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1. INTRODUCTION

Situations in which agents’ choices depend on choices of those in close proximity, be it social or
geographic, are ubiquitous. Selecting a new computer platform, signing a political petition, or
even catching the flu are examples in which social interactions have a significant role in one’s
ultimate choice or state. Some behaviors or states propagate and explode within the popula-
tion (e.g., the Windows OS, the HIV virus, etc.') while others do not (e.g., certain computer
viruses?). Our goal in this paper is twofold. First, we provide a general dynamic model in
which agents’ choices depend on the underlying social network of connections. Second, we
show the usefulness of the model in determining when a given behavior expands within a
population or disappears as a function of the environment’s fundamentals.

In more detail, we start with a framework in which agents each face a choice between
two actions, 0 and 1 (e.g., whether or not to pursue a certain level of education, switch to
the Linux OS, sign a petition, or go on strike). Agents are linked through a social network,
modeled by a graph. An agent’s payoffs from each action depends on her location within the
network (specifically, the number of neighbors she has), her neighbors’ choices, and a random
cost determined at the outset. The diffusion process is defined so that at each period, the
agent best responds to the actions taken by her neighbors in the previous period, assuming
that her neighbors follow the population distribution of actions (a mean-field approximation).
For instance, if actions are strategic complements, then over time as an agent’s neighbors
become more inclined to choose the action 1, she becomes more inclined to switch to the
action 1 as well. Steady states correspond to equilibria of the static game. Under some simple
conditions, equilibria take one of two forms. Some are stable, so that a slight perturbation
to any such equilibrium would lead the diffusion process to converge back to that equilibrium
point. Other equilibria are unstable, so that, for example, a slightly higher level of 1 adopters

ultimately leads to an increase in the number of action 1 adopters (and eventually to a stable

ISee Gladwell (2000) and Rogers (1995).
2See virus prevalence data at http://www.virusbtn.com/, and summarized statistics in Pastor-Satorras and
Vespignani (2000).
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steady state). Such equilibria are called tipping points.

There are four main insights that come out of our inquiry that relate the social network
and the payoff structure to the set of equilibria. First, increasing the costs of action 1 (in terms
of a First Order Stochastic Dominance shift of the cumulative distribution of costs) increases
tipping points and decreases the stable equilibria levels of action 1 adopters. Increasing costs
thus makes it harder for behavior to diffuse, and leads to lower overall levels of action 1
adoption in a stable equilibrium. If there are positive externalities, this means that average
welfare decreases. Second, a shift of the degree distribution of the social network generates
higher probabilities of encountering neighbors of higher degrees, which in the case of strategic
complements yields lower tipping points and higher stable equilibria, so that behavior diffuses
more easily and converges to higher equilibrium levels. Third, under some assumptions on
the cost distribution, increasing the variance of degrees similarly lowers tipping points and
raises the stable equilibria of the system. Fourth, we identify conditions which ensure that
the level of diffusion in the society exhibits an “S shape,” well-documented in the empirical
literature on diffusion, where adoption initially speeds up until a threshold point in time at
which it starts slowing down. In terms of location within the network, agents of different
levels of connectedness exhibit different adoption paths as well as different ultimate levels of
adoption. This hints at the importance of understanding underlying network parameters when
empirically estimating fundamentals such as revenues to a new action or cost distributions.

There are numerous potential applications of this framework, ranging from marketing (e.g.,
understanding which consumers should optimally be targeted with advertising), to financial
markets (gaining insights on when bank runs, not necessarily encompassing the entire pop-
ulation, are formed), to epidemiology (establishing the fundamental characteristics for the
evolution of an epidemic or spread of a computer virus), to politics (identifying the underly-
ing attributes conducive to political uprise, providing a first step toward understanding the
structure of information transmission). Given that social networks differ substantially and sys-
tematically in structure across settings (e.g., ethnic groups, professions, etc.), understanding

the implications of social structure on diffusion is an important undertaking.
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In terms of related work, there is a previous literature on spread of diseases on social net-
works (e.g., see Pastor-Satorras and Vespignani (2000, 2001), Newman (2002), Lopez-Pintado
(2004), Jackson and Rogers (2007)).> This enriches the analysis in terms of distinguishing be-
tween tipping points and stable equilibria, and in terms of moving from a mechanical spread
of disease to a strategic interaction; and also provides general results on how social structure
impacts diffusion.

