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1 Comparative Statics when One Project is Safe

In this section, we provide details for several observations regarding the special case in

which one project is safe.

1.1 Comparison of Good and Bad News Settings

We start by showing that the value of disentanglement is higher under pure good news

than under pure bad news, holding other parameters constant.

For any set of parameters, denote by V G
α (p,r/λ) and V B

α (p,r/λ) denote the expected pay-

offs in pure good news and pure bad news, respectively, when the level of disentanglement

is α, the prior that the risky project is good is p and the ratio of discount rate to news ar-

rival rate is r/λ. The value of disentanglement is then ∆V X(p,r/λ) = V X
0 (p,r/λ)−V X

1 (p,r/λ)

for X = G,B.

Proposition OA_1 The value of disentanglement is greater in good news settings than in bad
news settings: ∆V G(p,r/λ) > ∆V B(p,r/λ) for all p, r, and λ.

Proof of Proposition OA_1. We use Propositions A and B in the main text’s Appendix. The

cutoff probabilities p̄(0) and p̄(1) are the same for any r or λ (corresponding to arrival rate

of good or bad news). There are therefore three cases to consider:

1. p ≤ p̄(1) ≤ p̄(0): In this case,

∆V G(p,r/λ) = RL + p
λ

r +λ
(RH −RL)−RL = p

λ
r +λ

(RH −RL),

whereas

∆V B(p,r/λ) = RL+p
[
Ω(p̄(0))
Ω(p)

]r/λ
λ

r +λ
(RH−RL)−RL = p

[
Ω(p̄(0))
Ω(p)

]r/λ
λ

r +λ
(RH−RL).

Since p ≤ p̄(0), it follows that Ω(p) >Ω(p̄(0)) and the result follows.

2. p̄(1) ≤ p ≤ p̄(0): In this case,

∆V G(p,r/λ) = RL + p
λ

r +λ
(RH −RL)− pRH −

1− p
1− p̄(1)

[
Ω(p)

Ω(p̄(1))

]r/λ
(RL − p̄(1)RH ) ,

whereas

∆V B(p,r/λ) = RL + p

[
Ω(p̄(0))
Ω(p)

]r/λ
λ

r +λ
(RH −RL)− pRH − (1− p)

λ
r +λ

RL.

Since p̄(1) ≤ p ≤ p̄(0), it follows that Ω(p̄(1)) ≥ Ω(p) ≥ Ω(p̄(0)). Therefore, the first

three terms of V G(p,r/λ) are greater than the first three terms of V B(p,r/λ). Further-
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more, the last term in V G(p,r/λ) is smaller than

1− p
1− p̄(1)

(RL − p̄(1)RH ) .

Now, recall that p̄(1) = rRL
RH (r+λ)−RLλ

. Plugging in and reorganizing terms, we get that

the bound on the last term of V G(p,r/λ) is

(1− p)RL
(RH −RL)λ

(RH −RL)(r +λ)
= (1− p)

λ
r +λ

RL

and the result follows.

3. p ≥ p̄(0): In this case,

∆V G(p,r/λ) = (1− p)
[

Ω(p)
Ω(p̄(0))

]r/λ
λ

r +λ
RL −

1− p
1− p̄(1)

[
Ω(p)

Ω(p̄(1))

]r/λ
(RL − p̄(1)RH ) ,

whereas

∆V B(p,r/λ) = 0

and the result follows directly.

As noted in the text, intuitively, disentanglement is valuable only when the agent seeks

to exploit the safe project L. This exploitation comes at the cost of reduced exploration of

project H , where uncertainty remains. Under these conditions, good news about project

H is more valuable than bad news: only good news would prompt the agent to shift away

from exploiting project L and start exploiting project H . Consequently, the advantage of

disentanglement—allowing the agent to gather more information about project H while

continuing to exploit project L—is particularly pronounced in pure good news settings.

1.2 Marginal Impacts of Disentanglement Level

In the main text, we view the level of disentanglement, α, as exogenously given. One

could contemplate endogenizing α. For that, it is useful to understand how the value of

disentanglement changes with α.

