decides whether to enter the market or stay out. If the Entrant enters, the

Incumbent has to decide whether to …ght or accommodate. The payo¤s are as given in Figure 1,

where a > 0, b > 0. The …rst element of any payo¤ pair corresponds to the Entrant’s payo¤ and

the second element corresponds to the Incumbent’s payo¤.

Figure 1: A standard chain store model

It is well known that the unique subgame perfect equilibrium is comprised of the Entrant entering

and the Incumbent accommodating, whereby the equilibrium payo¤ is (b;0).
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Suppose now that the Incumbent must decide on her reaction before the Entrant chooses whether

or not to enter and that the Entrant can purchase a symmetric canonical information device. As

mentioned in the Introduction, the pure subgame perfect equilibrium remains a subgame perfect

equilibrium in the extended game. We now proceed to …nd another espionage equilibrium where the

Entrant uses his ability to spy.

Suppose that in equilibrium p¤ is the probability with which the Incumbent accommodates and

©(q¤) is the information device purchased by the Entrant: the Entrant receives the correct report

with probability q¤.

We will now …nd the exact values of p¤ and q¤ that constitute a true simple espionage equilibrium.

As mentioned before, in 2 £ 2 canonical games with symmetric devices, any simple equilibrium has

complete belief; hence in such an equilibrium Player 1 plays a best reply in the base game for the

signal he receives.

In a true simple equilibrium 0 < p¤ < 1 (else no espionage is needed). Since in equilibrium

the Incumbent is indi¤erent between …ghting, which yields aq¤+(¡1)(1 ¡ q¤); and accommodating,

which yields a(1 ¡ q¤); it follows that

q¤ = 1 +a
1 +2a

> 1
2
: (2)

In particular, it follows that the espionage device that is purchased by the Entrant is independent

of its cost: the cost-independence principle holds. If the cost is very high, using espionage cannot

be pro…table to the Entrant, but for su¢ciently low costs of espionage, the quality of the purchased

device is determined solely by the Incumbent’s payo¤s.

The Entrant maximizes his expected payo¤ with respect to p¤. Thus, q¤ is a solution of:

max
q

fp¤qb +(1 ¡ p¤) £ (¡(1 ¡ q))¡ '(q);maxf0; p¤b ¡ (1 ¡ p¤)gg; (3)

where the …rst term is his payo¤ if he purchases the device q, and the latter if he doesn’t purchase

any device. If ' is strictly convex then (3) has a unique solution. The …rst order condition that

corresponds to the …rst part in (3) implies that if an espionage device ©(q¤) is purchased then

(b ¡ 1)p¤ = '0(q¤)¡ 1: (4)

Thus, if b 6= 1, the probability that the Incumbent …ghts does depend on the cost function.

To summarize, there exists a true simple espionage equilibrium if and only if p¤; q¤; and '

satisfy (2), (4), and:

0 < p¤ < 1; (5)
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p¤q¤b + (1 ¡ p¤) £ (¡(1 ¡ q¤)) ¡ '(q¤) ¸ 0; and (6)

p¤q¤b + (1 ¡ p¤) £ (¡(1 ¡ q¤)) ¡ '(q¤) ¸ p¤b ¡ (1 ¡ p¤): (7)

Observe that the following is a solution of (2), (4), and (5)-(7): q¤ = 1+a
1+2a, p¤ = 1=(b + 1),

and ' is any continuous and strictly convex function that satis…es 0 < '(q¤) < b
b+1 (2q¤ ¡ 1) and

'0(q¤) = 2b
b+1. Eqs. (6) and (7) imply that 1¡q¤+'(q¤)

1¡q¤+q¤b · p¤ · q¤¡'(q¤)
q¤+b¡q¤b: In particular, if b = 1

then every p¤ that satis…es 1 ¡ q¤ < p¤ < q¤ is part of a solution, for an appropriately chosen cost

function.

In a true simple espionage equilibrium the Entrant receives a payo¤ which is smaller than the

payo¤ he receives in the perfect equilibrium of the base game. Intuitively, if the Incumbent were able

to commit herself in the base game, there would be a perfect equilibrium in which the Incumbent

would commit herself to …ght and the Entrant would stay out. Commitment would enable the

Incumbent to increase her payo¤ relative to the perfect equilibrium payo¤ she receives in the base

game. The Entrant, however, would get a lower payo¤ when the Incumbent can commit herself

to her actions. Since espionage allows the Incumbent to commit herself to her actions (albeit

probabilistically), the trends in the players’ payo¤s are similar to those occurring when commitment

tools are introduced.

Nonetheless, for certain cost functions, espionage provides an e¢ciency improvement. Indeed,

Claim 3.4 There exists a cost function such that the payo¤s corresponding to the true simple

espionage equilibrium constitute a more e¢cient outcome than the payo¤s corresponding to the

perfect equilibrium in the base game if and only if one of the following conditions hold:

² b = 1 and a > 2;

² b 6= 1 and a > b:

The proof of the claim appears in the Appendix.