There is also a recent literature examining games on networks (e.g., Glaeser and Scheinkman
(2000), Kearns, Littman and Singh (2000), Morris (2000), Galeotti, Goyal, Jackson, Vega-
Redondo, and Yariv (2005), henceforth GGJVY, Lopez-Pintado and Watts (2005), and Sun-
dararajan (2006)). The analysis here is a natural complement to the analysis of static equilibria
of network games (e.g., Glaeser and Scheinkman (2000) or GGJVY) in that it expands our
understanding of the diffusion of behavior and of the stability properties of equilibria, as well
as enriches the set of applications that are covered. The closest analog in approach to that
taken here is Jackson and Yariv (2005). They also analyze the influence of network structure
on diffusion of behavior in network games. Their results, however, apply more narrowly in
terms of payoff structures and cost distributions. Furthermore, the results here provide for far
more extensive characterizations of the stability of equilibria, the general methodology, and

the diffusion over time.

2. THE MODEL
2.1. Social Networks and Payoffs. We consider a set of agents and capture the social
structure by its underlying network. We model the network through the distribution of the
number of neighbors, or degree, that each agent has. Agent ¢’s degree is denoted d;. The

fraction of agents in the population with d neighbors is described by the degree distribution

3There is also a large literature on diffusion (see Rogers (1995) for a comprehensive survey), including some
analysis of stability of equilibria (e.g., Granovetter (1978)). Again, our contribution is the examination of the
impacts of the social structure on stability and diffusion. The same is true regarding the connection to various
studies of the stability of equilibria in economic settings (e.g., see Fisher (1989) for an overview of the stability
of general equilibria).

4The cardinality of the set of agents is not invoked in our analysis, as we study a Bayesian equilibrium
structure where agents are unsure of the larger network in which they reside.
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D
P(d) for d = 0,1, ...., D (with the possibility that D = co), where Zd_l P(d) = 1.

Let

B P(d)d

- Y

d
where d = Ep[d] = >, P(d)d. This corresponds to the usual calculation of the probability of
the degree of an agent conditional on that agent being at the end of a randomly chosen link
in the network.

Agents each have a choice between taking an action 0 or an action 1. Without loss of
generality, we consider the action 0 to be the default behavior (for example, the status-
quo technology). Agent i has a cost of choosing 1, denoted ¢;. Costs are randomly and
independently distributed across the society, according to a distribution H¢. Let ug,(a,x)
denote the utility of agent i of degree d; when she takes the action a € {0, 1} and expects each
of her neighbors to independently choose the action 1 with probability x. Agent i’s added

payoff from adopting behavior 1 over sticking to the action 0 is then
v(d;, x) — ¢,

where

v(d;, x) = ug, (1, ) — ug, (0, ).

This captures how the number of neighbors that ¢ has, as well as their propensity to choose

the action 1, affects the benefits from adopting 1. Thus, ¢ prefers to choose the action 1 if
¢ < vu(d;, ). (1)

For some applications it is convenient to normalize u4(0,2) = 0 for all d and x. This
normalization is with some loss of generality in terms of welfare conclusions (see below).

In general, it will be useful to distinguish between two classes of utilities. We say that
the game exhibits positive externalities if for each d, and for all z > 2/, u4(a, z) > ug4(a, '),

a = 0,1. Analogously, we say that the game exhibits negative externalities if for each d, and
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for all x > 2/, ug(a, z) < ug(a,z’), a =0, 1.

Let H(d,z) = H(v(d,z)). In words, H(d,z) is the probability that a random agent of
degree d chooses the action 1 when anticipating that each neighbor will choose 1 with an
independent probability x.

We illustrate the generality of the framework by noting a few special cases.

Examples o v(d,z) = u(dz), so that an agent’s payoffs are a function of the expected
number of neighbors adopting the action 1. This is a reasonable assumption in
cases such as the learning of a new language, the adoption of a communication

technology (skype, google talk, etc.), and so on.”

e v(d,z) = u(x), so that agents care only about the average play of their neighbors.

In this case, the dependence on degree is lost and network structure plays no role.

e v(d, ) is a step function, for instance taking one value if z lies below a threshold
(where the threshold can depend on d), and taking another value if x exceeds the
threshold. A metaphor of a political revolt fits this structure, where an agent joins a
revolt if either the number of neighbors (e.g., Chwe (2000)) or fraction of neighbors
(e.g., Granovetter (1978)) surpasses a certain threshold.

2.2. Bayesian Equilibrium. We consider symmetric Bayesian equilibria of the network

game as follows:

1. Each agent ¢ knows only her own degree d; and cost ¢;, the distribution of degrees in the
population, and assumes that degrees and cost parameters are independently allocated.
Thus, the game is a Bayesian game in the Harsanyi sense where types are given by

degrees and costs.

2. The play is symmetric in the sense that any agent perceives the distribution of play of

each of her neighbors to be independent and to correspond to the distribution of play

Formally, this corresponds to the framework analyzed in GGJVY.
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in the population.’