As a preview, increasing α tightens the agent’s constraint, which reduces her expected

payoffs. However, as we note in the paper, the relationship between expected payoffs and

α is neither concave nor convex. To see why, consider, for instance, the balanced news set-

ting. For any pH ∈ (p̄ (1) , RL
RH

), there exists α∗ such that p̄ (α∗) = pH . Using the monotonicity

of p̄ (·) in Proposition 1, at the outset, the agent exploits the risky project H for any α > α∗.
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Furthermore, in a balanced news setting, the only way the agent updates her posterior,

and changes her exploited project, is by receiving news. Therefore, the agent’s expected

payoffs are constant in α for α > α∗. However, for α < α∗, expected payoffs are given by:

RL +
λ(1−α)

r +λ(1−α)
pH (RH −RL), (1)

which is strictly decreasing and concave in α. Therefore expected payoffs are neither con-

cave nor convex in α over the interval [0,1]. The following figure, depicting payoffs for

pH = 0.6,RL = 10,RH = 15, r = 1, and λ = 5, illustrates the shape of the payoffs:

0 α∗ 1

12.3

V G(α∗)

12.5

α∗

α

Pa
yo

ff

For simplicity, consider the balanced news setting, where payoffs are given by Equation

(1) above. If we let β = 1 − α, so that increasing β increases disentanglement, then in

the region in which α < α∗ as described above, the derivative (with respect to r/λ) of the

marginal payoff (with respect to β) is given by:

β − r/λ
(β + r/λ)3 .

In particular, the marginal payoff (with respect to β) is single-peaked in r/λ for α < α∗.

When α > α∗, payoffs are flat in α and the marginal benefit from decreasing or increasing

α is 0.

Importantly, the non-concavity of payoffs with respect to α means that standard first-

order conditions cannot automatically be used to optimize the choice of α, even in the

presence of costs that are convex in α.
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1.3 Comparative Statics with Respect to the Prior

In the main text, we show that the normalized benefit of disentanglement is maximized

at intermediate values of the prior. We now illustrate that the benefits of disentanglement

are, in fact, single-peaked.

Proposition OA_2 The value of disentanglement is single-peaked in p. That is, ∆ΠX(p,r/λ) is
single-peaked in p for all r, λ, and X = G,B. Furthermore, for all r and λ,

• In good news settings, the peak of the normalized value of disentanglement,∆ΠB(p,r/λ),
is in the interval [p̄(1), p̄(0)]

• In bad news settings, the peak of the normalized value of disentanglement,∆ΠB(p,r/λ),
is at p̄(1).

Proof. Consider good news settings first. For any r and λ, there are three regions of priors

p to consider as in the proof of Proposition OA_1:

1. p ≤ p̄(1) ≤ p̄(0): In this case,

∆V G(p,r/λ) = RL + p
λ

r +λ
(RH −RL)−RL = p

λ
r +λ

(RH −RL),

which is an increasing function of p. Furthermore,

p

pRH + (1− p)RL
=

1
RH −RL +RL/p

is increasing in p, implying that ∆ΠG(p,r/λ) is increasing in p as well.

2. p̄(1) ≤ p ≤ p̄(0): In this case,

∆V G(p,r/λ) = RL + p
λ

r +λ
(RH −RL)− pRH −

1− p
1− p̄(1)

[
Ω(p)

Ω(p̄(1))

]r/λ
(RL − p̄(1)RH ) ,

Differentiating and condensing terms, we get:

∂V G(p,r/λ)
∂p

= A+BΩ(p)r/λ−1
[
Ω(p)− (1− p)

r
λ
Ω′(p)

]
,

where A = − r
r+λRH − λ

r+λRL < 0 and B = 1
(1−p̄(1))Ω(p̄(1))r/λ

[
RL − p̄(1)RH

]
> 0. Differentiat-

ing again, we then get:

λ
Br

∂2V G(p,r/λ)
∂p2 = Ω(p)r/λ−2

[
2Ω(p)Ω′(p)−(1−p)(

r
λ
−1)(Ω′(p))2−(1−p)Ω(p)Ω′′(p)

]
.

Recall that Ω(p) = 1−p
p , so that Ω′(p) = − 1

p2 and Ω′′(p) = 2
p3 . The term in the square
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parentheses above then corresponds to:

− 2
p3 +

2
p2 −

(1− p)( rλ − 1)

p4 − (1− p)
( 2
p4 −

2
p3

)
= −

(1− p)r
p4λ

− 1
p4 +

1
p3 < 0.