The payo¤s corresponding to equilibria with espionage are not Pareto e¢cient. Indeed, since

the espionage devices give probabilistic signals, in a true espionage equilibrium, the payo¤s (-1, -1),

which are Pareto inferior, are achieved with positive probability. The games considered here are not

repeated (as in, e.g., Matsui [1989]); hence signaling opportunities are absent, and the main force

at play is that of Player 2’s ability to commit herself to her actions. Since in our model Player 2
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can a¤ect Player 1’s behavior only if she commits herself to play actions that are bad both for her

and for Player 1, equilibrium outcomes in the extended game may be Pareto ine¢cient.

Example 3.5 (Both players pro…t when the Entrant uses his ability to spy) Consider the

extensive-form game depicted in Figure 2 (we keep the notation of Entrant and Incumbent, instead

of Players 1 and 2, to make the comparison with Example 3.3 more evident):

Figure 2

Without espionage, the unique perfect equilibrium is comprised of the Entrant staying out and

the Incumbent …ghting upon entrance. The corresponding payo¤s are (10, 10).

One can repeat the analysis performed for Example 3.3 to calculate the set of true espionage

equilibria in this game. An alternative way to calculate this set is to use Theorem 4.6 below.

Denote by p¤ the equilibrium probability that the incumbent accommodates if the Entrant enters,

and by ©(q¤) the equilibrium device purchased by the Entrant. Setting q¤ = 2=3, for every 1/2

< p¤ < 4=5 there exists a cost function such that p¤ and q¤ are the parameters that are used by the

players in a true espionage equilibrium.

It is clear that both players get at least 10 in such an equilibrium (the Entrant has the alternative

to stay out and get 10, while 10 is the lowest payo¤ in the game for the Incumbent). Hence the

ability to spy leads to a Pareto improvement over the perfect equilibrium result.

4 Properties of Espionage Equilibria

In this section we investigate the properties of espionage equilibria. We …rst prove, using standard

arguments, that an espionage equilibrium always exists. We then show that there always exists an

espionage equilibrium where the strategy of Player 1 has …nite support.

Next, we characterize the set of all distributions over the entries of the matrix that can be

induced by espionage equilibria in general normal-form games. This characterization allows us to
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derive two principles that hold in classes of normal-form games, namely 2£2 games and chain store

models.

In Section 4.3 we concentrate on simple espionage equilibria in 2 £ 2 canonical games. We

provide a characterization of the true espionage equilibrium, identifying when it indeed exists. In

particular, we establish the principle of cost-independence: if the game is non-degenerate, the device

that Player 1 purchases is independent of its cost. One consequence of this characterization is that

while the existence of a …rst mover advantage plays an important role in the current setup, it is

not a su¢cient proxy for the existence of a true espionage equilibrium.

In Section 4.4 we study the subclass of chain store models. For this class we deduce the

principle of …rst mover: espionage is used if and only if the subgame perfect equilibrium in the

base game is di¤erent from the Stackelberg equilibrium with Player 2 being the leader. We then

characterize when the true simple espionage equilibrium is more e¢cient than the pure subgame

perfect equilibrium in the base game.

4.1 Mixed Espionage Equilibrium

It is easy to see that any pure equilibrium in the game (A; B) corresponds to a pure equilibrium in

the extended game, where the option to spy is not used.3

Theorem 4.1 Under assumptions A.3 and A.4 the extended game admits an espionage equilib-

rium.

Proof. The space of mixed strategies of Player 2 is ¢(J), which is convex and compact. By A.3,

the space of pure strategies of Player 1 is compact. It follows that the space of mixed strategies

of Player 1, which are probability measures over a compact set, is compact in the w¤-topology

and, clearly, is convex. By A.4 the payo¤ function of each player is continuous, and linear in his

strategy. Hence the best-reply correspondence has non-empty and convex values, and its graph is

closed. By Glicksberg’s [1952] generalization of Kakutani’s …xed point theorem, an equilibrium in

mixed strategies exists.

Theorem 4.2 Under assumptions A.3 and A.4, there exists an espionage equilibrium (y; ¹) with

¹ =
PK
k=1 ®k(qk; xk); where xk 6= xl whenever k 6= l: In particular, ¹ has …nite support.

3One class of games that has been recently studied in the literature and is comprised of games that always possess

a pure equilibrium is that of potential games (see Monderer and Shapley [1996]).
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Proof. By Theorem 4.1 there exists an espionage equilibrium (y;¹). Let K = jI jjSj = njSj,

and let x1; : : : ;xK be all the functions from S to I . Let Ak = Q £ fxkg, and ®k = ¹[Ak] be the

probability that under ¹, at stage 4, Player 1 plays according to xk. Recall that Q is equivalent to

a subset of a Euclidean space. For every k such that ®k > 0, let qk =
R
Ak

qd¹=®k be the “average”

device purchased by Player 1, conditional on playing xk. If ®k = 0, let qk be chosen arbitrarily.

Let º be the strategy of Player 1 de…ned by

º =
KX

k=1

®k(qk; xk);

that is, the device qk is purchased with probability ®k in stage 2, and the action played in stage 4 is

determined by xk. The joint distribution on pairs (j;s), where j is an action chosen by Player 2 and

s is a signal reported to Player 1, is linear in the device purchased by Player 1. Hence both ¹ and º

induce the same joint distribution over the space of these pairs. It follows that ¼2(y0; ¹) = ¼2(y0; º)

for every strategy y0 of Player 2. By A.4, ' is convex, and therefore the expected cost of the device

chosen by º is at most the expected cost of the device chosen by ¹. In particular, ¼1(y;º) ¸ ¼1(y; ¹).