Existence of symmetric Bayesian equilibria follows standard arguments. In cases where v
is non-decreasing in x for each d, it is a direct consequence of Tarski’s Fixed Point Theorem.
In fact, in this case, there exists an equilibrium in pure strategies. In other cases, provided
v is continuous in z for each d, we can still find a fixed point by appealing to standard fixed
point theorems (e.g., Kakutani) and admitting mixed strategies.”

A simple equation is sufficient to characterize equilibria. Let x be the probability that a
randomly chosen neighbor chooses the action 1. Then H(d, x) is the probability that a random
(best responding) neighbor of degree d chooses the action 1. Thus, it must be that

v=g¢(x) =Y P(d)H(d,x). (2)

Equation 2 characterizes equilibria in the sense that any symmetric equilibrium results
in an x which satisfies the equation, and any x that satisfies the equation corresponds to an
equilibrium where type (d;, ¢;) chooses 1 if and only if inequality (1) holds.®

Given that equilibria can be described by their corresponding x, we often refer to some

value of = as being an “equilibrium.”

2.3. A Diffusion Process. Consider a diffusion process governed by best responses in

discrete time. At time t = 0, a fraction z°

of the population is exogenously and randomly
assigned the action 1, and the rest of the population is assigned the action 0. At each time

t > 0, each agent, including the agents assigned to action 1 at the outset, best responds to the

6This is an extension of the concept from GGJVY, as in that model agents have identical costs. The
equilibrium is symmetric in that it depends only on an agent’s type (d;, ¢;), and not her label 4.

"In such a case, the best response correspondence (allowing mixed strategies) for any (d;,¢;) as dependent
on x is upper hemi-continuous and convex-valued. Taking expectations with respect to d; and ¢;, we also have
a set of population best responses as dependent on x that is upper hemi-continuous and convex valued.

8The above statement corresponds to situations where there are no atoms in H¢ at v(d,z) for any d. In
cases where there is an atom in H¢ at v(d, x) for some d, then some equilibria might involve mixed strategies
among the positive measure of types who have degree d and cost exactly equal to v(d,z). In such a case,
equation (2) holds relative to a selection of H(d,x) corresponding to the percent of agents with a degree of d
expected to take action 1, rather than H¢(v(d,x)).
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distribution of agents choosing the action 1 in period ¢ — 1, presuming that their neighbors
will be a random draw from the population.

Thus, the dynamics are governed by myopic best responses, where the best responses are
relative to the Bayesian structure of the game. The analysis provides a two-fold contribution.
First, it provides a characterization of the structure of the Bayesian equilibria and their
stability or instability. Second, it provides a heuristic investigation of diffusion. To the extent
that the network is large and types are uncorrelated, it offers an approximation of diffusion.’
Let 2% denote the fraction of those agents with degree d who have adopted behavior 1 at

time ¢, and let z' denote the link-weighted fraction of agents who have adopted the behavior

at time t. That is,
xt = Z P(d)z!,.
d

Then at each date t,
oY= H(d,z"")

and therefore

o' =Y " P(d)H(d,2").

Any rest point of the system corresponds to a static Bayesian equilibrium of the system.

If payoffs exhibit complementarities, then convergence of behavior from any starting point
is monotone, either upwards or downwards. So, once an agent (voluntarily) switches behaviors,
the agent will not want to switch back at a later date.!® Thus, although these best responses

are myopic, any eventual changes in behavior are equivalently forward-looking.

9 Allowing for a richer information structure where agents react to more comprehensive information, poten-
tially including the actions of the realized types of their neighbors, may be more realistic in some contexts,
particularly for small group interactions. However, this would introduce numerous technical difficulties (see
examples in GGJVY). Since in most big groups agents cannot track the full map of social connections, we
view the analysis presented here as a natural first step.

10Tf actions are strategic substitutes, convergence may not be guaranteed for all starting points. However,
our results will still be useful in characterizing the potential rest points, or equilibria, of such systems.
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3. EQUILIBRIUM STRUCTURE

In the remainder of the analysis, unless otherwise stated, let H¢ be atomless, so that there is
no need for selections of H and all equilibria are characterized by (2).
The following observation regarding equilibrium structure is helpful in illustrating some of

the driving forces behind our results.

Observation 1 If v is non-decreasing (non-increasing) in d for each x, then any symmet-
ric equiltbrium entails agents with higher degrees choosing action 1 with weakly higher
(lower) probability. Furthermore, if uq(0,x) = 0 for all d, then agents of higher degree
have higher (lower) expected payolffs.

Indeed, consider any symmetric equilibrium generating a probability of x for a random
neighbor to choose action 1. If v is non-decreasing in d, then the expected payoff of a degree
d+ 1 agent is v(d + 1,2) > v(d,z) and so H°(v(d + 1,z)) > Hv(d,z)) and agents with
higher degrees choose 1 with weakly higher probabilities. Since an agent of degree d + 1 can
imitate the decisions of an agent of degree d and gain at least as high a payoff, the observation

follows.!!