Therefore, V G(p,r/λ) is concave within the region. The normalized value of dis-

entanglement, ∆ΠG(p,r/λ), is the ratio of a concave function and a positive linear

function. Hence, it is quasi-concave and single-peaked.

3. p ≥ p̄(0): In this case,

∆V G(p,r/λ) = (1− p)
[

Ω(p)
Ω(p̄(0))

]r/λ
λ

r +λ
RL −

1− p
1− p̄(1)

[
Ω(p)

Ω(p̄(1))

]r/λ
(RL − p̄(1)RH ) .

Both terms are decreasing in p, implying that V G(p,r/λ) is decreasing in p. Since the

normalizing factor, pRH + (1 − p)RL is increasing in p, it follows that ∆ΠG(p,r/λ) is

also decreasing in this range.

Since V G(p,r/λ) is continuous in p, its single-peakedness follows.

Consider bad news settings. For any r and λ, there are again three regions of priors p

to analyze:

1. p ≤ p̄(1) ≤ p̄(0): In this case,

∆V B(p,r/λ) = RL+p
[
Ω(p̄(0))
Ω(p)

]r/λ
λ

r +λ
(RH−RL)−RL = p

[
Ω(p̄(0))
Ω(p)

]r/λ
λ

r +λ
(RH−RL),

which is increasing in p. Furthermore,

p

pRH + (1− p)RL
=

1
RH −RL +RL/p

is increasing in p, implying that ∆ΠB(p,r/λ) is increasing in p as well.

2. p̄(1) ≤ p ≤ p̄(0): In this case,

∆V B(p,r/λ) = RL + p

[
Ω(p̄(0))
Ω(p)

]r/λ
λ

r +λ
(RH −RL)− pRH − (1− p)

λ
r +λ

RL.

Denote by a = r/λ. The derivative with respect to p is given by:

∂∆V B(p,r/λ)
∂p

=
RH −RL

1 + a

(1− p̄(0)
p̄(0)

)apa(1 + a− p)
(1− p)a+1 − (RH −

1
1 + a

RL).

Now, both terms are positive, with the first term strictly increasing in p and the

second term being constant. It therefore suffices to show that the derivative is non-
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positive when p = p̄(0):

∂∆V B(p̄(0), r/λ)
∂p

=
RH −RL

1 + a

(1 + a− p̄(0))
(1− p̄(0))

− (RH −
1

1 + a
RL).

Plugging in p̄(0) = RL/RH in the first term above, we get:

RH −RL

1 + a
1 + a−RL/RH

(RH −RL)/RH
= RH −

1
1 + a

RL.

It follows that ∂∆V B(p̄(0),r/λ)
∂p = 0 and, thus, ∆V B(p,r/λ) is decreasing in this range.

Since the normalizing factor, pRH+(1−p)RL is increasing in p, it follows that ∆ΠB(p,r/λ)

is also decreasing in this range.

3. p ≥ p̄(0): In this case,

∆V B(p,r/λ) = ∆ΠB(p,r/λ) = 0.

It follows that both ∆V B(p,r/λ) and ∆ΠB(p,r/λ) are single-peaked, with a unique maxi-

mum at p̄(1).

We further conjecture that, for any p, both ∆V X(p,r/λ) and ∆ΠX(p,r/λ) are single-

peaked in r/λ for X = G,B. Yet, as our preceding analysis shows, in certain ranges of p, the

derivatives of these functions with respect to a = r/λ involve transcendental expressions

in a. Identifying their roots analytically is therefore challenging. Further work could

investigate these questions more deeply.

2 Non-indexability for Arbitrary Disentanglement Levels

For simplicity, consider the balanced news setting. Similar arguments shows the lack of

index in the good news and bad news environments. Suppose, by contradiction, that for

some disentanglement level α ∈ [0,1), the optimal exploration policy can be described via

an index tailored to each project. We denote by Iα(p,R,λ) the index corresponding to a

project with a probability p of being good, an arbitrary reward R > 0 conditional on being

good, and a rate of news arrival—good or bad—of λ.

Consider three hypothetical projects. Project i = 1,2,3 is governed by a probability pi
that it is good, associated with a flow reward of Ri > 0, and a news arrival rate of λi > 0.