Since (y; ¹) is an espionage equilibrium, ¼1(y;º) = ¼1(y;¹), and (y; º) is an espionage equilibrium

as well.

4.2 Characterization of Espionage Equilibria

In this section we provide a full characterization of the set of distributions over the entries of the

matrix that can arise from espionage equilibria.

Since espionage allows Player 2 to send a probabilistic signal to Player 1, it is natural to

compare espionage equilibria with correlated equilibria and communication equilibria. Whereas

in correlated equilibria both players receive a signal from a third party, and in communication

equilibria both players send costless signals to each other according to an exogenously determined

protocol, here only Player 2 can send one signal, the accuracy of which is determined by Player 1.

These di¤erences cause the set of distributions over the entries of the matrix that can arise from

an espionage equilibrium to neither include, nor be included, in the set of distributions induced

by correlated equilibria or by communication equilibria in the original matrix game (see, e.g., the

Matching Pennies game, Example 3.1)

Nonetheless, the following example shows that sometimes espionage can be used to form a

desirable correlation.
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Example 4.3 Consider the following example of a 3 £ 3 game (Moulin and Vial [1978]):

L M R

T 0,0 1,5 5,1

I 5,1 0,0 1,5

B 1,5 5,1 0,0

The only Nash equilibrium without espionage is f(1=3;1=3;1=3); (1=3;1=3;1=3)g.
Assume that the signal space is {“Not L”, “Not M”, “Not R”}. Let q be the following device.

q(L)[Not L] = 0 q(L)[Not M] = 1=2 q(L)[Not R] = 1=2

q(M)[Not L] = 1=2 q(M)[Not M ] = 0 q(M)[Not R] = 1=2

q(R)[Not L] = 1=2 q(R)[Not M] = 1=2 q(R)[Not R] = 0:

This device allows Player 1 to rule out one of the actions that Player 2 did not choose. Let Q be

the convex hull of q and a trivial device.

As the proof of Theorem 4.6 below shows, there is a cost function ' such that the following is an

espionage equilibrium. Player 2 plays (1=3; 1=3;1=3) and Player 1 purchases the device q and plays

T , I, or B, depending on whether the signal was “Not L”, “Not M”, or “Not R”, respectively. The

diagonal entries are not reached in equilibrium and the corresponding payo¤ pair, not including the

cost of espionage, is (3, 3), which corresponds to the optimal correlated equilibrium of this game.

Unfortunately, the construction introduced in Example 4.3 cannot be universally replicated, as

the following example illustrates.

Example 4.4 It follows from Theorem 4.6 below that no matter what the cost function is, one

cannot get close to the correlated equilibrium payo¤ (10/3, 10/3) of the following classical example

(Aumann [1974]):
Left Right

Top 5;1 0;0

Bottom 4;4 1;5

Thus, a construction such as the one provided in Example 4.3 indeed cannot be replicated in general.

Let I0 µ I be the set of all actions i 2 I that are not strictly dominated: that is, i 2 I 0 if

and only if there exists y 2 ¢(J) such that
P
j2J aijyj = maxi02I

P
j2J ai0jyj : In an espionage

equilibrium, Player 1 will only play actions in I0.
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De…nition 4.5 A semi-correlated equilibrium distribution of a base game (A; B) is a probability

distribution p over the matrix entries such that

1. For every i; i0 2 I:
P
j2J pijaij ¸ P

j2J pijai0j.

2. For every j; j0 2 J with
P
i2I pij ;

P
i2I pij0 > 0,

P
i2I pijbij=

P
i2I pij =

P
i2I pij0 bij0=

P
i2I pij 0:

3. For every j; j0 2 J with
P
i2I pij > 0,

P
i2I pijbij=

P
i2I pij ¸ mini2I0 bij0 .

Condition 1 is the standard condition of correlated equilibrium for Player 1 – he cannot pro…t by

acting as if he received a di¤erent recommended action. Condition 2 is the condition of distribution

equilibrium given by Sorin [1998] – the expected payo¤ of Player 2 is the same, given any action she

plays with positive probability. Condition 3 means that if Player 2 plays an action j with positive

probability, then upon receiving a recommendation to play j, her expected payo¤ from playing j is

at least as high as her most pessimistic payo¤ achieved by playing any other action j0. The most

pessimistic payo¤ (when perfection requirements are taken into account) corresponds to the payo¤

achieved when Player 1 plays (spitefully) the worst action for Player 2, knowing Player 2’s action,

when he is restricted to undominated actions. That is, when Player 1 uses an action that he can

justify to himself as a best response to some strategy of Player 2.

Each strategy pair (y; ¹) in the extended game induces a probability distribution p = (pij) on

the entries of the matrix:

pij =
Z

(q;x)2Q£IS

X

s2S
yjq(j)[s]I(x(s) = i)d¹:

pij is the probability that under (y;¹) the entry (i; j) will be played.

We say that a probability distribution p = (pij) is non-degenerate with respect to the game

(A;B) if (i) #fi j P
j pij > 0g > 1 and (ii) for every i0 2 I there is i 2 I such that:

X

j2J
pijaij >

X

j2J
pijai0j :

Thus, p is degenerate if either a single action of Player 1 has positive probability under p; or if

Player 1 does not lose by playing any action i0 regardless of the recommendation he receives.