3.1. Multiplicity. The multiplicity of equilibria is determined by the properties of ¢,

which, in turn, correspond to properties of P and H. For instance,

e if H(d,0) > 0 for some d in the support of P, and H is concave in x for each d, then

there exists at most one fixed point, and

e if H(d,0) =0 for all d and H is strictly concave or strictly convex in x for each d, then
there are at most two equilibria - one at 0, and possibly an additional one, depending

on the slope of ¢(z) at z = 0.1

1 The observation provides an analog to Proposition 2 from GGJVY, on a simpler action space but applying
to a much wider set of payoff structures.

1235 is standard, the slope needs to be greater than 1 for there to be an additional equilibrium in the case
of strict concavity and less than 1 in the case of strict convexity.



DIFFUSION OF BEHAVIOR AND EQUILIBRIUM PROPERTIES IN NETWORK GAMES 9

In general, as long as the graph of ¢(z) crosses the 45 degree line only once, there is a
unique equilibrium (see Figure 1 below). We note that there is a conceptual connection be-
tween our analysis and the recent literature on global games identifying a variety of forms
of heterogeneity guaranteeing uniqueness when the underlying game with complementarities
admits multiple equilibria (see Morris and Shin (2002, 2003) and references therein). The het-
erogeneity determining uniqueness in our general setup is introduced through the differential
costs agents experience, as well as through the different degrees agents have within the social
network. In a sense, the current analysis is more general in that it allows us to study the
impact of changes in a variety of fundamentals on the set of stable and unstable equilibria,
regardless of multiplicity, in a rather rich environment. Moreover, we can tie the equilibrium

structure to the network of underlying social interactions.!?

3.2. Stability. We are interested in equilibria that are robust to small perturbations, and
are therefore stable, and equilibria that are not robust, from which small perturbations lead

to significant changes in the distribution of play in the population. Formally,

Definition [Stability and Tipping|. An equilibrium z is stable if there exists € > 0 such that
dlr—e)>x—cand p(x +¢) <x+e¢ forall & >e>0. An equilibrium x is unstable
or a tipping point if there ezists €' > 0 such that ¢(x —¢) < x—¢e and ¢p(x+¢e) >x+¢

forall &' > &> 0.

The point x = 0 has a special status in several of the germane applications of the model
(contagion, fashions, etc.). Depending on the setting it can turn out to be either an equilibrium
or not, and when it is an equilibrium it can be stable or unstable. More specifically, since
H(d,z) > 0 for all d and x, 0 is an equilibrium if and only if H(d,0) = 0 for all d in the
support of P. This occurs if ming v(d, 0) is no greater than the minimal cost of adopting the

action 1. Stability then depends on the behavior of ¢ in the vicinity of = 0. Supposing that

I3 A special case of our analysis is one where the network is complete, which is equivalent to one where all
agents interact with one another.
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0 is an equilibrium, if H(d,x) is differentiable in x at 2 = 0, then 0 is stable if ¢'(0) < 1 and
unstable if ¢'(0) > 1.

For example, if v(d,z) = dz, so that returns depend on the number of agents adopting
the new technology, or being contaminated, instability at 0 corresponds to the condition

E[d2]> 1 14

Hc/(o) .
In order to make comparisons across environments, we need to be able to keep track of
the changes in equilibria. As there are multiple equilibria, they may be changing in a variety

of ways. The kinds of changes we are interested in are ones that either make diffusion easier

or more difficult, in a well-defined sense.

Definition [Greater Diffusion] One environment, with corresponding mapping 5(@, gener-
ates greater diffusion than another, with corresponding mapping ¢(x), if for any stable
equilibrium of the latter there exists a (weakly) higher stable equilibrium of the former,
and for any unstable equilibrium of the latter there is either a (weakly) lower unstable

equilibrium of the former or else 5(0) > 0.

One environment thus has greater diffusion than another if its tipping points or unstable
equilibria are lower, thus making it easier to get diffusion started, and its stable equilibria are
higher, and so the eventual resting points are higher.

Before turning to our results, we need one technical definition.

Definition [Regular Environment|. An environment is regular if all fized points are either

stable or unstable and H is continuous.

Note that in a regular environment, if 2 is an unstable fixed point, and 2’ is the next
largest fixed point, then 2’ must be stable.

The following Proposition illustrates how pointwise increases in ¢ affect the tipping points
and stable points of the system. It will be key in the analysis of the effects of changes in

fundamentals.

