
CLEARINGHOUSES FOR TWO-SIDED MATCHING: AN
EXPERIMENTAL STUDY

FEDERICO ECHENIQUE, ALISTAIR J. WILSON, AND LEEAT YARIV

Abstract. We experimentally study the Gale and Shapley (1962) mechanism, utilized

in a wide set of applications, most prominently the National Resident Matching Program

(NRMP). Several insights come out of our analysis: First, only 48% of our observed out-

comes are stable, and among those a large majority culminates at the receiver-optimal stable

matching. Second, receivers rarely truncate their true preferences; it is the proposers who do

not make offers in order of their preference, frequently skipping potential partners. Third,

market characteristics affect behavior: both the cardinal representation and core size influ-

ence whether laboratory outcomes are stable. We conclude by using our controlled results

and a behavioral model to shed light on a number of stylized facts we derive from new

NRMP survey and outcome data, and to explain the small cores previously documented for

the NRMP.

1. Introduction

Many two-sided matching markets function through centralized clearinghouses: medical

residents to hospitals, children to schools, commissioned officers to military posts, college

students to dorms, etc. All use highly structured procedures to generate matches. In prin-

ciple, clearinghouses have the advantage that they can be designed to implement desirable

outcomes at the market level. In particular, many extant clearinghouses aim at implementing

stable outcomes.1

Among centralized clearinghouses, the best known is the National Resident Matching

Program (NRMP), which matches physicians and residency programs in the United States.

The algorithm used by the NRMP to match the participants is a form of what is commonly

called deferred acceptance (DA, henceforth), first described in the literature in Gale and

Shapley (1962). All participants, on both sides of the match, provide rankings of the other
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side. DA functions by assigning market sides to the roles of proposers (physicians in the

NRMP) and receivers (hospitals/programs), and then automating a sequence of proposals

and conditional acceptances by receivers according to the submitted rankings until a final

outcome is reached, which is then instituted. The DA process has the property that if both

sides rank the other truthfully, the resulting outcome will be stable. Moreover, for one

side of the market, the proposers, submitting a true ranking to the algorithm is incentive

compatible. For the other side, the receivers, straightforward ranking is not in general

incentive compatible.

In contrast with the theoretical predictions, data from the NRMP’s physician survey sug-

gests that physicians do not rank hospitals or programs truthfully. Many participants state

that concerns over the likelihood of matching within the algorithm lead them to modify their

ranking, while a smaller fraction explicitly state that they rank programs solely based on

the likelihood of matching. The published data on NRMP outcomes reveals that close to a

half of all matches are of physicians to their top-ranked program. If physicians rank pro-

grams truthfully, this would imply physicians’ most-preferred programs have strong negative

correlations—in opposition to classic assortative models where participants have common

agreement on programs’ desirability.

Our paper is an experimental investigation of behavior in a dynamic variant of the DA

mechanism. We study the effects of an array of market features—including the number of

stable matchings, the cardinal representation of preferences in the market, the fragility of

the stable matchings to simple manipulations, etc.—on both behavior and outcomes. In

our laboratory experiments, subjects on two sides of a matching market with known payoffs

go through each step of the matching algorithm (paralleling the rhetoric used in Roth and

Sotomayor 1990 to introduce the DA mechanism to readers). In each step, unmatched pro-

posers first choose the identity of their next proposal, sequentially revealing their preference

over those they have not proposed to. As in the DA algorithm, receivers take the next step

and choose among any new proposals for the one they like best, similarly revealing their

preferences at each step.

The behavior we observe in our experiment mirrors NRMP survey responses. Participants

in physicians’ (proposers’) roles “skip” down their preference rankings. If the participant

on the opposite side of the market who provides them their best-case payoff does not rank

them highly in return, subjects skip down, proposing instead to a lower-payoff participant

on the other side who does rank them highly. On the receiving side of the market, which in

the context of the NRMP would correspond to the hospitals, we do not observe substantial

departures from truth-telling, and the deviations we do observe are not those often suggested

in the literature as simple and useful. These observed behaviors lead to some stark outcomes;

in particular, half of our experimental markets produce unstable outcomes. Moreover, for
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those experimental markets with multiple stable outcomes, where the experimental outcome

is stable the specific matching selected is not the outcome associated with truth-telling—which

leads to smaller gains for receivers when deviating from a straightforward response.

In more detail, our experimental markets are each comprised of 16 individuals, with 8

subjects on each market side, where all participants have complete information on everyone

else’s payoffs.2 Our subjects participate in a variety of markets, differing over several theo-

retically motivated characteristics: i) market complexity, as captured by the number of stable

matchings (either one, two, or four), and the number of turns required for the DA algorithm

to converge under truth-telling; ii) incentives to manipulate or report non-straightforwardly,

captured through the number of stable matchings and the degree of manipulation required

by the receiving side to produce their preferred matching; and iii) the markets’ cardinal

representation of preferences, controlled by the payoff differences between differing matches.

Several findings emerge from our analysis: First, as mentioned above, stable matchings

are not the norm, with only one-half of our markets ending at a stable outcome. Moreover,

in markets with multiple stable outcomes, a large majority of stable outcomes we observe

(71 percent) are not those associated with truth telling. Which specific stable matching is

selected in a clearinghouse is of particular importance for applications. For instance, the

NRMP initially used the DA algorithm with hospitals in the role of proposers, which results

in the hospital-optimal stable matching under truth-telling. The algorithm was then modified

in 1998 to have residents serve as proposers (among other changes). Our findings challenge

the notion that the receiving side (the residents in the original version of the NRMP) were

disadvantaged in terms of the selected matching, and suggest instead that changes to the

algorithm might have made the residents worse off.

Second, market characteristics are important in determining outcomes. For instance, the

cardinal representation has a significant effect on whether outcomes are stable, and the

overall distance of the observed outcomes from the core. Where incentives are weak, the

outcomes are far less likely to be stable, so instability is more likely to be an issue when

different match partners are closer substitutes. Similarly, the degree of truncation required

by receivers is highly predictive of which stable matching is chosen.

Third, individual behavior exhibits consistent patterns. Proposers are not straightforward,

and receivers do not optimally truncate. We find that proposers “skip down” their preference

2Having complete information serves as a natural first step in understanding participants’ response to in-
centives, void of issues pertaining to belief updating and learning that would arise in environments with
incomplete information. While in reality information frictions are likely, we suspect that participants have
some information about the “segment” of the market that is relevant to them (for example, highly ranked
hospitals may have knowledge about similarly ranked hospitals and the top students in the market). Fur-
thermore, the underlying theoretical framework is well understood when information is complete, while the
theoretical literature on matching with frictions (informational and other) is arguably in its inception. In-
deed, most extant theoretical work assumes agents possess complete information (a recent exception is Liu,
Mailath, Postlewaite, and Samuelson (2014), see also our literature review below).
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lists: for example, a proposer might propose to their third-best receiver, skipping the favorite

and second-favorite one; then, if rejected by their third favorite, the proposer might skip

down to their fifth favorite; and so on. This behavior is clearly at odds with the theory, but

tallies with NRMP survey responses. In contrast, for receivers, we do not observe substantial

deviations from straightforward play; they typically choose the best alternative out of any set

of proposals. They do not strategically reject proposals, but instead reject fairly consistently

those offers from proposers with the lowest payoff, with little reaction to market structure.

Our analysis does suggest that proposers are sophisticated in their “skipping” behavior.

Proposers consider how a target receiver perceives them—their position in that receiver’s

preference list—when making a proposal decision. For example, if a proposer’s first-best

receiver ranks them as largely undesirable, that proposer is less likely to propose to them.

Proposers are therefore much more likely to skip receivers who are not stable matches, and

in some cases skip the most-preferred stable match receiver, tending instead toward the

least-preferred stable match receiver, who receives a relatively higher payoff from matching

to them.

One might wonder about the importance of our dynamic implementation of DA for our

results. Though some clearinghouses have scramble components that are inherently dynamic,

many are like the NRMP, where participants make a single static decision: a ranking of

all potential matches. This ranking is then used by the algorithm to simulate a sequence

of proposals and acceptances/rejections, terminating in the final matching. Rather than

eliciting the entire ranking and running the algorithm, our experiment instead asks subjects

to make choices as needed at each step. If they do not have a current partner, subjects on the

proposing side are asked who they would like to make an offer to; while those on the receiving

side are asked which (if any) of their received proposals they would like to accept. Under some

fairly standard assumptions, we show that these dynamic and static implementations are

theoretically equivalent. Our choice to use the dynamic implementation makes the mechanics

of the DA algorithm clearer—and by making the connection between choices and outcomes

more transparent, we hope to give the theory its best chance. Furthermore, especially

in complete information matching markets as ours, a static implementation of DA would

essentially require us to provide participants with preferences and then ask them to report

back these preferences. Such an implementation is likely to suffer from experimental demand

and results in the treatments would be difficult to interpret. Our dynamic implementation

circumvents this hurdle.

The differences between the DA and our dynamic implementation is motivated by the

concerns we have laid out. We argue that three types of evidence suggest our results are

not driven merely by the dynamic implementation in our experiments, but describe more

general phenomena present in other implementations of the DA. First, we introduce a static
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“bounded-rationality” model (quantal response equilibrium) to the matching literature. Cal-

ibrating the model to a single parameter, and using only the final full matching in each

experimental market, we validate the model using several non-fitted facets of our data. The

model therefore formalizes an entirely static explanation for our experimental findings.

Second, we examine evidence derived from field data on the NRMP. Here we show that

our behavioral model not only provides a good fit to our experimental data, but it also

matches behavioral statements from NRMP surveys (response to the likelihood of matching

in submitted rankings). Furthermore, its predicted outcomes strongly mirror a pattern in

the available data on NRMP outcomes: a surprisingly high frequency of proposer matches

to their top-ranked program. When measured according to the submitted ranking, 42 per-

cent of simulated outcomes are to the top-ranked match (in comparison with 16 percent

that would be induced by truthful behavior and stable matchings being implemented). In

addition, studies that had access to the rankings submitted to the NRMP indicate that,

given the physicians rankings, hospitals have little to gain by deviations from truth telling

(that is, markets seem to have small-cores, see Roth and Peranson 1999). Simulations of our

behavioral model lead to similar conclusions.

Third, in our review of the literature, we show that elements consistent with our results

have appeared in static implementations of DA (albeit mostly in contexts somewhat different

than ours). Similar findings with static implementations suggest the distinction between

dynamic and static implementations might not be the first-order reason for the observed

departures from theory. Our paper, with its larger variation across market characteristics,

serves to systematize and enhance these prior findings by allowing us to identify a channel

for what might be driving the deviations from stability in centralized clearinghouses.

Taken together—our experimental results, the behavioral model and its parallelism to the

field, and the prior literature’s results—there exists the case for a persistent heuristic in

matching problems: the conflation of ex ante likelihoods of matching and the preferences for

a particular match.

1.1. Related Literature. Laboratory experiments focusing on two-sided matching have

been relatively scarce. Haruvy and Ünver (2007) studied repeated interactions between

receivers and proposers, and inspected the predictive power of the DA (rather than strategic

behavior within the DA algorithm). They ran a similar version to our sequential game in 4×4

markets. However, in their design: i) proposers were allowed to repeat offers, thereby creating

a larger wedge between the game played and the DA algorithm; ii) proposers and receivers

were paid for the results in every turn of the sequence (not only the ultimate matching); and,

iii) in some sessions there were automated respondents, who automatically accepted the best

offer. They found a substantial number of repeat offers (that most centralized clearinghouses

do not allow) and significantly less “skipping” by proposers than we find.
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Harrison and McCabe (1992) implemented the preference-revelation DA mechanism in one

3 × 3 (3 proposers and 3 receivers) market and one 4 × 4 market. They had subjects play

a market repeatedly, and replaced many market roles with computers programmed to play

truthfully. In their environment, outcomes are more in line with the theoretical predictions

than ours. However, they do observe a small degree of “skipping,” as well as receivers failing

to successfully manipulate the mechanism.

A number of experimental papers seek to compare the different centralized mechanisms

that are used in practice. Chen and Sönmez (2006) compare DA with the Boston and

the Top Trading Cycle mechanisms. Their focus is on the school-choice problem, hence

they have strategic agents on only one side of the market. Chen and Sönmez implemented

a preference-revelation design, in which agents knew their own preferences, but not those

of other participants (not even statistically).3 In terms of manipulation, they find that

proposers do misrepresent their preferences in DA, but less so than in the other mechanisms.

Featherstone and Niederle (2011) also compare DA with the Boston mechanism.4 They too

find that proposers do not necessarily follow their dominant strategy to truthfully reveal,

and skip highly-ranked potential matches that are very unlikely to accept them. However,

they attribute the effect to weak market-specific incentives for the skipping player. Our own

experiments indicate that this effect is more systematic across a larger range of markets.

Additionally, by having the subjects engage with the DA mechanism more directly, we show

that the effect is less likely to be due to confusion as to how the algorithm works, and more

likely due to heuristics and beliefs that subjects bring to this type of matching problem.

Pais and Pintér (2008) test DA, Boston, and the Top Trading Cycles mechanisms in the

laboratory under incomplete information. Automating the proposing side of the market to

reveal truthfully, they also find greater manipulation by subjects in the Boston mechanism.