Suppose now that

R1 > p2R2 > R3 > p3R3 > p1R1

and that λ1 = 1.
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We now pick λ2 sufficiently small such that, when the agent has access to projects

1 and 2, she optimally exploits project 2, but explores project 1. This is possible to do

since this would be the optimal strategy when λ2 = 0 and the payoff from every strategy is

continuous in the parameters. That is, I(p1,R1,λ1) > I(p2,R2,λ2).

Further, we pick λ3 sufficiently high such that when the agent has access to projects 1

and 3, she explores and exploits project 3. Therefore, I(p3,R3,λ3) > I(p1,R1,λ1).

Finally, the fact that p2R2 > R3 implies that, regardless of λ2 and λ3, when the agent

has access to projects 2 and 3, she optimally explores and exploits project 2. This is the

optimal policy even when α = 0, so it must be the optimal policy when α > 0. Thus,

I(p2,R2,λ2) > I(p3,R3,λ3), establishing a cycle, in contradiction.

3 Robustness of the Optimal Policy

In what follows, we discuss the robustness of the optimal policies to less extreme disen-

tanglement levels than those analyzed in the main body of the text.

To gain some intuition, consider first the case of a single risky project. It follows from

the explicit form of the optimal strategy in Proposition 1 that the optimal strategy for

small α > 0 is close to the optimal strategy for α = 0 in the following sense. Consider

the good news setting and an initial belief p > p̄(0) that the risky project is good. Absent

news, the optimal strategy when α = 0 is to exploit and explore project H for some time

t0, the time it takes for the belief to reach p̄(0), and then switch to exploiting project L and

exploring project H . The optimal strategy when α > 0 is to exploit and explore project H

for a duration of time tα, the time it takes for the belief to reach p̄(α), with tα > t0, and then

switch to exploiting project L and exploring project H at a rate of 1−α. Similar arguments

apply for the case in which the initial belief is p < p̄(0), as well as for bad news settings.

We now sketch a similar robustness result for the two risky projects problem. For con-

creteness, we focus on good news settings. We only need to consider the optimal strategy

until news arrives, since from that point onward, the problem reduces to the case of a

single risky project.

A strategy is given by (σ1,σ2) : [0,∞) → [0,1] where σ1(t) and σ2(t) are, respectively,

the exploitation and exploration resources project H at time t. The space of strategies is

equipped with the weak∗ topology of L∞ ([0,∞),µ), where µ is the probability distribution

over [0,∞) given by µ = re−rtt. By the Banach–Alaoglu theorem, this set is compact. A

strategy is feasible if σ2(t) ≥ ασ1(t), so the feasibility correspondence from α to strategies

has a closed graph. Finally, the payoff function is jointly continuous in α and the strategy

(taking into account the continuity in α of the continuation payoff after news). Therefore,

by the maximum theorem, for sufficiently small α, the optimal strategy in the α-problem is
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arbitrarily close to the optimal strategy for α = 0. Arbitrarily close in this topology implies

that for every T and ϵ > 0, there is an ᾱ > 0 such that for any α < ᾱ, the optimal strategy

with disentanglement level α is at a distance of at most ϵ from the optimal strategy for

α = 0 during horizon T , except possibly on a subset of times of measure at most ϵ.

4 Bound on Switching Time under Good News

Proposition 3 in the main text illustrates that if the agent initially explores a favorable

project x, then if, absent news, she switches to exploring the other (initially unfavorable)

project y, she does so at a time T ≤ t̄x(pL,pH ). While we do not have an analytical charac-

terization for T , we now illustrate that, depending on parameters, it can be as close to 0 or

as close to tx(pL,pH ) as we wish.

To see an example in which T < tx(pL,pH ) for a favorable project x, consider a case

where pLRL < p̃HRH < RL: it is optimal to exploit project H with prior p̃H , but learning

that project L is good would lead to a switch in exploitation. Suppose the arrival rate

λ
g
L is sufficiently high so that the agent strictly prefers exploring project L (and, by the

Proposition, continues doing so until news). Now, keeping all other parameters fixed,

consider a prior pH > p̃H such that pHRH > RL > pLRL. If λb
H > 0, then it must be optimal to

explore project H at pH since learning about project L would not induce a change in which

project is exploited. The agent will then switch when the posterior declines to at least p̃H .

Since pHRH > p̃HRH > pLRL, the agent will switch strictly before hitting indifference. In

particular the agent must switch at some time T strictly below tH (pL,pH ).