4When specializing H¢ to be uniform, this coincides with the condition ensuring the stability of 0 in the
epidemiology literature (e.g., see Pastor-Satorras and Vespignani (2000, 2001).
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Figure 1: The Effects of Shifting ¢(x) Pointwise

Proposition 1. Consider ¢ and ¢ corresponding through (2) to two regular environments.

If ¢(x) > ¢(x) for each x, then ¢ has greater diffusion than ¢.

The proposition is straightforward and so its proof is omitted.

Proposition 1 implies that a small upward shift in a (continuous) ¢ leads to locally lower
tipping points and higher stable equilibria, as illustrated in Figure 1.

With respect to welfare, if externalities are positive, then higher equilibrium points corre-
spond to (weakly) higher expected utilities to agents of each degree regardless of their action,
as the payoff from either of their actions has increased and so their best response must lead

to a higher payoff.

4. COMPARATIVE STATICS
We now identify how equilibrium structure depends on three fundamentals in our environment:

the cost distribution H¢, the return function v, and the network structure as described by P

and P.

15In fact, for sufficiently small shifts of ¢ as in the proposition, there are stronger conclusions one can make
in terms of the changes in equilibria. Indeed, there is a one-to-one mapping between equilibria, and each
equilibrium point has a unique counterpart that has shifted as claimed.
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Given that

o(x) = 3 P(d)H (v(d, x)),

and Proposition 1, we can deduce much about changes in the structure of equilibria by con-
sidering changes in costs, returns, and network structure that shift ¢(x) upwards for all = or

downwards for all z.

4.1. Changes in Cost Distribution. We consider increases in costs in terms of first

order stochastic dominance shifts of H¢.

Proposition 2 [Increasing Costs|. If H FOSD H¢, then the corresponding ¢(z), ¢(x) satisfy
o(x) < ¢(z) for each x. Thus, if H and H® (given v) correspond to regular environments,

then H¢ generates greater diffusion than H .

Proof of Proposition 2: By first order stochastic dominance,

@) = P()H (v(d,x)) < Y P(A)H(v(d, x)) = ¢(x).

d

The implications regarding tipping points and stable equilibria then follow directly from
Proposition 1.1

As costs increase, agents are generally less prone to take action 1, and so tipping points
are shifting up and stable equilibria are shifting down.

Note that if the game exhibits positive externalities, then clearly if z* is a stable equilibrium
under H® and 7% < z* is a stable equilibrium under H', then expected utility of all agents
goes up and expected welfare under H¢ when z* is played, is higher than under H when Z*
is played.

We remark that the conclusions of Proposition 2 pertaining to shifts of the equilibria set

hold regardless of whether v is monotonic in either of its arguments.

4.2. Changes in Network Structure. We consider two types of changes to the network

architecture. The first pertains to the number of expected neighbors each agent has. The
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second relates to the heterogeneity of connectedness within the population.

Proposition 3 [FOSD shifts]. If P FOSD P’ and H(d, z) is non-decreasing (non-increasing)
in d for all x, then ¢(x) > ¢'(x) (p(x) < ¢'(x)) for each x. Thus, if the environments

corresponding to P and P’ are regular, then P generates greater diffusion than P’.

Proof of Proposition 3: If H(d,x) is non-decreasing in d, then by the definition of FOSD,
¢(x) = > P(d)H(d,z) > Y  P(d)H(d,z) = ¢'(v),
d d

and so the result follows directly from Proposition 1 (and analogously for H(d,z) non-
increasing). I

Proposition 3 tells us that if H is non-decreasing, tipping points are lower and stable
equilibria are higher under ﬁ, and that the opposite holds when H is non-increasing. A
related result appears in GGJVY (Propositions 4 and 5), but with several differences. The
result does not distinguish between stable and unstable equilibria and only applies to a special
class of payoff functions. On the other hand, the result there applies to more general action
spaces (in the case where H is non-decreasing).

To gain intuition for Proposition 3, consider a case in which v(d, z) is non-decreasing in
d. The observation in Section 3 tells us that any symmetric equilibrium entails higher degree
agents choosing action 1 with higher probability. Start then with any such equilibrium under
P’ and consider a shift from P for which P FOSD P’. Without any change in strategies, each
agent would perceive her neighbors to be more likely to have higher degrees. Thus, a best
response would entail a greater propensity to choose the action 1. We can now iterate best
responses and converge to an equilibrium involving a (weakly) higher rate of agents of each
type choosing the action 1. In particular, it is easier to get the action 1 adopted and tipping
points are lower.