Theorem 4.6 If p = (pij) is a probability distribution induced by a true espionage equilibrium then

it is a non-degenerate semi-correlated equilibrium distribution. Conversely, if p is a non-degenerate

semi-correlated equilibrium distribution then there is some signal set S, some convex and compact
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set of information devices Q µ fq : J ! ¢(S)g, and some continuous and convex cost function

' : Q ! R such that p is the distribution induced by some true simple espionage equilibrium in the

extended game (A;B;S; Q; ').

The result is intuitive. Player 2 chooses an action before Player 1 does, and hence must be

indi¤erent between all actions she plays with a positive probability (condition 2 of De…nition 4.5).

However, she will never play an action j if all the payo¤s in some other row are strictly higher

than her expected payo¤ from playing j (condition 3 of De…nition 4.5). Player 1, on the other

hand, receives a signal; hence in equilibrium, he must play optimally given his signal (condition 1

of De…nition 4.5). If p is degenerate then Player 1 can do just as well without purchasing a costly

information device. The proof of Theorem 4.6 appears in the Appendix.

Remark 4.7 If one considers canonical symmetric devices in 2 £ 2 games, the characterization

given in Theorem 4.6 is still valid, provided one takes, instead of all semi-correlated equilibrium

distributions, only semi-correlated equilibrium distributions of the form

yq (1 ¡ y)(1 ¡ q)

y(1 ¡ q) (1 ¡ y)q
:

4.3 2£ 2 Canonical Games with Symmetric Devices

In this subsection we restrict ourselves to 2£2 canonical games with symmetric information devices.

Thus, we identify Q = Q¤ = [1=2; 1].

The cost function ' = '(q) depends on a single number 1=2 · q · 1; it satis…es '(1=2) = 0,

and is monotonically non-decreasing.

When signals and actions are binary, a device is purchased in equilibrium only if its signals are

followed, in the sense that di¤erent signals lead to di¤erent actions. This is a basic observation in

information economics, the idea being that if the same action is taken (even probabilistically) no

matter what the signal is, there is no need for the device’s reports and purchasing it is sub-optimal.

In our framework, this translates formally in the following way:

Lemma 4.8 Let (y; ¹) be a true espionage equilibrium in a 2 £ 2 canonical game with symmetric

information devices, where ¹ has …nite support. Then ¹ has complete belief.

By Theorem 4.2 there exists a simple espionage equilibrium (y;¹) where ¹ =
PK
k=1 ®k(qk;xk);

and xk 6= xl whenever k 6= l. By Lemma 4.8, if ' is strictly convex then '(qk) > 0 for at most one

index k. We therefore have the following:
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Corollary 4.9 In every 2£2 canonical game with symmetric information devices, if the cost func-

tion is strictly convex then there exists an espionage equilibrium (y; ¹) where ¹ =
PK
k=1 ®k(qk; xk),

and '(qk) > 0 for at most one index k.

Thus, in 2 £ 2 canonical games with symmetric information devices, when the information cost

is strictly convex, Player 1 may use one of several costless devices, but at most one costly device.

If both players have more than two actions, Lemma 4.8 no longer holds. Player 1 may want to

purchase information to di¤erentiate between two of the actions of Player 2, but if Player 2 plays

a third action, then Player 1 essentially ignores the device. This phenomenon is shown in the next

example.

Example 4.10 Consider the following 3 £ 3 game, where only the payo¤s of Player 1 appear.

L M R

T 3 0 0

I 0 3 0

B 0 0 1

Assume that Player 2 plays the mixed action y = (1=3; 1=3;1=3), and that Player 1 purchases the

device q that with probability 1=2 reports the action chosen by Player 2, and with probability 1=4

reports each of the other two actions.

By an appropriate de…nition of the cost function, it is optimal for Player 1 to purchase q (see

the proof of Theorem 4.6 for such an appropriate de…nition).

A simple application of Bayes’ rule shows that if Player 1 receives the signal L then the proba-

bility that Player 2 actually chose L is 1=2, and the probability that she chose each of the other two

actions is 1=4. Analogous statements hold if the signal is M or R.

Therefore, if Player 1 receives the signal L, then it is optimal for him to play T: his expected

payo¤ is 3=2 by playing T , 3=4 by playing I; and 1=4 by playing B. Similarly, if he receives the

signal M, it is optimal for him to play I. However, if the signal is R, then playing B is sub-optimal:

it yields him an expected payo¤ of 1=2, whereas any convex combination of T and I yields 3=4.

The following general result, which is proven in the Appendix, characterizes when a simple

espionage equilibrium exists in 2£2 canonical games with symmetric information devices. Moreover,

it asserts the principle of cost independence.

Denote ® = a11 + a12 ¡a21 ¡a22 and ¯ = b11 + b12 ¡ b21 ¡ b22.
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Theorem 4.11 Let (A; B) be a 2 £ 2 base game where no player has a weakly dominant action.

Assume w.l.o.g. that a11 > a21 and a22 > a12.

i) There exists a cost function ' for which the canonical game with symmetric information

devices (A; B;J; [1=2; 1];') has a true simple espionage equilibrium if and only if one of the

following holds:

a) ¯ = 0 and b12 = b21;

b) ¯ 6= 0 and 1=2 < (b12 ¡ b21)=¯ · 1.

ii) If ©(q) is the information device purchased by Player 1 in equilibrium, and if '(q) > 0, then

¯q = b12 ¡ b21 [Principle of cost-independence].