To see an explicit example where T indeed approaches tx(pL,pH ) for a favorable project

x, consider a balanced news setting with news arrival rates λL and λH such that, when

p̂HRH = pLRL, the agent is also indifferent between exploring project H and exploring

project L (as determined by the condition given in Proposition 2). From the characteriza-

tion in Proposition 2, this indifference at p̂H implies that the agent strictly prefers explor-

ing project H when pH > p̂H and exploring project L when pH < p̂H . Now, modify project

H so that it is a good news project that is “almost balanced” by setting λb
z = λz − ϵ′ (and

λ
g
z = λz), for z = L,H and ϵ′ > 0. For any ϵ > 0, pick δ > 0. We can find ϵ′ > 0 sufficiently

small such that the following hold. First, the agent optimally starts exploring project H

when the prior that project H is good is pH = p̂H + δ. Second, the agent stops explor-

ing project H at a prior sufficiently close to p̂H that the time it takes to switch is at least

tH (pL,pH )− ϵ.1

1Notice that when the posterior that project H is good reaches p̂H , the agent must be exploring project
L. Indeed, if the agent continues exploring project H beyond p̂H , her posterior that project H is good would
drop so that project H becomes unfavorable, implying that the agent would never switch, in contradiction to
Proposition 3.
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5 Maximal Under-Exploitation by Teams

Here, we provide the derivations underlying the size of the maximal under-exploitation

region discussed in the main text.

Define

∆(α,n) = p
α

(n)− pSWα (n) = λ(n− 1)RL (RH −RL)
α
[
r +nλ (1−α)

]
D1(α)D2(α)

, n > 1,

where The two positive linear denominators are

D1(α) = (r +nλ)RH −nλαRL,

D2(α) =
[
r +λ

(
n− (n− 1)α

)]
RH −λαRL.

Substitute the individual derivatives to obtain

∂∆
∂α

=
λ(n− 1)RL(RH −RL) (nλ+ r)[

D1(α)D2(α)
] [

r +nλ(1− 2α)
α [r +nλ(1−α) ]

−
( nλRL

D1(α)
+
λ[(n− 1)RH +RL]

D2(α)

)]
.

Define the term in square brackets in the equation above as

Ψ (α) =
r +nλ

(
1− 2α

)
α [r +nλ(1−α) ]

−
[nλRL

D1(α)
+
λ
[
(n− 1)RH +RL

]
D2(α)

]
Since D1(α),D2(α) > 0, the sign of ∂∆

∂α is the same as the sign of Ψ (α). The bracket on

the right is strictly positive and increasing in α, while the first fraction starts positive

is decreasing in α and is dominant for small values of α: it becomes arbitrarily large as

α→ 0. Hence Ψ (α) is positive for small values of α and can change signs at most once on

(0,1]. We now evaluate Ψ (α) at α = 1 to obtain

Ψ (1) =
r −nλ

r
+

nλRL

(r +nλ)RH −nλRL
+
λ
[
(n− 1)RH +RL

]
(r +λ)RH −λRL

,

so that Ψ (1) = 0 when r equals r̂ :=
λ
(
RH−RL

)√
n

RH
. This implies that Ψ (1) is negative when-

ever r < r̂ and non-negative when r ≥ r̂. This allows us to conclude that, for r ≥ r̂, ∆(α)

is increasing for all α ∈ (0,1], whereas, for r < r̂, ∆(α) increases until a single peak α∗ and

then decreases.

6 Introducing Agency Frictions

We now illustrate an additional application of our framework. Specifically, we examine

a particular form of agency problem in the context of exploration. To illustrate the core

9



ideas, we focus on a setting with a single risky project in a pure good-news setting: one

project yields a known reward, whereas the other produces payoffs at rate λ only if suc-

cessful. This discussion aims to highlight the richness of our basic framework.2

Recall that, with full disentanglement (α = 0), in the benchmark single-agent envi-

ronment with one risky project, the optimal strategy is to continuously explore the risky

project while exploiting whichever project yields the higher expected reward at any point

in time.

We consider a setting with two agents—a Doer and an Observer—who make decisions

independently. The Doer has the authority to act but lacks the time, ability, or expertise

to monitor the outcomes of the risky project. The Observer, by contrast, possesses the

time, ability, or expertise to gather information but cannot act on it directly. This setup

reflects a range of real-world scenarios, including R&D and management teams in tech-

nology or pharmaceutical firms, hiring committees and department chairs in academia,

and advisory bodies and decision-makers in politics.3

For simplicity, we assume that the Doer has access to the information collected by the

Observer, including her observations, and that the Observer exerts effort at zero cost.