Furthermore, the Top Trading Cycle mechanism dominates the other two procedures when

assessed over both truth-telling and the efficiency of matches. Krishna and Ünver (2008)

compare the DA mechanism with the bidding mechanisms commonly used for allocating

students to courses in business schools. They show the superiority of the DA mechanism

in terms of efficiency (and get frequencies of truthful revelation by proposers, which they

focus on, comparable to those observed in our data). Wang and Zhong (2012) examine the

random serial dictator and Boston mechanisms for school choice. Their results indicate a

large degree of skipping behavior in the serial dictator mechanism, where participants rank

schools they perceived as ‘safer’ higher up their lists than theory would predict.5

3Using a similar design, Calsamiglia, Haeringer, and Klijn (2010) experimentally examine school-choice,
where the submitted preference lists are constrained in length.
4Also see Featherstone and Mayefsky (2011) who examine this comparison under incomplete information on
the preferences of others.
5Eriksson and Strimling (2009) test a new matching game, which they term the Cocktail Game and also
report deviations from truth-telling under their rules of interactions.
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Pais, Pintér, and Veszteg (2011a) may be the closest to the current paper in that it con-

siders two-sided matching through the Gale and Shapley algorithm. However, they consider

school and teacher matching. Their experimental design entails 5 teachers and 3 schools,

where two of the schools both have two positions available. In other words, some subjects

who represent these two schools are to be matched with two teachers each (and teachers are

indifferent between which of the two positions they receive in those schools). This generates

a rather different strategic setting than the one we study. The paper also considers only

one constellation of preferences.They also find limited truth-telling even when information

is complete.

Our paper provides two important methodological innovations for the centralized matching

literature: First, we consider a rich set of markets that allows us to study the selection of

stable matchings that emerge organically as well as the impacts different market attributes

have on outcomes: core size, cardinal presentations, number of stages required for the DA

algorithm to end, and sensitivity to truncations. Second, we introduce a behavioral model to

the matching literature, and show that its predictions are consistent not only with behavior

in our experiments, but also with data from the field.

Finally, a few papers experimentally examine decentralized markets. Echenique and Yariv

(2013) examine behavior in decentralized markets and find that outcomes are in most cases

stable.6 Their study focuses on selection, and they find that the median stable matching

tends to emerge. Featherstone and Mayefsky (2011) and Kagel and Roth (2000) analyze

the transition from decentralized matching to centralized clearinghouses, when the market

features lead to inefficient matching through unraveling. Nalbantian and Schotter (1995)

analyze several procedures for matching with transferable utility, decentralized matching

among them, where agents are informed of their own payoffs, but not of anyone else’s.7

2. Dynamic Design of Centralized Matching

Our paper is an experimental study of strategic behavior in centralized matching markets.

Our design has subjects going through the steps of the DA algorithm, instead of submitting

preferences. It has the advantage of being more transparent for the subjects, and of alle-

viating concerns over experimenter demand. The game we will induce in the laboratory is

described in Roth and Sotomayor (1990, page 79):

(1) Actions in the market are organized in stages. Each stage is divided into two periods.

Within each period, each proposer and receiver must make decisions without knowing

the decisions of other proposers and [receivers] in that period.

6Also see Pais, Pintér, and Veszteg (2011b) who show that search costs and imperfect information can impede
this finding.
7There is also some recent theoretical work analyzing matching in decentralized markets, see for example
Haeringer and Wooders (2011), Hoffman, Moeller, and Paturi (2013), and Niederle and Yariv (2011).
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(2) In the first period of the first stage, each proposer may make at most one proposal

to any receiver he chooses (and is also free to make no proposal). Proposals can only

be made by proposers.

(3) In the second period of the first stage, each receiver that has received any proposals

may freely reject any or all of them immediately. A receiver may also keep at most

one proposer “engaged” by not rejecting their proposal.

(4) In the first period of any stage, any proposer who was rejected in the preceding stage

may make at most one proposal to any receiver he has not previously proposed to

(and been rejected by). In the second period, each receiver may reject any or all

of these proposals, including that of any proposer who proposed in an earlier stage

and was kept engaged. A receiver may keep at most one proposer engaged by not

rejecting his proposal.

(5) If, at the beginning of any stage, no proposer makes a proposal, then the market

ends, and each proposer is matched to the receiver he is currently engaged with.

Proposers who are not engaged to any receivers, and receivers who are not engaged

to any proposers, remain unmatched.8

The game imitates the steps within the DA algorithm (see the Appendix for a description).

In most centralized matching markets, proposers and receivers submit preferences to a central

matching authority (as is the case in the National Residents Matching Program). The

authority then uses the submitted preferences as inputs to the DA algorithm, instituting

the resulting matching. In contrast, in the game above, proposers and receivers decide on

proposals at each step; a matching emerges sequentially through their actions.

Roth and Sotomayor present the game as an introduction to strategic issues in matching.

There is a notion of “straightforward behavior” in the game. A proposer behaves straight-

forwardly if their proposals go from the most-preferred receiver to the second-most-preferred

receiver, then to the third-most preferred, and so on. A receiver behaves straightforwardly

if at each step he or she accepts the most-preferred proposal. Straightforward behavior cor-

responds naturally to truthful behavior in the centralized mechanism. The strategic issue is

whether agents will behave straightforwardly (or truthfully).9

We directly adopt the above game within our experimental design (detailed in Section 3).

Roth and Sotomayor’s use of this game is pedagogical, our reasons are similar. We want

subjects to grasp the relation between their actions and the resulting outcomes. Subjects

best understand the incentives they face when directly experiencing the steps involved in the

matching process. In contrast, with the preference-revelation game, subjects need to map

each declared profile into an outcome of the algorithm: This map is complicated, and it is

8Our one change to the above is that we recast the men/women in Roth and Sotomayor as proposers/receivers.
9We will reserve the word ‘truthful’ for when we talk about data or simulations with the static preference
submission mechanism, and ‘straightforward’ for when we talk about our dynamic implementation.
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difficult to ensure that laboratory subjects have a clear understanding of the DA algorithm

in the lab.

A second reason for adopting the above game is related to experimenter demand (see

Zizzo, 2010): If we provide subjects with a preference ranking, and then proceed to ask

them to submit a preference ranking, we worry that subjects will infer the experimenters’

goals.10 They may, as a result, act with a different motivation from that we sought to induce.

By asking them to present a preference, we present a cue that the experiment is assessing

whether they will behave truthfully or not. This cue may trigger behavior related to the

consequences of lying, and/or complying with the experimenters’ expectations. The resulting

experimenter-demand effect is unclear—towards more truth-telling or away from it?—and is

inseparable from the behavior we wish to assess.

Moreover, though the main NRMP match is implemented with a direct revelation ap-

proach, extant clearinghouses have begun to use dynamic implementations. A notable ex-

ample is the second-stage of the NRMP match (the Secondary Supplemental Offer and

Acceptance Program, the “scramble”) introduced in 2012, which uses a multi-day dynamic

approach.11 In addition, certain markets that are thought of as decentralized resemble the

type of clearinghouses we implement, when norms of behavior put enough structure on each

side’s offers and responses. For instance, consider the academic job market in economics.

Offers made by departments for tenure-track positions are rarely reneged on, so proposals

made can be considered as commitments to match. Candidates can hold on to offers (for a

short period at least) while they wait to receive other proposals. Combined with the idea

that departments do not make repeat offers to the same candidate, this decentralized market

has a similar structure to our experiments.

Theoretically, under some plausible restrictions on behavior, the dynamic game and the

direct revelation game induced by the DA algorithm are effectively equivalent. In the Ap-

pendix, we describe some of the theoretical background for our investigation as well as the

formal requirements for this equivalence.12

10Private correspondence with the authors of Calsamiglia, Haeringer, and Klijn (2010) indicates this fear
is matched to subject behavior in the direct mechanism. In interviews after their experiment, subjects
explicitly mention the idea that they thought they should lie.
11See www.nrmp.org/residency/soap/ for details.
12In effect the required assumptions are tantamount to selecting Markov-like behavior in the dynamic game
alongside a variation of independence of irrelevant alternatives.
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Table 1. Example of Market Payoffs

f1 f2 f3 f4 f5 f6 f7 f8

w1 (360,125) (210,175) (60,375) (110,425) (160,475) (10,425) (310,475) (260,325)

w2 (160,475) (360,125) (260,275) (210,475) (60,225) (110,175) (10,225) (310,475)

w3 (260,375) (110,325) (360,125) (310,325) (210,425) (60,475) (10,375) (160,375)

w4 (310,325) (160,425) (110,225) (360,125) (260,275) (10,275) (60,425) (210,175)

w5 (260,275) (310,275) (160,425) (60,175) (360,125) (10,375) (210,275) (110,225)

w6 (10,425) (210,375) (60,325) (160,375) (310,375) (360,125) (110,175) (260,425)

w7 (110,225) (260,225) (160,175) (60,275) (210,325) (310,325) (360,125) (10,275)

w8 (260,175) (210,475) (310,475) (10,225) (160,175) (110,225) (60,325) (360,125)

3. Experimental Design

Our experimental sessions implemented a sequence of markets involving two sides, which

we neutrally labeled as colors and foods in the experiment, but herein we will refer to two-

sides of the market as Workers and Firms.13 There were 8 roles in each group, totaling 16

subjects in a market. Subjects could match with at most one subject from the opposite

group, deriving different monetary payoffs from each match.

Subjects were fully informed on all the potential payoffs for every possible match in the

market through a table on their computer screens, as depicted in Table 1, where the first

number in each cell is the corresponding worker’s payoff in cents, the second number the

corresponding firm’s payoff.14 Remaining unmatched resulted in a payoff of 0.

In each experimental market, subjects interacted within a protocol that mimics the DA

mechanism with one of the market sides (either the Workers or the Firms) proposing—the

Roth-Sotomayor game discussed in Section 2. Subjects on differing sides of the market took

turns, each composed of two periods. In the first period of the first turn, each proposer

could make (at most) one proposal to any one receiver. In the second period of the first

turn, each receiver with proposal(s) could hold on to at most one, rejecting all others. In

subsequent turns, proposers who did not have a held proposal from a previous turn could

again make offers in the first period. In the second period of subsequent turns, receivers with

new proposals chose at most one offer to hold among the new proposals and held proposal,

rejecting all others.

In each proposing period, the proposing subjects had 30 seconds to decide whether to

propose, and if so to whom.15 Receivers had 25 seconds to respond to their offers (with a

13In the experiment, specific roles on one side were labeled as Red, Blue, etc.; on the other side Apple,
Banana, etc.
14Full instructions and a list of all markets used are available at: http://sites.google.com/site/

galeshapley/
15Failure to propose in a turn did not alter the proposer’s ability to propose in future rounds, unless their
non-proposal caused one of the market’s end conditions to be met (see footnote 16 below).



CLEARINGHOUSES FOR TWO-SIDED MATCHING 11

failure to respond to any proposal within the time limit interpreted as a rejection of all new

proposals).

In order to induce the Roth-Sotomayor game, we imposed a restriction that proposers may

not repeat proposals. So, after proposing to and getting rejected by a particular receiver,

the proposer could not make subsequent proposals to that same receiver. Each experimental

market ended whenever there were no new proposals within a proposing stage.16

As markets progressed, turn-by-turn, the subjects observed only their own interactions;

they did not observe any proposals/rejections in which they were not directly involved.

Subjects in the proposer role knew the precise turn and order in which they had made

proposals to the chosen receivers, and similarly the precise turns they were rejected in.

They did not, however, observe who else proposed to a particular receiver at any time,

which other proposers the receiver had rejected, etc. Similarly, receivers observed only the

proposals made to them, and their own hold/reject behavior. When the market ended, each

held proposal became a match, and the receivers and proposers received their corresponding

payoffs (according to the match-payoff table).

Each experimental session was composed of 2 unpaid practice markets followed by a se-

quence of 15 paid markets. Each market used match payoffs corresponding to one of 6

preference profiles for the participants.17 A detailed summary of the markets used in the

sessions, as well as these markets’ characteristics, appears in Table 2. The number of times

each market was run appears under the N -column.

The markets were designed to vary over the following dimensions:

Market “Complexity.” All but one of our markets have either a unique stable matching

or two disjoint, stable matchings. We designed the markets to vary in the number of turns

(each 2 periods, proposal/response) required for the DA algorithm to converge under truth-

telling, as well as the sensitivity of outcomes to truncation by receivers (the receiving side of

the market). The latter is captured in two ways: First, in the column R-best we calculate the

minimal number of proposers that receivers must truncate in order to achieve the (R)eceiver-

preferred stable matching, assuming that proposers behave straightforwardly.18 Second, in

the column Unstable we calculate the minimal number of proposers that receivers must

16 This end condition can have three potential causes: i) All the proposers have held proposals and therefore
none is available to make an offer; ii) All proposers without held proposals have no receivers to which they
have not made a proposal, so no unheld proposer can make an offer; iii) Some proposers without a held
proposal choose not to make a proposal in this turn, and the remaining proposers have no new proposals to
make.
17Rows and columns were randomly permuted so as to disguise obvious patterns such as the one appearing
in the main diagonal of Table 1.
18We compute the minimal number t ∈ {1, ..., 8} such that if one receiver truncates the bottom t proposers,
then the receiver-optimal stable matching is implemented assuming proposers behave straightforwardly.
Smaller truncation values t correspond to smaller necessary deviations from straightforward revelation to
implement the receiver-optimal stable matching.
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Table 2. Markets Used

Market Arrangement Stable Truncation Core Span Avg. Payoff DA N

Matchings R-Optimal Unstable P R P R Turns

(I) W-F 1 - 1 - - $2.50 $2.50 8 4

(II) W-F 1 - 7 - - $2.50 $3.48 8 8
F-W 1 - 1 - - $3.48 $2.50 2 4

(III) W-F 2 5 8 1.00 1.75 $2.85 $2.73 4 4
W-F Dev 1 1 - 5 - - $2.85 $2.79 4 8
W-F Dev 2 1 - 8 - - $2.60 $3.60 8 8

F-W 2 4 5 1.75 1.00 $3.60 $2.35 1 4

(IV) W-F 2 1 4 1.00 5.13 $3.60 $1.25 1 8
F-W 2 7 8 5.13 1.00 $3.81 $3.10 11 8

(V)a W-F 2 1 3 1.75 2.00 $3.10 $2.00 5 28
W-F Dev 1 1 - 3 - - $2.53 $2.85 15 8

F-W 2 4 5 2.00 1.75 $3.00 $2.22 6 16
F-W Dev 1 1 - 5 - - $2.85 $2.53 6 8

(VI) W-F 4 7 7 1.00 0.75 $3.35 $3.10 3 4

All 1.67 1.83 4.77 1.21 1.23 $3.04 $2.64 6.1 120

aThis market was run with marginal payoffs of 20g and 50g for both the W-F and F-W arrangements.
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truncate (jointly and uniformly) to generate an unmatched partner. This measure captures

the sensitivity of stable matchings to truncation.