One can show that if ® 6= 0 and ' is twice di¤erentiable, then y = ('0(q) + a12 ¡a22)=® is the

mixed action chosen by Player 2 in equilibrium. Since this calculation is technical and rather dull,

it is omitted. Note that the Matching Pennies game (Example 3.1) satis…es ® = ¯ = 0.

Remark 4.12 Theorem 4.11 proves the principle of cost-independence: if the game is not degen-

erate, the cost function only in‡uences whether a true simple espionage equilibrium exists, but not

which information device is purchased. The exact information device is determined solely by the

payo¤ function of Player 2.

The intuition behind the principle of cost independence, as captured by the second part of

Theorem 4.11, is the following. In an equilibrium, Player 2 should be indi¤erent between her

actions. The payo¤ of Player 2 when she plays some pure strategy depends on (i) her payo¤

function, (ii) the information device purchased by Player 1, and (iii) the actions that are chosen by

Player 1 given the signal he receives. However, by the principle of complete belief, Player 1’s action

completely depends on the signal he receives. Thus, Player 1 essentially does not control the action

he plays at stage 4, and the information device is chosen to induce a proper distribution over the

entries of the matrix, so that Player 2 is indi¤erent between her actions. Such distributions depend

only on the payo¤s of the base game and not on the cost function ' that is internalized by Player

1. In particular, conditional on an information device being purchased, its speci…cations do not

depend on the cost function.
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4.4 Chain Store Models

In this subsection we further restrict ourselves to chain store models; that is, 2£2 canonical games

with symmetric information devices, where Player 1 has an action that yields the players the same

payo¤, regardless of the action of Player 2. The general game without espionage is as follows.

Left Right

Top a1; a2 a1; a2
Bottom b1; b2 c1; c2

We …rst characterize the conditions under which there exists a true espionage equilibrium. The

theorem shows an equivalence between the existence of a …rst mover advantage for Player 2 and

the existence of true espionage equilibria. We then characterize the conditions under which this

equilibrium is more e¢cient than the perfect equilibrium of the base game.

The proof of Theorem 4.13, which is rather tedious, is relegated to the Appendix.

Theorem 4.13 (Principle of …rst mover) Consider a chain store model in which c2 > b2: The

following three statements are equivalent.

a) There exists a cost function ' such that the game has a true simple espionage equilibrium.

b) The perfect equilibrium of the base game is di¤erent from the Stackelberg equilibrium with

Player 2 being the Stackelberg leader.

c) Either (i) b1 < a1 < c1 and a2 > c2, or (ii) c1 < a1 < b1 and b2 > a2:

Theorem 4.13 asserts the principle of …rst mover : in chain store models, unless Player 2 has

the …rst mover advantage, espionage cannot be useful.

The theorem is rather intuitive. Divergence of the Stackelberg payo¤ from the perfect equi-

librium payo¤ implies that Player 2 would prefer to use a reaction which is sub-optimal for her

in order to get Player 1 to choose an action that di¤ers from that prescribed by the perfect equi-

librium. That is, Player 2 faces a trade-o¤ between choosing a reaction policy that is optimal if

realized (direct e¤ect) and choosing a reaction policy that is sub-optimal, but causes Player 1 to

choose a bene…cial action (indirect e¤ect). In the base game commitment is not possible and thus,

according to the de…nition of perfect equilibrium, no player chooses an action that is sub-optimal

against any tremble (in the extensive form setting this translates to sub-optimality in some decision
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node). However, the existence of espionage allows Player 2 to (probabilistically) commit herself

to a sub-optimal reaction. Thus, as long as the costs of espionage are not extreme (low or high),

espionage causes the trade-o¤ between the direct e¤ect and the indirect e¤ect on Player 2’s payo¤s

to be non-trivial.

Remark 4.14 It is important to note that the principle of …rst mover is speci…c to chain store

models and does not hold in general. Indeed, one consequence of Theorem 4.11 is that, in general,

…rst mover advantage is not the sole determinant of whether or not an equilibrium with non-trivial

espionage exists. Indeed, consider the following two chicken games:

Chicken 1:

Left Right

Top 2;5 3; 3

Bottom 1;1 5; 2

Chicken 2:

Left Right

Top 3;5 4;4

Bottom 1;1 5;3

Both games have the same …rst mover advantage characteristics (if Player 2 moves …rst, she

will get the payo¤ corresponding to the Nash equilibrium (Top,Left)). However,

Chicken 1 :
bTR¡ bBL

¯
=

3 ¡ 1
3 +5 ¡ 2 ¡ 1

=
2
5

<
1
2

Chicken 2 :
bTR¡ bBL

¯
=

4 ¡ 1
4 +5 ¡ 3 ¡ 1

=
3
5

>
1
2
:

Hence, only the game Chicken 2 satis…es the conditions for the existence of a true simple espionage

equilibrium as speci…ed in Theorem 4.11. Conditional on Player 2 playing Left, the interests of

both players are in con‡ict. Therefore Player 2 would be willing to play a mixed strategy only if

the information structure is such that the entry (Bottom, Left) would not be reached too often.