The agents share a common prior p about the probability that the risky project is suc-

cessful. However, their payoffs differ: the Doer values the safe and risky projects at RD
L

and RD
H , respectively, while the Observer values them at RO

L and RO
H . We assume that, at

any time, both agents’ strategies are measurable with respect to the information available

by that time. We focus on Markov Perfect Equilibria (MPE). When the Doer and Observer

share identical preferences, the setting reduces to the single-agent problem analyzed in

the paper.

We begin with examples illustrating outcomes in the absence of commitment, then

highlight the value of commitment. In particular, we show how the Observer can tailor

the exploration strategy to manipulate the Doer’s behavior.

Supppose that the initial disagreement is due to the Observer always preferring the

risky project: RO
L = 0. If pRD

H > RL, then there is an equilibrium in which the Observer

explores only the safe project and the Doer exploits the risky project indefinitely. When

pRD
H < RD

L < RD
H , however, the only way for the Observer to convince the Doer to exploit

the risky project is to prove it is successful. Therefore, in any MPE, the Observer explores

the risky project till a success.

Assume that the Observer prefers the safe project, even if the risky project is successful:

2The assumption of good news and one safe project are made for expositional simplicity. A fuller treatment,
including more general information structures or two risky projects would certainly be interesting as well, but
would require consideration of many additional cases.

3For related environments in the context of sequential sampling, see Chan, Lizzeri, Suen, and Yariv (2018)
and Henry and Ottaviani (2019).
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RO
L ≥ RO

H . In contrast, at the outset, the Doer’s expected flow payoffs are higher for the risky

project: pHR
D
H > RD

L .

If the Observer never explores the risky project, the Doer will optimally exploit it in-

definitely. In equilibrium, the Observer explores the risky project to lower the Doer’s pos-

terior enough to induce a switch to the safe project, even in the absence of news. Let t̄(pH )

be the time required for the posterior to fall to pM = RD
L /R

D
H , the Doer’s myopic threshold.

Proposition OA_3 (Initial Disagreement: Observer Prefers Safe) In equilibrium, the Ob-
server explores the risky project until the posterior reaches the Doer’s myopic cutoff. The
exploration time, t̄(pH ), is increasing in pH and RD

H , and decreasing in RD
L .

Intuitively, the Observer needs to lower the posterior belief to the point at which the

Doer becomes indifferent between exploiting the risky and the safe project indefinitely. At

that point, the Observer switches to exploring the safe project: exploring the risky project

bears risk of generating good news that would lead the Doer to switch back to exploiting

it. As a result, the time t̄(pH ) the Observer spends inspecting the risky project, absent

good news, corresponds to the duration that the risky project is exploited in equilibrium.

This time t̄(pH ) depends solely on the Doer’s payoffs and independent of the Observer’s

payoffs. The comparative statics follow directly. The outcome is inefficient from the Doer’s

perspective: exploration ceases even though uncertainty about the risky project remains.

The Doer would prefer continued exploration of the risky project even after time t̄(pH ).

Consider now the case in which both the Observer and the Doer prefer the risky project

ex ante: pRD
H > RD

L and pRO
H > RO

L . However, suppose the Observer’s relative benefit from

the risky project is much larger than the Doer’s: pRO
H − R

O
L > pRD

H − R
D
L . For simplicity,

assume RO
L = 0 so that the Observer prefers the risky project regardless of its success.

Now, the Observer has an incentive to prevent the Doer from learning, which could

shift her exploitation to the safe project.

Proposition OA_4 (Initial Agreement) There exists an equilibrium in which the Observer
never explores the risky project. Furthermore, in any equilibrium, the Doer exploits the
risky project throughout.

Certainly, the Observer could also inspect the risky project for a sufficiently short time

so that the Doer does not change which project she exploits, which gives rise to equilibrium

multiplicity. For all such profiles, the resulting behavior is the same, with the risky project

being exploited.

When RO
L > 0, a similar result holds, but under more limited circumstances. In par-

ticular, the Observer needs to be sufficiently impatient or learning needs to be sufficiently

slow.
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