Cardinal Representation. Match payoffs in cents are constructed from each market’s

ordinal preference profile. The marginal decrease between an agent’s n-th and (n + 1)-th

favorite partners is fixed at 50g in the majority of markets. In order to gauge the effects

of cardinal representations within our markets, we use marginal decreases of just 20g in

our baseline market, Market (V).19 The average payment across agents (and across stable

matchings when there were two) is between $2.50 and $3.20.20 The average payoffs for

proposers and receivers under the proposer-optimal stable matching, which would have been

generated under straightforward play by all participants, are given in the Average Payoff

column for proposers and receivers. Given straightforward behavior, proposers should earn

an extra 40g per market, varying between $1.00 less than receivers through to $2.35 more,

depending on the specific market.

Incentives to Manipulate and Core Size. Three markets with multiple stable match-

ings (Markets (III), (IV), and (V)) are run under both the Worker- and Firm-proposing

arrangements.21 This provides information on the effects from being the proposing side un-

der DA, keeping constant each sides’ preferences. The reversed markets are indicated in the

Arrangement column of Table 2, where W-F is the Worker-Proposing arrangement and F-W

the Firm-Proposing arrangement. In addition, we alter two of our markets, (III) and (V), by

switching the position in the ranking of two potential matches for just one participant, keep-

ing constant all other preferences. Through this small change we induce a similar market

with a unique stable outcome. For Market (III), two different modifications are introduced

to make the worker-optimal and firm-optimal stable matchings from the original market the

unique stable outcome (with resulting markets denoted by W-F Dev 1 and W-F Dev 2,

respectively, each run with workers proposing). For Market (V), we introduce a modification

to make the original worker-optimal stable matching the unique stable outcome. We run

this deviation in both the worker-proposing and firm-proposing orientations, which we refer

to as W-F Dev 1 and F-W Dev 1, respectively.

Markets also differ in the size of the core. For each proposer we calculate the distance in

rank position between their best and worst stable partners, and average these values across

all eight proposers. We call the resulting number the proposers’ “core span.” The analogous

calculation is also given for receivers. Core spans vary between 0 (when the stable matching

19In theory, payoff representations of preferences do not affect incentives in the complete information DA
mechanism, nor do they matter for the set of stable matchings.
20For each profile of preferences, we chose payoffs to minimize this average under two constraints: i) the
average is above $2.50; and ii) each subject’s payoffs from any match exceeds 5g.
21We also do this for Market (II), which has only a single stable match.
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is unique) and 5.13.22 A larger core span for one side corresponds to greater incentives for

achieving that side’s optimal stable matching.

Our sessions were run at the California Social Science Experimental Laboratory (CAS-

SEL), and implemented using a variation of the Multi-Stage software. In total, 128 subjects

were recruited; all were UCLA undergraduates, and each subject participated in just one ses-

sion. The average payment per subject was $41 (with a standard deviation of $5), combined

with a $5 show-up payment.

4. Aggregate Outcomes

In this section we outline the results from our sessions at the aggregate market level; Table

3 reports a number of aggregate statistics. First, we discuss one of the main motivations

for using the DA algorithm in centralized markets—stability of the resulting outcome. Our

results demonstrate that stable matchings are not the typical outcome. Moreover, we will

demonstrate that the specific unstable matches our experimental markets arrive at suggest

that proposers, rather than receivers, are the side behaving non-straightforwardly. Sec-

ond, we examine those markets with multiple stable matchings and investigate the selected

matchings. In line with subjects not behaving straightforwardly, we see a large majority

of markets end up close to the receiver-optimal stable matching. Finally, we study some

tangible outcomes experienced by subjects in our markets, namely time spent and payoffs

earned.

4.1. Proximity to Stable Matchings. Our experimental markets do not consistently pro-

duce a stable outcome. In fact, just half of the markets result in a stable matching—48

percent for the markets with a unique stable outcome and 49 percent for those with mul-

tiple stable outcomes. The Stable column in Table 3 provides the fraction of markets that

terminated at a stable matching, broken down by market-arrangement. The table illustrates

that the prevalence of unstable outcomes holds across our experimental markets and is not

driven by any particular market.

Markets that culminate in an unstable outcome have, by definition, at least one blocking

pair for the observed matching. The average unstable matching in our data has 2.9 blocking

pairs, and the largest number of blocking pairs in any particular market is 11.23

Blocking pairs can be classified into two types. First, there are markets with available

blocking pairs: blocking pairs that could still form at the final stage of the market, but do

22When there are two stable matchings, they were designed to be disjoint—that is, every proposer and
receiver’s best and worst stable partner are different—so the core span is at least 1 in these markets.
23An alternative way of quantifying this distance from stability is to count the number of participants who
are part of some blocking pair, rather than the overall number of possible blocking pairs (that could entail
overlaps in participants). If we were to do that, for markets culminating in an unstable outcome we have
an average of 4.0 participants who are part of some blocking pair (the mode is two participants in a single
blocking pair, in 22 of the 62 unstable markets).
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Table 3. Aggregate Outcomes

Market Arrangement Stable P -Optimal (Closer) Distance Unmatched ∆ Payoff Turns N

P R

(I) W-F 25.0% - 0.71 6.3% -3.3g 3.3g 9.3 4

(II) W-F 50.0% - 0.92 1.6% 0.0g -17.5g 8.9 8
F-W 25.0% - 1.41 9.4% -22.4g 8.6g 9.0 4

(III) W-F 50.0% 50.0% (50%) 0.78 3.1% -22.6g -53.2g 7.3 4
W-F Dev 1 37.5% - 1.03 1.6% -8.7g 15.1g 6.0 8
W-F Dev 2 87.5% - 0.69 0.0% 0.0g -5.5g 8.4 8

F-W 50.0% 50.0% (25%) 0.84 6.3% -58.3g -11.7g 8.0 4

(IV) W-F 62.5% 0.0% (0%) 1.79 6.3% -62.5g -4.1g 4.0 8
F-W 62.5% 100.0% (100%) 1.20 0.0% -22.7g -58.6g 8.0 8

(V) W-F 53.6% 0.0% (7.1%) 1.01 3.1% -64.3g -5.7g 10.7 28
W-F Dev 1 62.5% - 1.13 4.7% -2.5g 0.8g 8.3 8

F-W 18.8% 33.3% (37.5%) 0.86 3.1% -39.5g -25.2g 11.4 16
F-W Dev 1 25.0% - 1.52 6.3% -44.1g 34.2g 10.1 8

(VI) W-F 75.0% 66.7% (75%) 0.20 0.0% -15.6g -29.7g 3.5 4

All 48.3% 28.6% (18.3%) 1.05 3.3% -26.2g -10.6g 8.8 120
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not. This type of blocking pair necessarily involves unmatched subjects.24 Alternatively,

there are unavailable blocking pairs: blocking pairs that cannot form because the proposer

in the pair was either previously rejected by the receiver in the pair, or is held by another

receiver, and subsequently has no agency to make a proposal to form the blocking pair.

For the 62 unstable markets, 29 have unmatched subjects (see column Unmatched in

Table 3), while the remaining 33 markets have all the participants matched (with an average

of 2 blocking pairs per unstable market). Of the 29 markets in which some subjects end

the process unmatched, just 8 markets had an available blocking pair; in the remaining 21

markets, the unmatched proposers were rejected by every blocking receiver.

The observation that most blocking pairs are unavailable suggests that instability is not

due to an early termination of the process (say, due to subjects failing to respond in time,

or preferring an early close of the market).25 The high rates of unstable outcomes are by

and large due to deviations from straightforward play by some participants in the market.

Consider a proposer-receiver blocking pair (w, f) for some matching µ. The blocking pair

must be formed as the result of one of two possible deviations from straightforward play: i)

the receiver f previously rejected w (equivalent to f submitting a preference report ranking

their ultimate match µ(f) as preferable to w); or ii) proposer w never proposed to receiver

f (equivalent to w stating the current match µ(w) as preferred to f). Of the 181 blocking

pairs 57.5 percent have blocking pairs corresponding to category (ii), where proposers have

necessarily misstated their preferences. This is suggestive of the substantive misreporting

by proposers in our markets. We further examine the behavior that produces these results

in Section 5.

Given the prevalence of markets culminating in unstable matchings, it is interesting to

see how far the resulting matchings are from the set of stable matchings. We use subjects’

preference rankings to create a distance measure for all markets at an unstable outcome.

Specifically, we measure the average distance in ranking for each individual between their final

match (defining the unmatched outcome as rank 9), and the closest rank of a stable match

partner. The results are in the column titled Distance in Table 3. On average, subjects were

approximately one position away from a stable-match partner across all unstable matches,

corresponding to an approximate loss of 50g per person (the exception being those markets

with lower marginal differences between partner payoffs, where this loss was 20g).26

24This must be a pair comprised of an unmatched proposer and a receiver such that: i) the receiver had not
rejected the proposer; and ii) the receiver is either unmatched or prefers the proposer to her current match.
25In fact, as we show below, our experimental markets lasted, on average, a longer number of stages than
what would be prescribed by the DA algorithm when preferences are reported straightforwardly.
26The overall distance measure for each market arrangement (the average distance in ranking for each
individual between their final match and the closest rank of a stable match partner, across all realized
matchings) may be calculated by multiplying our distance number by the percentage of unstable matchings
in the market, as all stable matchings are by definition a distance 0 from a stable matching.
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4.2. Selection of Stable Matchings. The selection of stable matchings is of particular

importance to applications. For example, the NRMP started out following the hospital-

proposing DA algorithm. However, after much debate in the medical community, in May of

1997 the board of directors of the NRMP voted to replace the existing matching algorithm

with a newly designed, resident-proposing algorithm (that was put into action in 1998), see

details in Roth and Peranson (1997). Our experimental data is useful in identifying the role

played by each side of the market, since underlying preferences are observed.

We examine those markets that have multiple stable matchings and ask which matching

the observed outcome is closest to. The P -Optimal column in Table 3 gives the fraction of

stable outcomes at the proposer-optimal stable outcome. The figure in parentheses is the

fraction of markets in which the outcome was closer to the proposer-optimal outcome than

the receiver-optimal, measured the same way as the Distance column.

For the markets with multiple stable matchings that produced a stable outcome, 28.6

percent are at the proposer-optimal stable matching, the outcome that would result from

straightforward play in the DA mechanism. Furthermore, in markets in which roles were

reversed (Markets III–V), if anything it is the receiving side in the algorithm that is more

likely to achieve their preferred stable outcome.

We note, however, that there is large variation across market arrangements. Market (IV)

provides particularly stark observations: all stable outcomes correspond to the receiver-

optimal stable matching when the workers propose; when firms propose all the stable out-

comes are the proposer-optimal stable matching (i.e., conditional on achieving a stable

matching, the same matching is selected in both markets, regardless of the side propos-

ing). In order to glean insight into what is driving these differences across markets, consider

the truncation column in Table 2. For this particular market, we see that the worker-

proposing arrangement (W-F) is particularly sensitive to truncation, reaching the receiver-

optimal stable matching under very small truncations by receivers. Conversely, attaining

the receiver-optimal outcome in the F-W arrangement requires extreme truncation by the

receivers. Inspection of other markets suggests this as a general trend: When truncation

requirements are low, the stable matching implemented is the receivers’ best. With moder-

ate levels of truncation required, both stable matchings emerge experimentally. When the

(collective) truncations required by receivers are extreme, the stable matching generated is

the proposers’ best.

4.3. Tangible Outcomes: Time and Payoffs.

4.3.1. Time to Termination. On average, each market takes approximately 9 turns to finish

(see column Turns), with the average turn taking 21.5 seconds.

Comparing the number of turns observed to the number predicted by truth-telling behavior

in the DA mechanism, experimental markets take an extra 2.5 turns to finish; only 24 out
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of 120 markets end within the truth-telling number of turns. One simple conjecture to

explain “skipping” by proposers is that subjects are trying to shorten the time before a final

matching is achieved. These results suggest, however, that any behavior intended to shorten

time spent in the experiment was unsuccessful.

4.3.2. Average Payoffs. Consider the average proposer in our average market. Conditional

on the proposer-optimal outcome being chosen, her expected payoff is $3.02 per market; if

the receiver-optimal stable matching is chosen, her corresponding expected payoff is $2.57.

The observed figures are closer to the latter, lower, prediction: the average payoff of a

proposer in our markets is $2.66. Conducting the same exercise for the receivers’ side of

the market, the average receiver’s expected payoff varies between $2.66 per market if the

proposer-optimal outcome is selected, and $3.09 under the receiver-optimal stable matching.

The observed value is $2.91, in between these two figures.27 These figures are consistent with

our observations regarding the selection of stable matchings. In particular, payoffs do not

coincide with those generated by the proposer-optimal stable matching.

Column ∆-Payoff provides the average difference in the actual payment from that of

the best outcome by market side (that is, the sub-column corresponding to proposers con-

tains the difference between the average realized proposer’s market payoff and the payoff

under the proposer-optimal stable matching. Similarly for the sub-column corresponding

to receivers).28 This column contains similar information to the Distance and P -Optimal

columns, but provides additional insights that will tie to the individual-behavior analysis

below. In some markets the average matched receivers achieve better outcomes than their

most-preferred stable match partner. In these markets, there is a unique stable outcome, and

the average matched proposer is faring worse. As will be echoed in the individual analysis

below, the reason for these results is that proposers in these markets propose to a receiver

that is ranked below their stable match partner, one that values them more highly. In payoff

terms, conditional on being matched receivers earn, on average, 6g more than the stable-

outcome payoff in those markets with a unique stable outcome. In markets with multiple

stable outcomes, both sides fare poorly, though receivers are closer in dollar and relative

terms to their most-preferred stable outcomes. In fact, at the end of the experiment, we

asked subjects to reflect on the experiment and express their preference over having the role

of proposer or receiver; 79.6 percent expressed a preference for the receiver role.