When the gap between payo¤s is large, as in Chicken 1, any non-trivial device would make mixing

sub-optimal for Player 2. This example illustrates the message of Theorem 4.11: Generally, the

existence of espionage equilibria depends both on Player 2’s …rst mover advantage and on Player

1’s motives when the Stackelberg action is not taken.

Characterization of e¢ciency improvement: We now give a characterization of when the

existence of espionage provides an e¢ciency improvement, as captured by the sum of the players’

payo¤s. We assume that c2 > b2.

If b1 < a1 < c1 and a2 > c2, then the game is equivalent to the game studied in Example 3.3. In

particular, Claim 3.4 characterizes when there is a more e¢cient equilibrium that uses espionage.

If c1 < a1 < b1 and b2 > a2, then the game is equivalent to the one studied in Example 3.5. In

particular, disregarding the cost of information, espionage provides Pareto improvement.
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5 Concluding Comments

In this paper we have demonstrated the e¤ects of players’ option to purchase information on their

opponents’ decisions (i.e., the option to spy on their opponents). This alteration of the agents’

optimization problem changes the set of predictions of the game. While pure equilibria of the

base game remain equilibria in the extended game with espionage, the set of mixed equilibria may

change for su¢ciently small costs of information. Moreover, there may be additional mixed (perfect

Bayesian) equilibria when espionage is available. In general, the set of true espionage equilibria

coincides with the set of non-degenerate semi-correlated equilibrium distributions.

We identi…ed two principles that hold in various domains of 2 £ 2 games. The principle of …rst

mover asserts that in chain store models non-trivial espionage is used if and only if the perfect

equilibrium of the original game does not coincide with the Stackelberg equilibrium with Player 2

being the Stackelberg leader; that is, espionage may be employed non-trivially in equilibrium if and

only if Player 2 has a …rst mover advantage. The principle of cost independence claims that while

the cost function of information might in‡uence the decision whether to purchase information, it

has no e¤ect on which device is purchased in equilibrium.

Our analysis concentrated mostly on one-shot normal form games. The natural next step is to

extend this study to multi-stage games with a sequence of players’ decisions. This extension has

economic relevance to the timing of decisions. Given that spying is possible only on policies that

have already been determined, there might be a trade-o¤ between committing oneself to policies

early on in the game and waiting to a stage where the opponent’s actions can be spied upon. A

resolution of this trade-o¤ can serve to determine the endogenous timing of policy decisions.

It is also worthwhile noting that espionage can potentially be considered in the context of

private information that is not related to the players’ actions; that is, allowing players to purchase

information on others’ private signals or types could extend the standard models of games with

incomplete information.

Another direction for future investigation concerns the possibility of using espionage equilibria

as a re…nement tool. Indeed, when the cost of information is high, it is not pro…table to purchase

information, hence the set of equilibria of the base game coincides with the set of espionage equilibria

of the extended game. When the cost of information is zero, the only equilibria of the base game

that remain espionage equilibria of the extended game are the pure ones. Thus, espionage can

serve as a re…nement, by considering all Nash equilibria that are the least vulnerable to espionage.

It is interesting to know how this type of re…nement relates to existing ones (e.g. trembling hand
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equilibria).

Finally, our model could be extended to allow for protection against espionage (folk wisdom

suggests that this phenomenon occurs in army-related enterprises, as well as in industrial/economic

ones). Since espionage sometimes leads to a strict Pareto improvement, it is not clear that even

if protection is very cheap, the game is equivalent to the base game. We do predict, though, that

if protection is extremely costly, the game resembles the extension considered in this paper. The

authors do not know how the current predictions change when protection costs are comparable to

the costs of information.
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Appendix

Proof of Claim 3.4. The Entrant’s payo¤ is p¤q¤b¡(1¡p¤)(1¡q¤)¡'(q¤) and the Incumbent’s

payo¤ is a ¡ q¤a: Using (4), the sum of payo¤s is

W = q¤'0(q¤) ¡ 1 + p¤ ¡'(q¤)+ a ¡ q¤a:

We look for conditions under which W > b:

If b = 1 then, by (4), '0(q¤) = 1, and by (6) and (7), 1 ¡ q¤+ '(q¤) · p¤ · q¤ ¡ '(q¤): Thus,

W > b = 1 if and only if q¤(2 ¡ a) ¡ 2'(q¤) ¡ ² > 2 ¡ a; where ² = q¤ ¡'(q¤) ¡ p¤ ¸ 0: This last

inequality holds for some p¤ and some cost function ' if and only if a > 2:

Assume now that b 6= 1 and a > b. Choose ² 2 (0; b) su¢ciently small so that a ¡ b >
1+a
1+2a(a¡b +²)+²(1+1=b). Choose p¤ > 1 ¡²=b, and a cost function ' that satis…es: (i) '(q¤) < ²,

and (ii) '0(q¤) = 1 ¡ p¤ + p¤b > b ¡ ². Then

W = a +(p¤ ¡ 1) + q¤('0(q¤) ¡ a) ¡ '(q¤)

> a ¡ ²
µ

1 +
1
b

¶
+ q¤(b ¡a ¡ ²) = a ¡ ²

µ
1 +

1
b

¶
+

1 + a
1 + 2a

(b ¡a ¡ ²) > b;

where the last inequality follows from the choice of ².