As for welfare, consider for the sake of illustration the case of positive externalities and

uq(0,2) = 0 for all d and x. A FOSD change in the degree distribution of neighbors affects
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players in the same direction in terms of their expected payoffs (that is, expected payoffs
go up for all d). In particular, expected payoffs corresponding to stable equilibria increase
for agents of any given type, and if the underlying degree distribution itself is shifted in
the sense of FOSD (that is, P FOSD P’ in the proposition), then more weight is shifted to
higher expected payoff agents (recall that H€ is atomless) and overall welfare increases. This
condition is naturally satisfied when, e.g., P is a simple translation of the distribution P’.
Unfortunately, more general forms of FOSD shifts in the distribution of neighbors’ degrees,
ﬁ, do not always correspond to FOSD shifts in the original degree distribution P and so
welfare implications are, in general, ambiguous.!®

We now examine changes in the heterogeneity of connectedness in the form of mean-

preserving spreads of the degree distribution.

Proposition 4 [MPS in P]. If H(d, z) is non-decreasing and convex (non-increasing and con-
cave) in d, then P is a MPS of P' implies that ¢(x) > ¢'(z) (¢(z) < ¢'(x)) for all x, and so
P generates greater (lesser) diffusion than P’.

Furthermore, if u4(0,x) = 0 for all d and x, the game exhibits positive externalities, and
v(d,x) is convex (concave) in d, then if x* is a stable equilibrium under P and T5 < z*

(T* > x*) is a stable equilibrium under P’, the expected welfare under P when x* is played,

is higher (lower) than under P' when T* is played.

Proof of Proposition 4: When H (d, z) is non-decreasing and convex, H(d, x)d is a convex
and increasing function of d. Since ¢(z) = % > 4 H(d, z)P(d)d, the result then follows directly
from the definition of MPS. Regarding welfare, assume indeed that v(d, x) is convex and let

T*, x* be given as stable points satisfying the statement of the Proposition. The welfare level

16 For more on this, see GGJVY. As an example, consider a network comprised of agents of degrees 1, 10, 100
and 1000, and consider P and P’ such that P(1) = P(100) = P(1000) =  and P’(1) = P'(10) = %, P’(100) =
%,P’(IOOO) = %. In this case, P FOSD P, but P does not FOSD P’. Consider v(l,z) = 0,v(10,2) =
100z, v(100, z) = 101z, v(1000, x) = 102z. Note that v(d,x) is non-decreasing in d for all z, but that for any
fixed z, welfare under P is given by 67%:1: and is lower than under P’, which is given by 75%1:. Thus, for
appropriate choice of cost distribution, welfare may be impacted negatively by a shift from P’ to P.
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under P when z* is played is given by >, v(d, z*)P(d). Now,

> u(d,z*)P(d) =Y v(d, T)P(d) = > v(d,z*)P'(d),

d d d

where the first inequality follows from the fact that v is non-decreasing in x and the second
from the definition of MPS. Since the right hand side is precisely the welfare level under P’
when T* is played, the proposition’s claim follows. The case in which H (d, x) is non-increasing
and concave follows analogously. |

The convexity and monotonicity conditions in Proposition 4 are clearly satisfied when
v(d, x) is multiplicatively separable, v(d,z) = v(d)f(x), f(z) > 0 increasing, v(d) is non-
decreasing and convex, and H¢ is convex.'” In that case, MPS shifts of the degree distribution
increase the number of low and high degree nodes. From the observation in Section 3, higher
degree agents adopt the action 1 with greater propensity and so given the complementarities
(0(d) f(z) is increasing in x), the likelihood of any random agent choosing the action 1 goes
up. The convexity of H(d,x) guarantees that the effect of the increase in the higher degree
agents at least offsets the effect of an increase in the number of low degree agents, thereby
generating higher stable equilibria (and lower tipping points).

Note that this result implies that if H(d,z) is non-decreasing and convex, then power,
Poisson, and regular degree distributions with identical means generate corresponding values

of gbpower?quoisson’ and ¢regular such that
gbpower(x) > ¢Poisson(x) 2 gb?"egular(x)

for all z.'8

4.3. Changes in Returns to Adoption. We now contemplate changes in the returns

to the action 1 and their effects on the eventual adoption rate. This inquiry is interesting

"For instance, consider v(d) = d and H uniform on [0, max,p,p(a) d] -
18This is consistent with the simulation-based observations regarding to tipping points in the epidemiology
literature (see Pastor-Satorras and Vespignani (2000, 2001)).
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for a variety of applications. For example, it is germane to directed advertising in marketing,
which may effectively increase the propensity to adopt a product by particular individuals; in
epidemiology, the question of whom to immunize first is very much related to the effects of
changes in specific values of v(d, z); and so on and so forth.

We concentrate on the special case in which v(d, ) is multiplicatively separable, v(d, x) =
v(d) f(x), where v(d), f(x) > 0 for all d and x.

Consider starting with a given v(d) and then reordering it to become v'(d). Formally, v and
v are reorderings of one another if there is a permutation 7 of 1,2, . .. such that v(7(d)) = v'(d)
for each d.