4.4. Market Characteristics and Outcomes. The previous discussion suggests that

there are aspects of the market that predict which stable matching is produced. In par-

ticular, the manipulation difficulty for receivers (as measured by the level of truncation

required to establish their preferred matching) is a good predictor of whether the market

27Accounting for unmatched subjects raises these observed averages by approximately 8g.
28These averages are conditional on agents being matched.
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Table 4. Descriptive Outcome Regressions

Turns Distance Blocking Stable Closer to
Pairs Outcome P -Optimal

Market No. -0.058 -0.176 0.161 0.005 -0.004∗

(0.082) (0.137) (0.126) (0.005) (0.002)

Low marginals for proposers 0.001 0.101∗∗∗ 0.116∗∗ -0.390∗∗∗ -0.001
(0.025) (0.030) (0.053) (0.024) (0.202)

Low marginals for receivers 0.065∗∗∗ -0.028∗ -0.026∗∗ 0.107∗∗∗ 0.274∗∗∗

(0.015) (0.013) (0.010) (0.023) (0.053)

Proposer core span 0.145∗ -0.046 -0.011 0.037 0.102∗∗∗

(0.080) (0.138) (0.118) (0.049) (0.044)

Receiver core span -0.096 0.002 0.060 0.024 -0.048
(0.056) (0.091) (0.078) (0.020) (0.055)

R-best Truncation -0.109 -0.039 -0.094 -0.017 0.135∗∗∗

(0.066) (0.125) (0.100) (0.037) (0.032)

N 120 120 120 120 72

Note: Stable Outcome and Closer to P -Optimal give the marginal effects from a Probit regression; all other columns are elasticities obtained from
an OLS regression. Standard errors given in parentheses below the estimates, and are clustered by market. Significance levels indicated as follows:
∗∗∗-99%, ∗∗-95%, and ∗-90%.
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ends at the proposer- or the receiver-optimal stable outcome. We now formalize this idea,

and inspect other market characteristics that affect outcomes. Table 4 provides results from

descriptive regressions seeking to explain different dimensions of the observed market out-

comes, using the characteristics outlined in Section 3 as regressors. The first column outlines

the effect these design metrics have on a market’s duration, the observed number of turns.

The next three measures relate to stability: the distance to a stable outcome; the number

of blocking pairs; and a dummy variable indicating whether the final outcome was stable

or not. Finally, the last column looks at the proximity to the proposer-optimal matching,

where the dependent variable is a dummy indicating that the market outcome is closer to

the proposer-optimal stable matching, where we restrict the regression to those markets with

multiple stable outcomes.

We use the following regressors: Market No., takes values from 1 to 15 and represents

the position in the sequence of markets within an experimental session–the first paid market

takes value 1, the last market takes value 15. The next two regressors are dummies indicating

lower 20g marginals (as opposed to the standard 50g) in the market, for each of the two sides.

The final three regressors are metrics from Table 2, corresponding to the average distance

(core span) between the extremal stable matchings, for proposers and receivers, respectively,

and the truncation required by receivers to produce the receiver-optimal stable matching if

proposers act straightforwardly (R-Optimal Truncation from Table 2).

We first note that Market No. does not have much explanatory power in our regressions,

indicating limited learning or convergence throughout an experimental session.

In terms of market attributes, the different columns highlight several points. First, the

only significant effect on the number of stages taken to conclude a market are the incentives of

receivers to truncate—the smaller the marginal incentive, the greater the number of stages.29

Second, the regressions on measures of market stability indicate that low-powered in-

centives seem to have a strong effect: Low marginals for proposers significantly increase

instability across all three measures. Low marginals for receivers have the opposite effect,

increasing outcome stability. We return to the link between payoffs and outcomes in Section

6.

Finally, consistent with the observation in Section 4, we find that the greater the required

truncation levels, and the weaker the receiver’s incentives, the more likely it is that the

observed outcome is closer to the proposer-optimal matching. Greater proposer incentives

(namely, a larger distance between the two stable matchings for the proposers) have the

same effect.

29This, again, suggests that subjects are not following strategies intended to shorten the length of play. Lower
marginal payoffs would, if anything, lead truncation (or skipping) to be less costly. Thus, if impatience were
driving results, we would expect these variables to be associated with shorter market activity.
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The theoretical framework underlying stable predictions, as decentralized core outcomes,

or as outcomes of a centralized clearinghouse à la deferred acceptance, is inherently ordinal.

In many applications matchings are associated with cardinal outcomes for the participating

individuals: wages in labor markets, school performance or commute time from home for

school assignments, etc. Our observations suggest that cardinal specifications may have an

important role in determining outcomes.

5. Individual Behavior

The previous section depicts aggregate market outcomes, frequently corresponding to in-

stability. But these aggregate measures are the product of 16 individuals’ choice sequences

within each market. We now analyze response within the experiment at the market partici-

pant level.

An important finding of the paper is that proposers do not behave straightforwardly, in the

sense defined in Section 2. That is, their proposals do not track their preference rankings.

Receivers’ behavior, on the other hand, is largely straightforward: receivers (tentatively)

accept proposals from the most-preferred proposers in the vast majority of cases. Figure

1 presents the empirical distribution for straightforward play by proposers and receivers,

where each data point represents the fraction of interactions in which a specific subject

makes choices according to their induced preference.30

The results are striking. The theory predicts that proposers will straightforwardly reveal

their preferences, and receivers will strategically misrepresent to achieve better outcomes,

most notably (and simply) by truncating preference orderings. In our experiment, over half

the subjects acting as receivers behave straightforwardly in all their experimental interactions

within this role, with two-thirds reporting straightforwardly more than 90 percent of the

time. The distribution of truth-telling for proposers is more uniform—and stochastically

dominated by that for receivers—with approximately one-third of the proposers behaving

straightforwardly less than half of the time. In what follows we analyze individuals’ behavior

in detail.

5.1. Truncation and Skipping. If any single receiver (or a group of receivers jointly) were

to truncate their preference below the receiver-optimal stable match—listing any proposers

ranked below this point as unacceptable—then if other market participants play straightfor-

wardly, the resulting outcome is the receiver-optimal stable matching. Given our data, we

30An alternative measure for straightforward play is the Kemeny distance between the revealed preference
and the induced one. Calculating this measure at the individual level (where each observation is a subject-
market), the results are qualitatively similar to those shown in Figure 1, with the same pattern of stochastic
dominance. However, the results for the Kemeny measure are less skewed, reflecting the fact that though
subjects deviate from straightforward play, the size of this deviation is generally small with respect to the
induced preference.
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Figure 1. Distributions of Straightforward/Truthful Play

can check for the extent of the truncation receiver players are using by direct inference: when

an unmatched receiver rejects all those proposing in a turn, this is equivalent to stating that

the proposals all came from (purportedly) unacceptable proposers. We do not observe trun-

cations in any other case. For instance, consider the worker-proposing situation where two

workers, w and w′ have proposed to a particular firm on the same turn, and w′ is accepted.

In this situation we cannot use revealed preference to infer whether w was acceptable or not,

only that w′ is preferred to w, and that w′ is preferred to no match.

Table 5(A) presents the probability of rejecting all those proposing, conditional on the

true ranking of the best proposer. That is, for any rank k, we track all the events at which

a receiver (with no tentative acceptances) receives proposals, the best of which is from their

k-th ranked partner. The number of these events across all turns is in the fourth column,

and the number in the first turn of the market is in the fifth column. We calculate the

fraction of times that all these proposals were rejected, both across turns, and in the very

first turn. When the proposer is the receiver’s first-best (rank 1), this figure is close to zero.

In fact, truncations within the upper-half of the preference ordering are rare. As the ranking

of the best proposal falls (toward 8) the truncation probability increases, reaching a rejection

rate of 58.2 percent when the highest-ranked proposer is the worst partner. This truncation

behavior does not qualitatively differ between the first and subsequent turns—both exhibit

large probabilities only in the final two positions of the preference ordering. The results

could, in principle, be influenced by the large number of observations in particular markets
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(for instance, the two arrangements W-F and F-W of Market V). Analyzing each of the

markets separately does not drastically change our results.31

However, the use of truncation strategies does not provide the complete story. The the-

ory makes clear that proposers have a dominant strategy to straightforwardly reveal their

preferences. We now analyze whether proposers follow this dominant strategy, and move in

sequence through their preference list. Table 5(B) details the probability with which pro-

posers act non-straightforwardly, that is where they do not propose to the highest-ranked

receiver available. The overall probability is 33.8 percent, consistent with our initial ob-

servations that a substantial number of proposers do not make offers in order of their true

preferences. The table also indicates how non-straightforward play varies with how the pro-

poser is ranked by the straightforward receiver. Specifically, we report the rate at which

proposers with an active choice choose to skip their most-preferred available receiver, condi-

tioning on how that receiver ranks the proposer.32 In order to provide some control over any

time effects within a market, we again report separately the probabilities for the first turn

within a market (with the fourth and fifth columns denoting the number of observations over

all turns and over the first turn, respectively).

The results illustrate a clear pattern in proposal behavior: proposers are not following their

dominant strategy. Instead, proposers are skipping highly ranked receivers who are likely to

reject them. This pattern is qualitatively similar, for behavior in the first turn of a market,

matching our stationarity assumptions.33 Skipping behavior is reduced by 8.6 percent when

we compare the first and last five markets in an experimental session (where theses blocks

of five have an identical sequence of markets within them), so subjects do learn to skip less

as the experiment proceeds. However, quantitatively, the fraction of turns where proposers

skip is still large.

In many instances this skipping behavior would be inconsequential for outcomes: for

instance, if every proposer were to skip down to their most-preferred stable partner, the

game would end in a single turn and yield that stable matching. However, in the first turn

19.5 percent of proposers skip down below their optimal stable partner, and 10.2 percent skip

down to receivers ranked below their worst stable partner. Across all turns, conditioning

on the availability of the stable partners, 17.2 percent of proposers skip below their own

31For Market (V), the probability of truncating within the top half of the preference ordering is 3.2 percent
for the W-F treatment, 3.3 percent in the F-W treatment, and 2.4 percent for all other markets. For the
bottom half, the respective percentages are 31.2, 46.2, and 30.6.
32For instance, the first row of the table, corresponding to a proposer ranked 1st, details the probability
with which the proposer skips down below the best-ranked receiver that has not been ruled out, where
that receiver ranks them as their best possible match. When the proposer’s rank is 8th, the proposer’s
straightforward proposal ranks them as the worst outcome among all eight proposers.
33Rates of non-straightforward behavior in the first round are not significantly different overall, for either
proposers or receivers. Conditioning on how receiver ranks them we do find significant differences for proposer
skipping only at the reflected ranks 3rd, 6th and 7th.
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Table 5. Non-Straightforward Play

(a) Receiver Truncation

Best Proposal Prob. of rejecting all (%) Subsample Size

ranked as All turns First turn All First

1st 0.2 0.0 551 80
(0.2) (-)

2nd 1.1 0.0 472 118
(0.5) (-)

3rd 3.2 4.5 402 132
(0.9) (1.8)

4th 8.8 12.2 317 115
(1.6) (3.0)

5th 21.0 19.4 119 36
(3.7) (6.6)

6th 21.8 20.0 87 15
(4.4) (10.3)

7th 45.6 63.6 57 11
(6.6) (14.5)

8th 58.2 50.0 55 22
(6.7) (10.7)

All 7.2 9.1 2060 529

(b) Proposer Skipping

Best Receiver Prob. of skip (%) Subsample Size

ranks proposer All turns First turn All First

1st 6.5 3.1 92 32
(2.6) (3.1)

2nd 21.6 13.9 208 79
(2.9) (3.9)

3rd 33.1 18.4 317 141
(2.6) (3.3)

4th 23.4 24.7 487 186
(1.9) (3.2)

5th 38.4 40.9 383 154
(2.5) (4.0)

6th 27.6 39.4 351 94
(2.4) (5.1)

7th 37.9 61.9 314 42
(2.7) (7.5)

8th 53.4 60.8 483 176
(2.3) (3.7)

All 33.8 35.1 2635 904
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proposer-optimal partner, and 8.5 percent below their receiver-optimal partner. We see no

qualitative difference between the first and subsequent turns.34

6. Noisy Equilibrium

One possible explanation for observed behavior is that subjects are trying to optimize,

but are making mistakes. When mistakes are not very costly, they are less likely to be

corrected through play. To our knowledge there has been little research on the question of

robustness for centralized mechanisms: when are small mistakes on the part of participants

likely to lead to unstable/undesirable outcomes? In this section we will define a quantal

response equilibrium (QRE) for our matching game—a solution concept incorporating both

best response and noise, which has been used extensively to explain non-equilibrium behav-

ior.35 After calibrating the model’s noise-parameter to our outcome data, we will show that

the QRE’s predictions mirror the patterns of behavior within our data. Outside of helping

to understand our experimental results, this behavioral model provides a potentially useful

tool for market designers, allowing a way to examine robustness of new clearinghouses to a

structured form of mistake by participants.

To illustrate the noisy equilibrium concept we will use Market (V) as a running example.

Suppose all proposers and receivers with the exception of w7 truthfully reveal their preference

order. Worker w7 has the underlying true ranking f8 ≻ f7 ≻ f1 ≻ f6 ≻ f2 ≻ f3 ≻ f5 ≻ f4 ≻

w7. Her most-preferred stable match partner is f7, while her least-preferred stable partner is

f6 (though she prefers this to being unmatched). Given others’ truthful behavior, if w7 were

to skip down her preference order and omit her overall most-preferred firm f8 (reporting the

preference f7 ≻ f1 ≻ f6 ≻ f2 ≻ f3 ≻ f5 ≻ f4 ≻ w7) her final match outcome under deferred

acceptance would still be f7. Skipping down to the most-preferred stable match partner has

no effect on her final match—if others report truthfully, f7 will still be her matched outcome.