Assume now that b > 1 and a · b. By (4) and (5), '0(q¤) < b: In particular, W = a + (p¤ ¡
1) + q¤'0(q¤) ¡ q¤a ¡'(q¤) · b:

Finally, assume that b < 1 and a · b. By (4) and (5), '(q¤) > b. By (4) and (2)

W = a ¡ q¤a + q¤'0(q¤) + p¤ ¡ 1 ¡ '(q¤)

= a ¡ q¤a + q¤'0(q¤) + (1 ¡ '0(q¤))=(1 ¡ b)¡ 1 ¡ '(q¤)

=
a2

1 +2a
+ '0(q¤)

µ
1 +a
1 +2a

¡ 1
1 ¡ b

¶
+

b
1 ¡ b

¡ '(q¤)

= b +
b2

1 ¡ b
+

a2

1 + 2a
+'0(q¤) £ ¡a ¡ b ¡ ab

(1 +2a)(1 ¡ b)
¡ '(q¤)

< b +
b2

1 ¡ b
+

a2

1 + 2a
¡ b

a + b + ab
(1 + 2a)(1 ¡ b)

= b + a £ a ¡ b
1 + 2a

· b:
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Proof of Theorem 4.6. Let p = (pij) be a probability distribution induced by a true

espionage equilibrium in the extended game. Since in equilibrium Player 1 plays a best response

given the signal he receives, condition 1 of De…nition 4.5 holds. Moreover, since in a true espionage

equilibrium Player 1 purchases a costly information device, the distribution is non-degenerate. Let

j and j0 be such that
P
i2I pij ;

P
i2I pij0 > 0. If

P
i2I pijbij=

P
i2I pij >

P
i2I pij0bij 0=

P
i2I pij0 then

Player 2 would not play the action j0 with positive probability, and so
P
i2I pij 0 = 0. In particular,

condition 2 of De…nition 4.5 holds for such j and j0. Now let j00 be such that
P
i2I pijbij=

P
i2I pij <

mini2I0 bij00. Player 2 cannot play j with positive probability in an equilibrium, since she gains more

by playing j00, provided Player 1 plays an action in I0. However, equilibrium perfection requires

that Player 1 always plays a best reply against his belief. In particular, Player 1 can only use

actions in I 0.

Conversely, let p be a semi-correlated equilibrium distribution. De…ne y 2 ¢(J) by yj =
P
i2I pij , and let the signal space be S = I [ f!g. The signal ! will be used to force Player 1 to

purchase a certain information device. For each j 2 J choose some i(j) in argmini2I 0bij ; that is,

i(j) is a “punishing action” that minimizes the payo¤ of Player 2 if she chooses to play j. Since

i(j) 2 I0, there exists a distribution by(j) 2 ¢(J) such that i(j) is a best response against by(j). For

each j 2 J with yj > 0 de…ne a probability distribution xj 2 ¢(I) by

xj [i] = pij=yj = pij=
X

i2I
pij ;

that is, the probability induced by p on the jth column. De…ne the following function q¤ : J ! ¢(S).

q¤(j) =

8
<
:

i(j) yj = 0

xj yj > 0:

The information device q¤ recommends an action to Player 1: if Player 2 chooses an action j

she should not play, it recommends a punishment for Player 2. Otherwise it recommends playing

according to the conditional distribution given j.

Player 1’s beliefs concerning his opponent’s strategy are speci…ed by the Bayesian posterior

whenever de…ned. If the Bayesian posterior is not de…ned (which happens when Player 2 plays an

action j with yj = 0, such that i(j) is not in the support of any (xj0)j0 :yj 0>0), the belief is byj0, for

some j0 with i(j0) = i(j).

De…ne now a function x : I ! I by

x(i) = i;
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that is, Player 1 follows the recommendation of the device. We will now see that since p is a

semi-correlated equilibrium distribution, if the players play (y;q¤;x) then Player 2 cannot gain by

deviating, and Player 1 cannot gain by deviating from x. We will then construct Q and ' that

“force” Player 1 to purchase the information device ©(q¤).

Assume that the players play the simple espionage strategy (y;q¤; x). The probability distri-

bution induced on the pairs of actions is exactly p. By condition 2 of De…nition 4.5, Player 2

is indi¤erent between all actions j with yj > 0, and by condition 3 she cannot pro…t from any

deviation. By condition 1, Player 1 cannot pro…t by not following the recommendation of q¤.

We shall now construct Q and ' that “force” Player 1 to purchase the device ©(q¤).

Denote by q0 the non-informative device that sends the signal ! regardless of the action Player

2 takes. Let Q be the convex hull of q¤ and q0 (a one-dimensional space): We take the cost function

to be an a¢ne function so that for all ® 2 [0;1]; '(®q¤ +(1 ¡ ®)q0) = ®½; for some ½ > 0:

We now show that it would be optimal for Player 1 to purchase q¤ and to follow its recommen-

dation, provided ½ is su¢ciently small.

Assume that Player 1 purchases the device q = ®q¤+(1 ¡®)q0; and plays the action z(s) upon

receiving the signal s 2 I [ f!g:
Player 1’s payo¤ is:

¼1(y;®; z) = ®
X

i;j

pijaz(i)j +(1 ¡ ®)
X

i;j

pijaz(!)j ¡ ½®:

Since p is a semi-correlated equilibrium distribution, z(i) = i maximizes the …rst term. We now

show that since p is non-degenerate, this quantity is maximized at ® = 1, which concludes the

proof.