Let us say that a reordering v’ of v is weight increasing if the following condition holds: For
any d and d' such that v'(d) # v(d) and v'(d') # v(d'), if v'(d") > v'(d) then P(d")d > P(d)d.

The condition states that any values of v that have been reordered should be reordered so

that higher values are assigned to degrees that have higher conditional weight.

Proposition 5 [Weight Increasing Reorderings|. If v is a weight increasing reordering of v,

then the corresponding ¢'(x) > ¢(x) for all x, and so V' generates greater diffusion than .

Proof of Proposition 5: It is enough to show that ), H¢(V'(d) f(x))P(d)d = >, H(v(d) f(x)) P(d)d.
Let D be the set of d’s on which any reordering has been made (i.e., d’s such that

v'(d) # v(d)). The definition of weight increasing reordering then implies that ©" maximizes

> aep W(d)P(d)d over all w(d) that are reorderings of v on D.
Since H* is a non-decreasing function, this implies that v’ maximizes ) ., H°(w(d) f(x))P(d)d

over all w(d) that are reorderings of v on D. The result then follows. I
In the case of a uniform cost function, in order to increase ¢ pointwise, we do not need

the reordering to be weight increasing, but rather just to increase weight on average. This is

stated as follows.

Proposition 6 [Reorderings with Uniform Costs|. Suppose that H¢ is uniform on [0, M],
where M > maxqv(d). If >, P(d)v'(d)d = 3", P(d)v(d)d, then ¢'(x) = ¢(x) for all z:, and so
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v" has greater diffusion than v.'

The implications of the Propositions are that in order to lower the set of tipping points
and increase the set of stable equilibria, the appropriate choice of v(d) requires matching the
ordering of v(d) with that of P(d)d.?

This has clear implications for how effective diffusion will be. The simple intuition is that
in order to maximize diffusion, one wants the types that are most prone to adopt a behavior to
be those who are most prevalent in the society in terms of being most likely to be neighbors.

Interestingly, this leads to conclusions that are counter to what one sometimes concludes
from thinking about trying to target specific types of nodes. If one can only target a specific
number of nodes, then one would like to target those with the highest degree as they will
have the greatest number of neighbors. This is the usual sort of “hub” idea. However, the
exercise here is different. It is to ask which types are most influential, when accounting for

the population size and thus their likelihood to be neighbors.

Examples Under a power distribution (e.g., the Pareto distribution) P(d)d is decreasing in
d. So, in order to maximize adoption rates we would want the lowest degree nodes to
have the highest propensity to adopt. More generally, a decreasing v(d) would lead to
a higher ¢(x), than an increasing v(d). For a uniform degree distribution the reverse
holds. For a Poisson distribution, note that P(d)d is increasing up to the mean and then
decreasing thereafter and the ideal ordering of v(d) would match this shape, and thus

not be monotonic.

So, under a power distribution, it is the lowest degree nodes that are most influential in
terms of those most likely to be any given node’s neighbor. Those lowest degree nodes are
thus the ones whose propensities to adopt a behavior has the greatest impact on the overall

diffusion.

19Note that the proposition holds for any ¥ and ¥’, even if they are not reorderings of one another.

20Gince the exercise in this subsection is to study the effects of changing returns of particular individuals, a
comparison of welfare after such a shift seems somewhat unnatural. Of course, a shift that generates a higher
stable equilibrium would also imply higher welfare under the original return functions.
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4.4. Optimal Networks. We can ask a related question, which is if we fix payoffs and
costs, but consider different network structures with the same average degree d (and subject
to some maximal degree D), which degree distributions would maximize diffusion?

That is, we are asking the question of which P with a given average d and support in
1,..., D maximizes ¢(z) = >, H(d, m)%. If we have a distribution P that maximizes ¢(x)

pointwise, then we know that it leads to higher diffusion than any other degree distribution.

Here, we can make use of Proposition 4, which implies the following.

Corollary 7. If H(d,z) is non-decreasing and convex in d, then the P which maximizes
diffusion (under our greater diffusion partial ordering) is one which has weight only on degree
1 and D (in proportions that yield average degree d).

If H(d, x) is non-increasing and concave in d, then the P which maximizes diffusion (under

our greater diffusion partial ordering) is a regular network with full weight on degree d.

5. CONVERGENCE PATTERNS
We close with an analysis of convergence patterns. Here we study the structure of the best
response dynamics as well as the paths and convergence points experienced by different degree

agents.

5.1. S-Shaped Rates of Adoption. If we examine best response dynamics over time,

starting from some 2° and progressing to some z', z2,..., we can get an idea of the “speed

+1

of convergence” of the system at different points by examining the difference '™ — z, or

o(z) — x.