More generally, any group of proposers can omit any number of non-stable match partners

and the resulting outcome will still be the same proposer-preferred stable matching, so long

as receivers truthfully rank.

However, if worker w7 were to skip down just below her most-preferred stable partner f7

(for example, providing the ranking f6 ≻ f2 ≻ f3 ≻ f5 ≻ f4 ≻ w7) the final outcome if all

others report truthfully switches to the least-preferred stable matching, and w7’s matched

partner is f6. Skipping down the true order even further yields a strictly worse match than f6,

where the resulting matching will always be unstable. In general, given n stable matchings in

34Proposer skipping has also been observed in the direct-revelation mechanism, cf. results in Harrison and
McCabe (1992) and Featherstone and Mayefsky (2011). This behavior is not the focus of their analyses, but
their reported results make its presence clear and at non-negligible frequencies.
35For literature on QRE see McKelvey and Palfrey (1995, 1998) and references thereof. These papers also
demonstrate the existence of a QRE in our environment by finiteness of our dynamic game (players, choices,
and round after which it must end) and our choice of error distribution.
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any finite matching market, the matchings possess a well-known lattice structure, and can be

jointly ordered by the proposing side from best to worst. Measure the size of each proposers’

contiguous skips by the number of stable-match partners omitted from the ranking, k, and

look for the max skip over all proposers k. The final outcome under DA will be the proposers’

k + 1-th most-preferred stable matching, so long as k < n.

This process is illustrated in Figure 2’s upper-left panel. For each worker wi in Market

(V) the array illustrates the outcome if they idiosyncratically skip their k-most-preferred

partner(s) when all other participants truthfully reveal their preference order. Each cell’s

shading indicates the resulting match outcome, with darker shading for final matches to

more-preferred partners, and lighter shading for less-preferred partners.36

In addition, in the first panel, a black circle in a cell indicates where the worker’s most-

preferred stable partner is. For worker w7, the black dot appears in the second cell (corre-

sponding to firm f7 their second most-preferred partner). Skipping down to the black dot

does not change the outcome when others truthfully reveal: the shading remains constant

up to this point for all workers, but it will lighten directly after in the third slot, indicating

where the most-preferred firm has been skipped.

A white dot in a cell represents the critical location for the worker’s least-preferred stable

partner. For w7 this is the fourth location, corresponding to firm f6 being the top of the

provided ranking. Skipping to this point leads to the least-preferred stable partner, when

others straightforwardly reveal; skipping below this point leads to a strictly-worse outcome,

as is indicated by the progressively lighter shading for all workers as they skip below the

least-preferred stable partner.

Truthful revelation is a weakly dominant strategy for proposers under DA, so the pay-

off from skipping down the order must be less than or equal to the payoff from behaving

straightforwardly. Moreover, payoffs are weakly decreasing in the size of the skip, so the

cell shading necessarily gets lighter as we move from left to right, regardless of other par-

ticipants’ play. However, under truth-telling the pattern revealed in the figure indicates the

indifference over skips up to the most-preferred parter, and then again a constant payoff in

skips between stable-partners.

The bottom-left panel provides payoff information for the proposal-receiving side in Market

(V). The array illustrates the gain/loss to firm fi from truncating the true preference ordering

from below by k places. Unlike the proposers, receivers do not have a dominant strategy

to straightforwardly reveal, and truncating can both improve or harm their final outcome.

For example, firm f5 has an underlying preference w2 ≻ w8 ≻ w3 ≻ w5 ≻ w1 ≻ w4 ≻

w6 ≻ w7 ≻ f5, with stable match partners w5 and w6. Truncating her preference and

dropping the worst-ranked worker w7 has no effect when others are truthful (the shading

36A completely white cell represents the worst outcome in this market, remaining unmatched.
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Figure 2. Payoffs in Noisy Equilibria
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(b) Receiver/Firm Truncation
Note: Shading represents expected payoff from the corresponding skip/truncation (payoffs are degenerate
in the truth-telling arrays and derived from a simulation of size 1,000 in the QRE panels). Darker shades
represent higher normalized payoffs. Black circles correspond to a critical points for skipping/truncation
beyond which the most-preferred stable match partner will be skipped/truncated; white circles represent the
same critical point for the least-preferred stable match partner.

in spots 0 and 1 is identical), and the matched partner is w6, the truth-telling outcome.

The firm obtains a better outcome when she truncates the least-preferred stable partner

w6, shortening her ranking by 2 workers to w2 ≻ w8 ≻ w3 ≻ w5 ≻ w1 ≻ w4 ≻ f5, and

obtaining her most-preferred stable partner. However, if f5 truncates too much and removes

the most-preferred stable partner w6 (truncating 5 spots and ranking w2 ≻ w8 ≻ w3 ≻ f5),

then her payoff is reduced, and she will necessarily be unmatched. Similar to the above
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panel for proposing workers, cells with black and white circles in them represent the critical

locations for truncation when others are truthful—the ranking position of the firm’s most-

and least-preferred stable-match partners, respectively. The array’s shading illustrates the

pattern in payoffs, with just three levels per firm: the least-preferred stable partner if they

do not truncate enough; an increase to the best stable partner when the firm truncates the

least- but not the most-preferred stable parter; and a decrease to being unmatched if the

most-preferred stable match partner is truncated.

Truth-telling by all participants is not an equilibrium outcome when there are multiple

stable matchings. To examine how best-response changes as others play with noise we use

a modified notion of QRE, where we limit the available strategies to block-skips or block-

truncations of the true preference, by proposers and receivers of proposals, respectively.37

Using a logistic-error structure, we assume that if worker wi expects to get a payoff of πW
ij

from skipping at level j ∈ {0, . . . , 7}, then she will play this skip strategy with probability

pWij (Π
W ;λ) =

exp
{

λ · πW
ij

}

∑7
k=0 exp {λ · πW

ik }
,

where λ is a parameter capturing the noisiness of play (a value of zero produces random

play, while as λ → ∞ behavior tends to best response), and ΠW is the matrix with generic

element πW
ij . Similarly the probability of firm fi using a truncation level j will be assumed

to be

pFij(Π
F ;λ) =

exp
{

λ · πF
ij

}

∑7
k=0 exp {λ · πF

ik}
,

where πF
ij represents firm fi’s expected payoff from truncation at level j in cents, and where

πF
ij is a generic element of the matrix ΠF .

An equilibrium discipline on the outcome comes from forcing the payoff matrices ΠW and

ΠF to be expectations under a consistent set of beliefs over other participants’ skips/truncations.

Given the mixed-strategies used—the matrices PW (ΠW ) and P F (ΠF ), calculated via the

logistic-error assumption according to the believed payoff matrices—we can calculate the

expected payoffs using the deferred-acceptance algorithm. We will denote the map from

probabilities over rankings to expected payoffs for each strategy and role as
[

Π̃W Π̃F

]

=

φDA

(

PW , P F
)

.

37So if the true ranking is w : f1 ≻ f2 ≻ · · · ≻ fn ≻ w we allow for stated preference fi ≻ fi+1 ≻ · · · ≻
fn ≻ w ≻ fi−1 ∼ fi−2 ∼ · · · ∼ f1. Similarly, for the firms we only allow truncations of the true preference
f : w1 ≻ · · · ≻ wn to the truncated preference w1 ≻ · · · ≻ wn−i. Each worker/firm therefore has 8 available
strategies, in comparison to the 9! possible preference orderings available in the game. This restriction will
retain much of the strategic nature of the game, and mirrors observed features in our data, while making
the model tractable. We will refer to skipping at level-0 as truthfully listing the preferences, while level-7
will refer to only listing the worst outcome as acceptable. Similarly, truncation at level-0 will be listing the
underlying preference, and level-7 will refer to only listing the most-preferred partner as acceptable.
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A QRE in skipping/truncation therefore boils down to solving the following fixed point:
[

ΠW ΠF

]

= φDA

(

PW
(

ΠW ;λ
)

, P F
(

ΠW ;λ
))

.

Fixing the noise-parameter λ to be 2.75, the upper- and lower-right panels in Figure 2

illustrate the expected payoffs to the participants for each skip/truncation strategy at one

such fixed point of the system.38 In contrast to the truth-telling panels, the outcomes under

QRE are stochastic, and expected payoffs are calculated through a simulation of 1,000 (fixed)

draws for the payoff-weighted mistakes. The rightmost panels illustrate two distinct effects,

the probability of matching at all, and the preference for those matches, conditional on

matching. The probability of matching is indicated by the area of the cell shaded, where a

fully shaded cell indicates a certain probability of matching, while the smaller the shaded

region the less likely the participant is to be matched at all. The conditional expectation of

the match value is indicated by the shaded part of the cell, using the same shading scale as

the truth-telling panels.

Comparing truth-telling and QRE for this particular market, we see an increase in re-

ceivers’ expected outcomes under minimal truncation, and a corresponding reduction in the

truth-telling payoff for workers. Particular firms (in this case f5 and f7) derive a slight

payoff increases from truncating their least-preferred stable partner, but the gains are much

smaller when compared to the situation where others are truthful. The remaining firms get

no gain from truncation at any level, though they do not suffer large losses from truncat-

ing at moderate levels. Truncating the most-preferred stable partner still produces a large

expected loss, though firms still occasionally match even when truncating past this extreme

(an improvement over the truth-telling panel, where they would certainly be unmatched if

they truncated too much).

The change in payoff patterns for firms stems from both an increased chance that the

firm’s idiosyncratic truncation is unnecessary (the receiver-preferred stable matching would

likely occur anyway because of others’ deviations) and an increased cost of truncations (an

increased likelihood that the relevant stable-match proposer might now skip them).

For the proposing workers there is a corresponding reduction in payoffs when being truthful

or skipping a small number of firms in comparison to the truth-telling array. Workers are now

mostly indifferent over skips up to or above the receiver-preferred stable match partner, they

have no strong incentives not to skip down. However, proposers do have a strong preference

not to skip below their least-preferred stable partners, as this corresponds to a large drop in

final payoff.

38Fixed points are found by iterating to convergence, where the algorithm’s initial condition is truth-telling
by all participants. In principle, there might be multiple fixed points of this system. Our initial condition
therefore serves as a consistent selection device.
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Figure 3. Simulated and Observed Payoff Difference from Proposer-best matching

The particular value used in the figure, λ = 2.75, matches the value estimated through our

data, obtained through a simulated maximum-likelihood approach. The likelihood of each

market-wide matching in our experiments is measured via simulation, and this likelihood is

maximized over the QRE parameter λ.

The noise parameter λ is fitted with data from 120 market-wide matchings. Table 6

provides results for the data and the model across markets. The table’s first two columns

present the fraction of matchings in each market that are completely stable relative to the

true preference, in both the observed and fitted QRE model. We have 20 unique markets

(taking into account changes in the marginals that affect the QRE prediction), each with at

least four experimental observations. Over these 20 markets there is a correlation of 0.68

between model and data. The next two columns in table 6 examine the markets with multiple

stable matchings, and provide the fraction of stable outcomes at the proposer-best matching.

Again, the model accurately predicts the precise stable matchings chosen, with a correlation

between the observed and simulated frequency of 0.76. Similar levels of fit (a correlation of

0.77) is found when we examine stability at the market participant level, asking how often

each particular participant is matched with one of their stable-match partners.

The model has a comparable fit when we examine the payoffs at the participant level.

To difference out levels in induced payoffs, we examine the difference in payoff between the

realized and the proposer-best stable match payoff. Figure 3a provides a scatter plot, where

each point in the plot represents a single market participant in one of the 20 markets, and
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Table 6. QRE Model Predictions

Market Arrangement Stable Match P -Best Core Span (P/R)

Observed QRE Observed QRE True QRE

(I) W-F 25% 1% - - 0/0 0/0

(II) W-F 50% 90% - - 0/0 0/0
F-W 25% 12% - - 0/0 0/0

(III) W-F 50% 44% 50% 59% 1.00/1.75 0.77/1.15
W-F Dev 1 37.5% 31% - 0/0 0.17/0.21
W-F Dev 2 87.5% 88% - - 0/0 0/0

F-W 50% 53% 50.0% 4% 1.75/1.00 0.13/0.12

(IV) W-F 62.5% 91% 0% 0% 1.00/5.13 0.30/0.17
F-W 62.5% 64% 100% 100% 5.13/1.00 5.07/1.04

(V) W-F 53.6% 33% 0% 0% 1.75/2 0.18/0.28
W-F Dev 1 62.5% 53% - - 0/0 0.11/0.19

F-W 18.8% 27% 33.3% 49% 2/1.75 0.83/0.80
F-W Dev 1 25% 37% - - 0/0 0.19/0.19

(VI) W-F 75.0% 28% 66.7% 89% 1/0.75 0.62/0.62
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the location indicates the payoff difference for that participant. The horizontal axis indicates

the expected difference from the QRE model, while the vertical axis indicates the average

difference for that participant within the experimental data. White circles represent the

model-data differences for proposers (8 in each market) while black-diamonds represent the

differences for each receiver (8 in each market). The 45-degree line therefore indicates perfect

agreement between the model and the data. As the figure indicates, the QRE model’s fit is

remarkably good (a correlation of 0.88 across all participants). This bears highlighting. A

fully stationary behavioral model, fitted to a single free parameter using data only from the

final market-wide matching selected in our dynamic clearinghouse, has a near 90 percent fit

as an explanation for market-participant deviations from the truth-telling prediction.