The function ¼1(y; ®;z) is linear in ®; it is equal to
P
i;j pijaij¡½ at ® = 1, and to

P
i;j pijaz(!)j

at ® = 0. From the non-degeneracy condition, there exists a su¢ciently low ½ for which
P
i;j pijaij¡

½ >
P
i;j pijaz(!)j .

Proof of Theorem 4.11. We apply Theorem 4.6 in the case of canonical symmetric devices

in 2 £ 2 games. In particular, we consider probability distributions of the form

p11 = yq; p12 = (1 ¡ y)(1 ¡ q); p21 = y(1 ¡ q); and p22 = (1 ¡ y)q: (8)

By Theorem 4.6 we have that qb11 + (1 ¡ q)b21 = (1 ¡ q)b12 + qb22, which is equivalent to

¯q = b12 ¡ b21: In particular, (ii) holds.
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Since q 2 (1=2;1], it follows that if a simple espionage equilibrium exists then one of the claims

(i).a or (i).b holds.

For the converse, if ¯ = 0 then (i).a implies that b11 = b22 and the probability distribution

(8) with q = 1 and any y 2 (0; 1) is a non-degenerate semi-correlated probability distribution. If

¯ 6= 0, de…ne q0 = (b12 ¡ b21)=¯: By (i).b, q0 2 (1=2; 1]: Since a11 > a21 and a12 < a22, there exists

a unique y0 2 (0;1) that solves the equation

yq0a11 + (1 ¡ y)(1 ¡ q0)a12
yq0 + (1 ¡ y)(1 ¡ q0)

=
y(1 ¡ q0)a21 + (1 ¡ y)q0a22

y(1 ¡ q0) + (1 ¡ y)q0
:

Then the probability distribution (8) with q = q0 and y = y0 is a non-degenerate semi-correlated

equilibrium distribution.

Proof of Theorem 4.13. We …rst prove that b) and c) are equivalent. Since c2 > b2 action

Right of Player 2 is part of any perfect equilibrium. If a1 < c1 then the perfect equilibrium is

(Bottom,Right) and the Stackelberg payo¤ is di¤erent if and only if a2 > c2 and b1 < a1. If a1 > c1
then the perfect equilibrium is (Top,Right) and the Stackelberg payo¤ is di¤erent if and only if

b2 > a2 and a1 < b1. To summarize, the second statement holds if and only if one of the following

conditions holds:

1. b1 < a1 < c1 and a2 > c2; or

2. c1 < a1 < b1 and b2 > a2.

Note that c) implies a). Indeed, case c.i) (resp. case c.ii)) is equivalent to the chain store model

studied in Example 3.3 (resp. Example 3.5).

It remains to show that a) implies c). We will use Theorem 4.6.

Assume there is a true espionage equilibrium, and denote the corresponding non-degenerate

semi-correlated equilibrium distribution p over action combinations by:

pTL = yq; pTR = (1 ¡ y)(1 ¡ q); pBL = y(1 ¡ q); and pBR = (1 ¡ y)q;

where, since p is non-degenerate, y; q 2 (0; 1): Assume w.l.o.g. that a2 = 0.

Since p is non-degenerate, and by condition 1 of De…nition 4.5, minfb1; c1g < a1 < maxfb1; c1g.
In particular, b1 6= c1 and I = I 0. By Lemma 4.8, b1 < a1 < c1 if and only if q < 1=2, and

c1 < a1 < b1 if and only if q > 1=2.

Condition 2 of De…nition 4.5 guarantees that

(1 ¡ q)b2 = qc2; (9)
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and condition 3 of De…nition 4.5 indicates that

(1 ¡ q)b2 ¸ minf0; c2g and qc2 ¸ minf0; b2g: (10)

Eqs. (9) and (10), together with the assumption that c2 > b2; imply that either (i) a2 = 0 > c2 > b2
and q > 1=2, or (ii) c2 > b2 > a2 = 0 and q < 1=2. Thus, c) holds.
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Footnotes:

1. From the 1997 U.S. State Department and Canadian Security and Intelligence Service Re-

ports, corporate espionage costs U.S. businesses over $8.16 billion per year. Moreover, 43%

of American corporations have had at least six incidents of corporate espionage.

2. This di¤ers from reputational explanations (see, e.g., Kreps, Milgrom, Roberts, and Wilson

[1982] and Fudenberg and Levine [1989, 1992]) both in assumptions and results. We do

not assume anything about the distribution of types of Incumbents. Hence, the somewhat

problematic assumption of “irrational Incumbents” is not needed in this model. Moreover,

our results predict that a non-vanishing portion of the population of Incumbents will in fact

accommodate.

3. Note that equilibrium Pareto ine¢ciency stands in contrast to Matsui’s [1989] main result.

Unlike the current framework, Matsui considered a repeated game scenario with information

leakage. In his setup an informed player can signal his information to his opponent, whereby

both players switch to a Pareto e¢cient strategy pair.

4. One class of games that has been recently studied in the literature and is comprised of games

that always possess a pure equilibrium is that of potential games (see Monderer and Shapley

[1996]).
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