The following proposition summarizes the structure of the convergence paths.
Proposition 8. Let H(d,x) be twice continuously differentiable and increasing in x for all d.

e If H(d,x) is strictly concave in x for all d, then there exists * € [0, 1] such that ¢(z) — =z

is increasing up to x* and then decreasing past x* (whenever ¢(x) is neither 0 nor 1).

e If H(d,z) is strictly convex in z for all d, then there exists x* € [0, 1] such that ¢(z) — z

is decreasing up to x* and then increasing beyond =* (whenever ¢(z) is neither 0 nor 1).
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Proof of Proposition 8: Note that

Let z* be such that %

~ = 1, if such a point exists. In the case where H is strictly

£ OH (d,x)

OH (d,x)
oz f

o < 1 for all z then set

concave in z, i > 1 for all = then set z* = 1, and i

9H(d,z)

5. > 1 for all z then set z* = 0,

x* = 0. In the case where H is strictly convex in z, if

and if % < 1 for all z then set x* = 1.
Next, note that
H(d,x
(&( Z P(d)=—25 oH(d x)

Thus, if H is strictly concave in z, then the second derivative of ¢(x) — x is negative.
Therefore, the derivative of ¢(x) — z is positive up to z* and negative beyond it. The reverse
holds for H being strictly convex, and the result then follows. Il

Proposition 8 helps tell us more about how the diffusion process will work over time.
Consider the case where H is strictly concave. From the concavity of H we know that there are
three possible configurations of equilibria: 0 is a stable equilibrium and the only equilibrium,
0 is an unstable equilibrium and there is a unique stable equilibrium above 0, or 0 is not an
equilibrium and there is a unique stable equilibrium above 0. In the first case, it must be that
¢'(0) < 1 and the dynamic process would converge to 0 regardless of the starting point. In the
other cases, if ¢'(0) > 1, then z* lies above 0 and Proposition 8 tells us that the adoption over
time will exhibit an S-shape. From small initial levels of x the change in z will gain speed up
to the level of x*, and then it will start to slow down until eventually coming to rest at the
adjacent stable equilibrium.

S — shaped adoption curves are prevalent in empirical data on diffusion (see Mahajan
and Peterson (1985) and references therein). The heuristic idea being that initially, a few
agents adopt till the diffusion picks up, at which point there is a rapid increase in adopters

that ultimately levels off (and so the speed of increase of adoption decreases). The intuition
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for this effect in our model is that the initial gain in speed is due to the complementarities
in adoption among agents, while the eventual slowing is due to the concavity of the cost
distribution. If instead the distribution of costs is convex, then the adoption will continue to

gain speed rather than lose speed.?!

5.2. Adoption Patterns by Degrees. The dynamic process corresponding to each de-
gree d is given by:

where x; is the fraction of agents of degree d who adopt at time t.

In particular, whenever v(d, x) = v(d)x, then it is clear ¥, is characterized by the same
curvature properties that are discussed above for x itself. Moreover, the curves corresponding
to the different z, are ordered according to v(d). In particular, for any stable point z*, the
corresponding distribution according to degrees is given by z¥ = v(d)z* and the curvature of
xy follows that of v(d).

The distinction between different adoption paths corresponding to different degree players
is important from an econometric point of view. Indeed, it provides additional restrictions on
fundamentals arising from cross-sectioning data according to social degree.

As an illustration, consider the case in which v(d,z) = dz and H¢ is uniform on [c¢, C], so
that H(d,z) = min [max (0,dx —¢),C — ] /(C — ¢).

Figure 2 illustrates the resulting adoption dynamics corresponding to different degree
agents in the case in which ¢ = 1,C' = 5, and the initial seed is 0.3.

In this example, higher degrees start adopting the action 1 earlier and have steeper slopes

early in the process.??

21 Bass (1969) and follow-ups was one of the first to provide a (network-free) contagion model explaining such
general adoption paths. Recently, Young (2006) provides a different explanation based on learning. He studies
an environment in which agent heterogeneity manifests itself through diverse priors regarding the value of an
innovation. Initially, only agents with favorable priors or very favorable information adopt the innovation.
This initial adoption shifts everyone’s posteriors in favor of the innovation, which yields more adoption, etc,
and an S — shaped adoption curve is created. Young matches his model to Griliches (1957)’s data on hybrid
corn adoption.

22This sits well with, e.g., the empirical observations on drug adoption by doctors in Coleman, Katz, and
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Figure 2: Fraction Adopting over Time by Degree

Note that Figure 2 is consistent with the results in Proposition 8 in that the adoption
curves are initially convex and then eventually concave and exhibit an S — shaped pattern of

adoption.

Menzel (1966), where the ultimate frequencies of adoptions were increasing in degrees.
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