Despite this good fit, the full QRE model might be intractable in many interesting match-

ing situations. The model requires the calculation of a fixed-point, where both the dimension

of the fixed point, and the number of steps required to complete the market algorithm, in-

crease substantially with the number of participants. The QRE model might therefore be

impractical for assessing the robustness of the deferred-acceptance algorithm in any large

market. Furthermore, QRE requires a large degree of sophistication from participants, which

may be a shortcoming if considered as a positive behavioral model. We therefore considered

an approximation of the QRE model, which is simple to calculate by both a market designer

assessing a potential clearinghouse, and by potential market participants. Namely, we in-

spect a model that is based only on unilateral deviations from truthful play (the first step of

our QRE estimation algorithm). We calculate each participants’ payoff under a particular

skip/truncation, holding others’ response as truthful, and use these payoffs to assess the

mixed strategies as before. This process provides a good first approximation to our QRE

model, and can be calculated with far fewer steps than the fixed-point method, which must

be iterated to convergence. As it turns out, this first-pass model of noisy behavior provides

a similar fit to our fixed-point QRE results.

Figure 3b provides the same scatter plot for model-data fit, where we use the deviation-

from-truth-telling payoff matrix to determine skips and truncations instead of the fixed-point

payoffs. Though there are some small differences between Figures 3a and 3b, the main

pattern, a strong correlation between model and data, is the same. Similarly, the one-step

version of the algorithm produces comparable results for stability, stable-matching selection,

and core-size.
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7. Connecting Results to the NRMP

The NRMP releases annual reports containing a variety of aggregate statistics on the

matching procedure, as well as results from surveys conducted by the NRMP itself.39 These

results seem to bear some strong connections with our experimental data.

In 2013, 49.4 percent of U.S. senior applicants and 42.4 percent of independent applicants

filled out the survey administered by the NRMP. When asked to specify different ranking

strategies, 34 percent of U.S. senior respondents (12 percent of independent respondents)

confirmed the statement “I ranked one or more less competitive program(s) in my first-choice

specialty as a ‘safety net’.” Similarly, 7 percent of U.S. senior respondents (10 percent of

independent respondents) confirmed the statement that “I ranked one or more program(s)

in an alternative specialty as a ‘fall-back’ plan.” In fact, 6 percent of U.S. respondents

(22 percent of independent respondents) confirmed the more global statement regarding

the reported preferences that “I ranked the programs based on the likelihood of matching

(most likely first, etc.).” Residents confirm that they ranked programs in the order of their

preference (98 percent of U.S. seniors and 87 percent of international applicants) but they do

not rank all of the programs that they are willing to attend (71 and 47 percent, respectively).

These observations are in line with our experimental observations suggesting that partici-

pants in the DA algorithm may not always report their preferences straightforwardly/truthfully.

Furthermore, a substantial number of respondents state that they use the likelihood of match-

ing as a guide to submit their rankings. This is consistent with our experimental proposers,

whose decision over who to propose to each round is closely related to how each receiver

ranks them, where they skip past receivers who do not rank them highly.40

A possibly more striking aggregate statistic documented by the NRMP pertains to the

percentage of matches with a resident’s k’th ranked hospital. For low k the fraction of

matches is particularly high, and fairly constant across recent years. For instance, between

1997 and 2013, the percentage of U.S. senior applicants being matched with their first-ranked

hospital ranged from 48.8 percent (in 2015) to 59.5 percent (in 2000). The percentages of

matches with second-ranked hospitals ranged from 14.2 (in 2005) to 15.6 percent (in 2015),

the percentage of matches with third-ranked hospitals ranged from 8.1 percent (in 2004) to

39See nrmp.org/match-data/main-residency-match-data/ for historical results from each year, and the
2013 applicant survey.
40Naturally, there might be selection issues pertaining to the type of residents who choose to respond to
the NRMP survey, which we cannot control for. Furthermore, due to the privacy policies of the NRMP,
we cannot gain access to individual backgrounds of respondents, which could allow us to establish various
correlations between the general tendency to report in a particular way and residents’ attributes.
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9.8 percent (in 2014), etc. The figures for independent applicants are similar, though lower

(as around a half remained unmatched each year).41

To examine how high these numbers are we conducted simulations assuming independent

preferences of both the proposing residents and the receiving hospitals. Using participant

numbers and number of hospitals and positions derived from the 2013 match, we examined

the fraction of first-, second-, and third-ranked matches assuming truth-telling.42 In our

simulations first- through third-ranked positions account for 9.7, 8.7 and 7.7 percent, respec-

tively. Were we to assume positively correlated preferences, these numbers shrink, as there is

more competition for each top-ranked slot. The number of first-ranked matches indicated by

the NRMP survey would seem to come from a negative correlation in the stated preferences

of the residents, a sorting over who proposers are choosing to rank first. This leads either to

a conclusion that underlying preferences have a large negative correlation, or that the stated

preferences of the proposing side are different from the underlying preferences.

Roth and Peranson (1999) analysis of NRMP data finds small cores, and little scope

for manipulation. Their argument that actual preferences exhibit small cores hinges on

similar core-spans found through simulations and actual ranking data. Their simulations

assume independent preferences (with the argument that the core would be even smaller

with positively correlated preferences). However, these assumptions would not explain the

high degree of matches between residents and their top-ranked hospital. Our experimental

data and the QRE model both indicate that rank-order lists specified by participants might

exhibit substantial modification from the underlying preference, which naturally manifests

itself through small measured cores and a higher preponderance of proposers matched to

their stated -best receiver.43

This proposer-based deviation can produce rankings with smaller cores (reflecting smaller

gains from truncation by the receiving side) as well as high fractions of proposers matched to

their first choices. The last columns in Table 6 provide information on the core-span within

our experimental markets, while the penultimate Induced column indicates the core span in

each market according to the given payoff matrix (both measured in terms of the difference

in rank between the best and worst stable outcome, averaged across the eight participants

41In 2015, matches of independent applicants with first-, second- and third-ranked hospitals occurred with
frequencies of 28.6, 11.5, and 6.7 percent, respectively. Conditional on matching theses numbers are 49.1,
19.7 and 11.5 percent. Qualitatively similar figures occur in the years previous to 2015.
42Our simulations had 36,000 residents proposing to 4,000 hospitals/programs, each with 7 slots. Residents
had a uniformly determined preference over 15 hospitals, while hospitals had preferences uniformly deter-
mined across 60 residents. (These numbers were chosen to approximate aggregate statistics reported by the
NRMP.) We simulated the market outcome 10 times.
43Across the 20 different markets in our experiment, 42.0 percent of simulated outcomes under our QRE
model are proposers being matching to their stated best receiver. Measured according to the true preference,
just 16.0 percent of the outcomes are between a proposer and their actual best receiver. Under truth-telling
by all participants this figure would be 15.6 percent.
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on that market side). For instance in market (V), the induced preferences yields a core

with an average span of 1.75 for the workers, and an average span of 2 for the firms. The

last column, provides information for the same markets using the QRE model, where the

core-span measure is calculated by simulation. The QRE core spans are much smaller than

the induced level in all but one of our markets with multiple stable matches. In Market (V)

the workers’ QRE rankings would indicate an average core span of just 0.18 for the workers,

and 0.28 for the firms when run as worker-proposing, and 0.83 for workers and 0.8 for firms,

when run firm-proposing.

8. Conclusion

The paper reports observations from experiments emulating a highly utilized matching

clearinghouse, the deferred-acceptance (DA) mechanism. We studied a large set of markets,

varying in their complexity, incentives to straightforwardly reveal preferences, and cardinal

representations. Several important insights emerge from our experiments. First, less than

half of the markets generated a stable matching. Of those markets with multiple stable

matchings that did end at a stable outcome, over 70 percent are at the receiver-best sta-

ble matching. Since straightforward revelation of preferences generates the proposer-best

outcome, these results are suggestive of manipulation. Our second set of insights regard

the source of deviations from straightforward behavior. Proposers frequently skipped down

their preference ordering, preferring to propose early to those more likely to accept them.

Receivers, however, appeared to by and large behave in an effectively straightforward man-

ner, accepting the best offer at each point in time. This is in contrast to the underlying

theoretical predictions that proposers behave straightforwardly and receivers do not. Last,

we show that market attributes have a significant impact on outcomes. For instance, both

the cardinal representation and core size influence whether outcomes are ultimately stable.

They also impact the overall distance of observed outcomes from the core, and the number

of turns it takes markets to converge to a final outcome.

The study has potentially important practical implications given the wide use of the DA

mechanism. In particular, for the approximately 60,000 participants involved in medical-

residency matching each year in the United States. The behavior we observe in the lab might

mirror medical residents from top programs applying to top-tier residencies, while those

from less well-regarded schools aiming at middle-ranked hospitals and below. Naturally,

outcomes are then very fragile to mistakes (by residents) regarding how low to aim with

their applications, even if hospitals submit their preferences truthfully. While the centralized

system is designed to generate stable matchings, such behavior may cause clearinghouses to

converge to outcomes that are, in fact, unstable, and for the data derived from them to look

less amenable to manipulation.
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In order to test the DA mechanism in the laboratory, we implemented a dynamic version

of the mechanism. Nonetheless, there are several aspects of the data that suggest the results

may be useful for predicting behavior in the field, where a static version of the mechanism

is often used. First, we provide a simple model of behavior in the static mechanism that

fits many facets of our data and allows us to make out-of-sample predictions. Second, we

compare moments generated by the behavioral model to those available in NRMP field data.

That a model of behavior in our experiment is consistent with several stylized facts from the

field, suggests our findings might be more widespread.

We also note that our results could provide insights on outcomes of particular decentralized

matching processes as well. This is the case for markets in which two conditions hold. First,

offers can flow only from one side of the market to the other (say, firms can make offers

to workers but not vice versa); Second, repeat offers are impossible or prohibitively costly.

In such markets, our results suggest that outcomes may not be stable, and their features

depend crucially on particular market characteristics.

The paper opens the door for several directions for future research. First, in light of the

behavior we observe, it would be important to formally understand how fragile outcomes

are to particular skipping heuristics by proposers. Second, while the limited-friction case

studied in this paper is a natural first step for inquiry, and matches much of the extant theo-

retical literature, it would be important to determine how certain frictions, particularly ones

pertaining to incomplete information (regarding others’ preferences, as well as one’s own),

may impact behavior and outcomes in centralized clearinghouses. This may be particularly

interesting for larger markets, where complete sharing of private information would require

massive amounts of communication. In fact, in large markets with incomplete informa-

tion, other details of the clearinghouse may play an important role—such as pre-application

interviews, that are common in, for example, the NRMP.
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Haruvy, E., and M. U. Ünver (2007): “Equilibrium Selection and the Role of Informa-

tion in Repeated Matching Markets,” Economics Letters, 94(2), 284–289.

Hoffman, M., D. Moeller, and R. Paturi (2013): “Jealousy Graphs: Structure and

Complexity of Decentralized Stable Matching,” in Web and Internet Economics, ed. by

Y. Chen, and N. Immorlica, vol. 8289 of Lecture Notes in Computer Science, pp. 263–276.

Springer.

Kagel, J. H., and A. E. Roth (2000): “The Dynamics of Reorganization in Matching

Markets: A Laboratory Experiment Motivated by A Natural Experiments*,” Quarterly

Journal of Economics, 115(1), 201–235.
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Appendix A. For Online Publication—Markets Ordinal Profiles

market (I). Assortative

Worker preferences Firm preferences

w1 : [f1] ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f1 : [w1] ≻ w2 ≻ w3 ≻ w4 ≻ w5 ≻ w6 ≻ w7 ≻ w8

w2 : f1 ≻ [f2] ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f2 : w1 ≻ [w2] ≻ w3 ≻ w4 ≻ w5 ≻ w6 ≻ w7 ≻ w8

w3 : f1 ≻ f2 ≻ [f3] ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f3 : w1 ≻ w2 ≻ [w3] ≻ w4 ≻ w5 ≻ w6 ≻ w7 ≻ w8

w4 : f1 ≻ f2 ≻ f3 ≻ [f4] ≻ f5 ≻ f6 ≻ f7 ≻ f8 f4 : w1 ≻ w2 ≻ w3 ≻ [w4] ≻ w5 ≻ w6 ≻ w7 ≻ w8

w5 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ [f5] ≻ f6 ≻ f7 ≻ f8 f5 : w1 ≻ w2 ≻ w3 ≻ w4 ≻ [w5] ≻ w6 ≻ w7 ≻ w8

w6 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ [f6] ≻ f7 ≻ f8 f6 : w1 ≻ w2 ≻ w3 ≻ w4 ≻ w5 ≻ [w6] ≻ w7 ≻ w8

w7 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ [f7] ≻ f8 f7 : w1 ≻ w2 ≻ w3 ≻ w4 ≻ w5 ≻ w6 ≻ [w7] ≻ w8

w8 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ [f8] f8 : w1 ≻ w2 ≻ w3 ≻ w4 ≻ w5 ≻ w6 ≻ w7 ≻ [w8]

Note: This market was chosen as is.

market (II). One Full Aligned

Worker preferences Firm preferences

w1 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ [f7] ≻ f8 f1 : [w3] ≻ w8 ≻ w7 ≻ w4 ≻ w5 ≻ w6 ≻ w1 ≻ w2

w2 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ [f8] f2 : [w6] ≻ w4 ≻ w5 ≻ w3 ≻ w2 ≻ w7 ≻ w1 ≻ w8

w3 : [f1] ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f3 : [w8] ≻ w5 ≻ w3 ≻ w6 ≻ w1 ≻ w7 ≻ w2 ≻ w4

w4 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ [f5] ≻ f6 ≻ f7 ≻ f8 f4 : [w5] ≻ w3 ≻ w4 ≻ w1 ≻ w7 ≻ w8 ≻ w6 ≻ w2

w5 : f1 ≻ f2 ≻ f3 ≻ [f4] ≻ f5 ≻ f6 ≻ f7 ≻ f8 f5 : [w4] ≻ w1 ≻ w2 ≻ w6 ≻ w7 ≻ w3 ≻ w8 ≻ w5

w6 : f1 ≻ [f2] ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f6 : w4 ≻ [w7] ≻ w3 ≻ w8 ≻ w5 ≻ w2 ≻ w6 ≻ w1

w7 : f1 ≻ f2 ≻ f3 ≻ f4 ≻ f5 ≻ [f6] ≻ f7 ≻ f8 f7 : w5 ≻ [w1] ≻ w3 ≻ w7 ≻ w4 ≻ w8 ≻ w6 ≻ w2

w8 : f1 ≻ f2 ≻ [f3] ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f8 : [w2] ≻ w1 ≻ w3 ≻ w7 ≻ w6 ≻ w5 ≻ w4 ≻ w8

Note: This market was constrained to have symmetric preferences on the worker side. Firm preferences were
randomly varied to generate a unique stable match.
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market (III). Split Two Aligned

Worker preferences Firm preferences

w1 : ⌈f1⌉ ≻ ⌊f2⌋ ≻ f3 ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f1 : ⌈w5⌉ ≻ ⌊w1⌋ ≻ w6 ≻ w2 ≻ w3 ≻ w7 ≻ w4 ≻ w8

w2 : f1 ≻ f2 ≻ f3 ≻ ⌈f4⌉ ≻ ⌊f5⌋ ≻ f6 ≻ f7 ≻ f8 f2 : ⌈w1⌉ ≻ ⌊w4⌋ ≻ w2 ≻ w3 ≻ w6 ≻ w8 ≻ w7 ≻ w5

w3 : f1 ≻ f2 ≻ ⌈f3⌉ ≻ ⌊f4⌋ ≻ f5 ≻ f6 ≻ f7 ≻ f8 f3 : ⌈w4⌉ ≻ w1 ≻ ⌊w3⌋ ≻ w2 ≻ w5 ≻ w6 ≻ w8 ≻ w7

w4 : f1 ≻ ⌈f2⌉ ≻ ⌊f3⌋ ≻ f4 ≻ f5 ≻ f6 ≻ f7 ≻ f8 f4 : ⌈w3⌉ ≻ w1 ≻ w4 ≻ ⌊w2⌋ ≻ w5 ≻ w8 ≻ w7 ≻ w6

w5 : f5 ≻ f6 ≻ f7 ≻ ⌈f8⌉ ≻ ⌊f1⌋ ≻ f2 ≻ f3 ≻ f4 f5 : ⌈w2⌉ ≻ w1 ≻ ⌊w7⌋ ≻ w5 ≻ w4 ≻ w8 ≻ w3 ≻ w6

w6 : f5 ≻ ⌈f6⌉ ≻ ⌊f7⌋ ≻ f8 ≻ f1 ≻ f2 ≻ f3 ≻ f4 f6 : ⌈w7⌉ ≻ ⌊w6⌋ ≻ w5 ≻ w8 ≻ w2 ≻ w4 ≻ w1 ≻ w3

w7 : ⌈f5⌉ ≻ ⌊f6⌋ ≻ f7 ≻ f8 ≻ f1 ≻ f2 ≻ f3 ≻ f4 f7 : ⌈w6⌉ ≻ ⌊w8⌋ ≻ w5 ≻ w7 ≻ w1 ≻ w4 ≻ w2 ≻ w3

w8 : f5 ≻ f6 ≻ ⌈f7⌉ ≻ ⌊f8⌋ ≻ f1 ≻ f2 ≻ f3 ≻ f4 f8 : ⌈w8⌉ ≻ w7 ≻ w6 ≻ ⌊w5⌋ ≻ w3 ≻ w2 ≻ w4 ≻ w1

Note: This market was found by constraining the one side to have two blocks with symmetric preferences.
Firm preferences were randomly varied to generate a two distinct stable matches with moderate truncation
required to get to F -best stable match. We additionally searched for two modifications which changed a
single participant’s preferences by switching their ranked order of two participants from the other side which
would remove one of the two stable matches.

market (IV). Two matches, one very unstable

Worker preferences Firm preferences

w1 : ⌈f1⌉ ≻ ⌊f7⌋ ≻ f8 ≻ f2 ≻ f5 ≻ f4 ≻ f3 ≻ f6 f1 : w2 ≻ w6 ≻ w3 ≻ ⌈w4⌉ ≻ w5 ≻ w7 ≻ w8 ≻ ⌊w1⌋

w2 : ⌈f2⌉ ≻ ⌊f8⌋ ≻ f3 ≻ f4 ≻ f1 ≻ f6 ≻ f5 ≻ f7 f2 : w8 ≻ w4 ≻ w6 ≻ w3 ≻ ⌈w5⌉ ≻ w7 ≻ w1 ≻ ⌊w2⌋

w3 : ⌈f3⌉ ≻ ⌊f4⌋ ≻ f1 ≻ f5 ≻ f8 ≻ f2 ≻ f6 ≻ f7 f3 : ⌈w8⌉ ≻ w5 ≻ w1 ≻ w6 ≻ w2 ≻ w4 ≻ w7 ≻ ⌊w3⌋

w4 : ⌈f4⌉ ≻ ⌊f1⌋ ≻ f5 ≻ f8 ≻ f2 ≻ f3 ≻ f7 ≻ f6 f4 : w2 ≻ w1 ≻ w6 ≻ ⌈w3⌉ ≻ w7 ≻ w8 ≻ w5 ≻ ⌊w4⌋

w5 : ⌈f5⌉ ≻ ⌊f2⌋ ≻ f1 ≻ f7 ≻ f3 ≻ f8 ≻ f4 ≻ f6 f5 : w1 ≻ w3 ≻ ⌈w6⌉ ≻ w7 ≻ w4 ≻ w2 ≻ w8 ≻ ⌊w5⌋

w6 : ⌈f6⌉ ≻ ⌊f5⌋ ≻ f8 ≻ f2 ≻ f4 ≻ f7 ≻ f3 ≻ f1 f6 : w3 ≻ w1 ≻ w5 ≻ ⌈w7⌉ ≻ w4 ≻ w8 ≻ w2 ≻ ⌊w6⌋

w7 : ⌈f7⌉ ≻ ⌊f6⌋ ≻ f2 ≻ f5 ≻ f3 ≻ f1 ≻ f4 ≻ f8 f7 : ⌈w1⌉ ≻ w4 ≻ w3 ≻ w8 ≻ w5 ≻ w2 ≻ w6 ≻ ⌊w7⌋

w8 : ⌈f8⌉ ≻ ⌊f3⌋ ≻ f1 ≻ f2 ≻ f5 ≻ f6 ≻ f7 ≻ f4 f8 : ⌈w2⌉ ≻ w6 ≻ w3 ≻ w1 ≻ w7 ≻ w5 ≻ w4 ≻ ⌊w8⌋

Note: This market was found by constraining to two distinct stable matches with maximum truncation
required to get to F -best stable match.

market (V). Two matches, unaligned preferences

Worker preferences Firm preferences

w1 : f6 ≻ ⌈f1⌉ ≻ ⌊f8⌋ ≻ f4 ≻ f3 ≻ f2 ≻ f5 ≻ f7 f1 : w3 ≻ ⌈w6⌉ ≻ ⌊w1⌋ ≻ w7 ≻ w5 ≻ w8 ≻ w2 ≻ w4

w2 : f3 ≻ f1 ≻ ⌈f2⌉ ≻ ⌊f4⌋ ≻ f5 ≻ f7 ≻ f8 ≻ f6 f2 : ⌈w3⌉ ≻ w8 ≻ w1 ≻ w7 ≻ ⌊w2⌋ ≻ w4 ≻ w6 ≻ w5

w3 : ⌈f3⌉ ≻ f6 ≻ f8 ≻ ⌊f2⌋ ≻ f1 ≻ f7 ≻ f5 ≻ f4 f3 : w1 ≻ ⌈w8⌉ ≻ ⌊w3⌋ ≻ w4 ≻ w2 ≻ w6 ≻ w5 ≻ w7

w4 : f3 ≻ ⌈f4⌉ ≻ ⌊f7⌋ ≻ f5 ≻ f1 ≻ f2 ≻ f6 ≻ f8 f4 : ⌈w2⌉ ≻ w1 ≻ ⌊w4⌋ ≻ w5 ≻ w7 ≻ w3 ≻ w8 ≻ w6

w5 : ⌈f6⌉ ≻ f1 ≻ ⌊f5⌋ ≻ f3 ≻ f2 ≻ f4 ≻ f8 ≻ f7 f5 : w2 ≻ w8 ≻ w3 ≻ ⌈w5⌉ ≻ w1 ≻ w4 ≻ ⌊w6⌋ ≻ w7

w6 : f6 ≻ f2 ≻ f4 ≻ ⌈f5⌉ ≻ ⌊f1⌋ ≻ f7 ≻ f8 ≻ f3 f6 : w2 ≻ w8 ≻ ⌈w7⌉ ≻ ⌊w5⌋ ≻ w4 ≻ w6 ≻ w3 ≻ w1

w7 : f8 ≻ ⌈f7⌉ ≻ f1 ≻ ⌊f6⌋ ≻ f2 ≻ f3 ≻ f5 ≻ f4 f7 : w1 ≻ w2 ≻ w8 ≻ w6 ≻ w5 ≻ ⌈w4⌉ ≻ w3 ≻ ⌊w7⌋

w8 : ⌈f8⌉ ≻ f1 ≻ f4 ≻ ⌊f3⌋ ≻ f2 ≻ f7 ≻ f5 ≻ f6 f8 : ⌈w1⌉ ≻ w5 ≻ ⌊w8⌋ ≻ w4 ≻ w3 ≻ w7 ≻ w6 ≻ w2

Note: This market was only constrained by a requirement of having two distinct stable matches. We
additionally searched for a modifications which changed a single participant’s preferences by switching their
ranked order of two participants from the other side and removed one of the stable matches.
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market (VI). Four by Four market

Worker preferences Firm preferences

w1 : ⌈f2⌉ ≻ f4 ≻ ⌊f1⌋ ≻ f3 ≻ f8 ≻ f7 ≻ f6 ≻ f5 f1 : ⌈w1⌉ ≻ ⌊w2⌋ ≻ w3 ≻ w4 ≻ w5 ≻ w6 ≻ w8 ≻ w7

w2 : f2 ≻ ⌈f1⌉ ≻ ⌊f4⌋ ≻ f3 ≻ f7 ≻ f6 ≻ f5 ≻ f8 f2 : ⌈w3⌉ ≻ ⌊w1⌋ ≻ w2 ≻ w4 ≻ w8 ≻ w5 ≻ w7 ≻ w6

w3 : ⌈f4⌉ ≻ ⌊f2⌋ ≻ f3 ≻ f1 ≻ f6 ≻ f5 ≻ f8 ≻ f7 f3 : w3 ≻ [w4] ≻ w1 ≻ w2 ≻ w6 ≻ w7 ≻ w5 ≻ w8

w4 : f1 ≻ [f3] ≻ f4 ≻ f2 ≻ f5 ≻ f8 ≻ f7 ≻ f6 f4 : ⌈w2⌉ ≻ ⌊w3⌋ ≻ w4 ≻ w1 ≻ w7 ≻ w8 ≻ w6 ≻ w5

w5 : ⌈f6⌉ ≻ f8 ≻ ⌊f5⌋ ≻ f7 ≻ f4 ≻ f3 ≻ f2 ≻ f1 f5 : [w5] ≻ ⌊w6⌋ ≻ w7 ≻ w8 ≻ w1 ≻ w2 ≻ w4 ≻ w3

w6 : f6 ≻ ⌈f5⌉ ≻ ⌊f8⌋ ≻ f7 ≻ f3 ≻ f2 ≻ f1 ≻ f4 f6 : [w7] ≻ ⌊w5⌋ ≻ w6 ≻ w8 ≻ w4 ≻ w1 ≻ w3 ≻ w2

w7 : ⌈f8⌉ ≻ ⌊f6⌋ ≻ f7 ≻ f5 ≻ f2 ≻ f1 ≻ f4 ≻ f3 f7 : w7 ≻ [w8] ≻ w5 ≻ w6 ≻ w2 ≻ w3 ≻ w1 ≻ w4

w8 : f5 ≻ [f7] ≻ f8 ≻ f6 ≻ f1 ≻ f4 ≻ f3 ≻ f2 f8 : [w6] ≻ ⌊w7⌋ ≻ w8 ≻ w5 ≻ w3 ≻ w4 ≻ w2 ≻ w1

Note: This market was designed to have two four-by-four submarkets, there are two stable (non-distinct)
matches within each submarket, for a total of four aggregate stable matches.

Appendix B. For Online Publication: Theoretical Background

B.1. The Underlying Model. Let W and F be disjoint, finite sets. We call the elements

of W proposers and the elements of F receivers. The sets W and F can represent medical

residents and hospitals, men and women, parents and schools, etc., that are to be matched

to one another in the market.44 A matching is a function µ : W ∪F → W ∪ F such that for

all w ∈ W and f ∈ F ,

(1) µ(f) ∈ W ∪ {f},

(2) µ(w) ∈ F ∪ {w},

(3) w = µ(f) if and only if f = µ(w),

where the notation µ(a) = a means that participant a is unmatched under µ and f = µ(w)

denotes that w and f are matched under µ. We denote the set of all possible matchings,

given the sets W and F , as M.

A preference relation is a linear, transitive, and antisymmetric binary relation (all prefer-

ences are strict, no proposer or receiver is indifferent over two distinct partners). A preference

relation for a proposer w ∈ W , denoted Pw, is understood to be over the set F ∪ {w} Simi-

larly, for a receiver f ∈ F , Pf denotes a preference relation over W ∪{f}. If any participant

a prefers remaining unmatched to being matched with another participant a′ (aPaa
′), we will

say that the match µ(a) = a′ is not individually rational, or unacceptable, for a. We assume

that each proposer (receiver) prefers every receiver (proposer) to remaining unmatched.45

A preference profile is a list P of preference relations for proposers and receivers:

P = ((Pw)w∈W , (Pf)f∈F ) .

44Since in many centralized labor market applications, it is the workers (say, the doctors in the NRMP) who
serve as proposers and the firms (the hospitals in the NRMP) who serve as receivers, we use the corresponding
acronyms W and F to denote the two sets.
45This fits our experimental design where remaining unmatched is the worst outcome.
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As is standard, for i ∈ W ∪ F , we denote by P−i the profile of preferences for all agents but

i. Let P be the set of all possible preference profiles, and for an agent i ∈ W ∪ F , let Pi

denote the set of possible preferences for i.

We assume that preferences are strict. Denote by Rw the weak version of Pw. So f ′Rwf

if f ′ = f or f ′Pwf . The definition of Rf is analogous.

Fix a preference profile P . We say that a pair (w, f) blocks the matching µ if fPwµ(w),

and wPfµ(f). A matching is stable if it is individually rational and there is no pair that

blocks it.46 Finally, denote by S(P ) the set of all stable matchings.

B.2. Centralized Mechanisms. A mechanism is a function φ : P → M that assigns a

matching to each preference profile. A mechanism is stable if φ(P ) ∈ S(P ) for all P ∈ P.

Gale and Shapley (1962) proved that every preference profile admits a stable matching,

and provided the following algorithm to identify one:

Algorithm 1 (Deferred-Acceptance).

• Step 0: The set A0 of active proposers consists of all the proposers. All receivers

have no tentative partners.

• For k = 1, 2, . . ., repeat the following until Ak is empty:

• Step k:

– Each proposer w in Ak−1 proposes to the highest-ranked receiver according to

Pw, across all of the receivers w has not proposed to in previous steps of the

algorithm.

– Each receiver f chooses the best partner (according to Pf), out of the set of

proposers that proposed to f in step k, and f ’s tentative match from step k−1.

This choice is f ’s new tentative match; reject all other proposals.

– The set Ak is formed from the set of all active proposers rejected in this step:

either their proposal to a receiver was rejected, or they were tentatively matched

in step k − 1, and rejected in favor of a new proposal.

• Stop

The tentative matching at the end of the last step is the output matching.

Theorem 1 (Gale-Shapley Theorem). S(P ) is non empty, and there are two matchings µW

and µF in S(P ) such that, for all w, f , and µ ∈ S(P ),

µW (w)Rw µ(w)Rw µF (w)

µF (f)Rf µ(f)Rf µW (f).

46Since we assume that partners are always acceptable, any matching is individually rational under the true
preferences.
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The matching µW is called proposer-best while µF is called receiver-best. Beyond its theo-

retical role in establishing existence, the DA algorithm is often used in centralized markets.

For instance, the National Resident Matching Program uses a close modification of the DA

algorithm (where physicians serve as proposers and hospitals as receivers).

A mechanism φ defines a direct revelation game: the normal-form game where the agents

in W ∪F simultaneously report their preferences, so the strategy space of agent i is Pi, and

the outcome of a profile P is given by φ(P ). Denote by φDA the mechanism defined by the

DA procedure.

For an agent i ∈ W ∪ F , truth-telling is a weakly dominant strategy if, for any preference

profile P ′
i different from the true preferences Pi, and any profile P̃−i of all agents but i, α2P

φ(Pi, P̃−i)(i)Ri φ(P
′

i , P̃−i)(i)

A mechanism is strategy proof if truth-telling is weakly dominant for all agents. As it

turns out, we have the following (see Roth and Sotomayor, 1990):

Theorem 2 (Strategy Proofness in Stable Mechanisms). In φDA, truth-telling is weakly

dominant for proposers. No stable mechanism is strategy proof.

Fix a preference profile P , and suppose that all proposers w truthfully choose Pw as their

strategy in the direct-revelation game. We consider the induced game among receivers,

where receivers simultaneously choose a preference profile P̃f ∈ Pf . A Nash equilibrium of

the induced game is a profile of preferences (P ′
f)f∈F such that,

φ((Pw)w∈W , (P ′
f ′)f ′∈F )(f)Rfφ((Pw)w∈W , P̃f , (P

′
f ′)f ′∈F\f)(f)

for all f ∈ F and P̃f ∈ Pf .

The following result is well known (again, see Roth and Sotomayor, 1990):

Theorem 3 (Equilibrium Outcomes in Stable Mechanisms). Consider any stable mechanism

implementing the proposer-optimal stable matching for any reported preferences. In the game

induced from truth-telling by the proposers, the set of Nash equilibrium outcomes coincides

with the set of stable matchings.

B.3. Outcome Equivalence. We present the main intuition behind the equivalence be-

tween our game and the DA direct-revelation game. Our game is dynamic, and agents can

condition their actions on the outcomes of past decisions. The DA direct-revelation game is

static. We impose restrictions on agents’ strategies that make the differences between the

two games irrelevant. Essentially, our assumptions say that we can think of agents’ strategies

as being preference relations.

Heuristically, a strategy for a proposer maps any sequence of past proposals (with their

corresponding outcomes) into a current proposal. We first restrict strategies to only depend
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on available proposals. For example, if w1 can only propose to f1 or f2, his choice should be

independent of the precise sequence of (rejected) proposals that ended with f1 and f2 as the

remaining choices. While this restriction seems realistic, it is easy to write down examples

that violate it. For example, w1 may choose f1 over f2 when, in a past turn, he proposed

to f3 and was immediately rejected. But he may choose f2 instead if his proposal to f3 was

initially accepted, and rejected several turns later.

The second restriction is standard in choice theory. A strategy for a proposer is a mapping

from sets of available receivers into a proposal; for each set F ′ of receivers, either some f ∈ F ′

is proposed to or no proposal is made. The strategy is then a choice function that can take

empty-set values. Under standard conditions from choice theory (such as the congruence

axiom of Richter 1966), we can represent such a strategy with a preference relation.47

We make analogous assumptions on receivers’ behavior. A receiver’s strategy is a decision

on which proposal to accept, given any set of proposals made by the active proposers, and

any proposer whose proposal the receiver holds. Again, the restrictions we impose are of two

types. First, strategies cannot depend on histories per se. Second, strategies obey certain

minimal consistency requirements across time, so that they can be represented as preference

relations.

We show that a profile of strategies, once represented as a profile of preference relations,

generates the same outcome as the one that would have been generated in the preference-

revelation game φDA. Hence, the incentives faced by proposers and receivers in both games

are the same.

B.4. Static and Dynamic Deferred-Acceptance Mechanisms. The following example,

appearing in Niederle and Yariv (2011), illustrates how weakly dominated strategies on the

parts of proposers alone do not lead to the same predictions in the static and dynamic

versions of the Deferred Acceptance mechanism.

Example (Additional Equilibrium Outcomes in the Dynamic Version of De-

ferred Acceptance). Consider a market consisting of proposers {W1,W2,W3} and re-

ceivers {F1, F2, F3} , where all agents prefer to be matched rather than unmatched. Let

the induced ordinal preferences % of the three proposers and colors be given by:

W1 : F2 ≻ F1 ≻ F3

W2 : F1 ≻ F2 ≻ F3

W3 : F1 ≻ F2 ≻ F3

,

F1: W1 ≻ W3 ≻ W2

F2: W2 ≻ W1 ≻ W3

F3: W1 ≻ W3 ≻ W2

.

The unique stable matching µ is given below (where we use the convention that each column

in the matrix denotes a match between the specified proposer and color), µ(Wi) = Fi for

47Namely, we can find a preference ranking Pw such that for any set of available receivers F ′, if there is some
acceptable receiver under Pw, the one that is the most preferred according to Pw in F ′ is proposed to. The
restrictions are reminiscent of the weak axiom of revealed choice, assuring consistency of observed behavior.
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all i. In particular, the DA mechanism entails a unique equilibrium in weakly undominated

strategies yielding µ. Nonetheless, the matching µ̃ below (in which W1 and W2 swap colors

relative to µ) can be induced in our dynamic mechanism.

µ =

(

W1 W2 W3

F1 F2 F3

)

, µ̃ =

(

W1 W2 W3

F2 F1 F3

)

.

Indeed, the following profile in weakly undominated strategies constitutes part of an equi-

librium:

Period 1: proposer W3 makes an offer to F3 who accepts.

Period 2: proposer W1 makes an offer to F2 and W2 makes an offer to F1 who accept.

Upon any deviation, offers from agents other than the stable match or the most-preferred

match are rejected and all revert to emulating the Deferred Acceptance strategies (in par-

ticular, F1 rejects an offer from W3).

Notice that time plays an important role in the construction of this equilibrium. Indeed,

as highlighted in Niederle and Yariv (2011), the crucial element driving this construction

is the ability of some participants to commit and of others to condition their behavior on

observed market outcomes (note that once W3 is accepted, he cannot escape F3).48

B.5. Outcome and Strategic Equivalence. In the dynamic setup, at each period t agents

monitor only partial activity in the market. We now describe the information each agent

has throughout the game. At the beginning of period t, each proposer w observes a history

that consists of the (timed) offers the proposer made and the responses of receivers to those

offers, denoted by r for rejection and h for holding (where we use the notational convention

that an offer to no receiver is denoted as an offer to ∅ that is immediately rejected):

hW
t,w ∈ ((F ∪∅)× {r, h})t−1 .

The set of all possible histories at time t for proposer w is denoted by HW
t,w.

In addition, at each period t, suppose receivers f1, ..., fk(t−1) rejected offers from proposer

w in periods 1, ..., t − 1. Denote by F̃ t
w =

{

f |f /∈
{

f1, ..., fk(t−1)

}}

the set of receivers that

have not rejected proposer w yet.

Each receiver acts in the second stage of each period t and observes a history that consists

of all (timed) offers she received and a (timed) sequence of offers she held:49

hF
t,f ∈

(

2W
)t
×
(

2W
)t
.

The set of all possible histories at time t for receiver f is denoted by HF
t,f .

48Interestingly, this equilibrium is not robust in that it is not sequential (for instance, F1 would need to
believe that other agents will deviate as well when observing an offer from W3, but the market does not
offer enough monitoring for that).
49An offer of proposer w to receiver f that is held from period t to t’ is recorded as an offer made in periods
t, t+ 1, ..., t’ that is held by the receiver in each of these periods. We use a similar convention for proposers.
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In addition, at each period t, suppose proposers w1, ..., wk(t−1) made offers to receiver f

in periods 1, ..., t. Denote by W̃ t
f =

{

w|w /∈
{

w1, ..., wk(t−1)

}}

the set of proposers that have

not made an offer to receiver f.

A strategy for proposer w is a collection of mappings
{

σW
t,w

}

, where σW
t,w : HW

t,w → F ∪∅,

and whenever at time t, σW
t,w

(

hW
t,w

)

6= ∅ then σW
t,w

(

hW
t,w

)

∈ F̃ t
w. A strategy for receiver f is

a collection of mappings
{

σF
t,f

}

, where σF
t,f : HF

t,f → (W ∪∅)2
W×(W∪∅) . That is, after each

history, the receiver’s strategy specifies which proposer (if any) would be held from a menu

of proposer offers (when possibly already holding an offer).

Note that, for proposers, we could, in fact, describe the strategy as: σW
t,w : HW

t,w → {P (w)}

(when defining a receiver approached at later periods as less preferred).

If agents condition their behavior on time per se, the dynamic setup may, in principle,

lead to very different outcomes than the static one. We make the following assumptions:

Assumption 1 (Stationarity). Strategies do not depend on sequencing: For any proposer

w, there exists τWw : 2F → F ∪ ∅, such that whenever at time t proposer w is not held and

under history hW
t,w, F̃

t
w are the receivers he can make an offer to, σW

t,w

(

hW
t,w

)

= τWw

(

F̃ t
w

)

.

For any receiver f, there exists τFf : 2W× (W ∪∅) → W ∪∅, such that whenever at time

t receiver f has observed history hF
t,f , under which she holds an offer from f ∈ F ∪∅ (where

holding an offer from ∅ is interpreted as not holding an offer), and the set of proposers who

made her an offer in t is W̃ , then σF
t,f

(

hF
t,f

)

= τFf

(

W̃ , w
)

.

Assume that proposers make offers whenever they can.

Stationarity in and of itself does not assure a representation through a preference ranking.

Indeed, if τWw (f1, f2) = f1, but τ
W
w (f1, f2, f3) = f2, this would not be consistent with a pref-

erence ordering. Namely, a form of independence of irrelevant alternatives is being violated.

Furthermore, if τWw (f1, f2) = f1, τ
W
w (f2, f3) = f2, and τWw (f3, f1) = f3, we would obtain a

violation of transitivity when trying to explain behavior through a preference ordering. This

is in the spirit of violations of the weak axiom of revealed preferences.

The equivalence between the two types of mechanisms rests on a familiar idea from choice

theory, effectively a variation of independence of irrelevant alternatives.

Let X be a finite set and B ⊆ 2X . A choice function is a function C : B → X such that

C(A) ∈ A for all A ∈ B. We can associate a binary relation ≻C with C, where x ≻C y

if and only if there is a set A ∈ B with x, y ∈ A and x = C(A). Note that ≻C is the

revealed-preference relation.

The choice function C satisfies the congruence axiom if ≻C is acyclic; that is, if whenever

x1, . . . xK is a sequence in X such that

x1 ≻
C x2 ≻

C . . . ≻C xK ,

then it is false that xK ≻C x1.
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In our setup, each proposer w and receiver f is characterized by a choice function: τWw and

τFf , respectively. We say that the congruence axiom holds when all agents’ choice functions

satisfy the congruence axiom.

Proposition 1 (Equivalence). Whenever stationarity and the congruence axiom hold, equi-

libria outcomes in weakly undominated strategies of the static DA mechanism coincide with

equilibria outcomes in weakly undominated strategies of the dynamic DA mechanism. Fur-

thermore, there is a one-to-one mapping between weakly undominated equilibrium strategy

profiles corresponding to the two mechanisms.


