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Abstract

Many committees—juries, political task forces, etc.—spend time gathering costly information

before reaching a decision. We report results from lab experiments focused on such information-

collection processes. We consider decisions governed by individuals and groups and compare

how voting rules affect outcomes. We also contrast static information collection, as in clas-

sical hypothesis testing, with dynamic collection, as in sequential hypothesis testing. Several

insights emerge. Static information collection is excessive, and sequential information collection

is non-stationary, producing declining decision accuracies over time. Furthermore, groups using

majority rule yield especially hasty and inaccurate decisions. Nonetheless, sequential informa-

tion collection is welfare enhancing relative to static collection, particularly when unanimous

rules are used.
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1 Introduction

1.1 Overview

Information acquisition precedes a variety of important decisions. The pioneering work of Wald

(1947) illustrated that collecting costly information dynamically, using sequential hypothesis testing,

is more efficient than deciding statically on the sample size, using classical hypothesis testing.1

In many settings, information is indeed collected sequentially—agencies like the FDA and the

EPA design their evaluations sequentially, with each stage contingent on the one preceding it:

juries recall testimonies through dynamic deliberations; job-market candidates often proceed to

advanced interview stages contingent on their success in earlier ones. Nonetheless, despite the

efficiency of sequential sampling, institutional or time constraints often restrict decisions to occur

statically—up or down tenure decisions; conclusions from field experiments set in advance due

to logistical constraints; or rapid military responses. In addition, many important information-

collection decisions are made by groups: expert committees, juries, department faculty, or military

intelligence and combat officers. Do groups behave differently from individuals when collecting

information? Does the aggregation procedure within groups matter? In practice, are there large

benefits from the utilization of dynamic rather than static information-collection protocols? There

is a dearth of data addressing these questions. Our aim is to fill this gap.

This paper reports results from an array of lab experiments inspecting both static and sequen-

tial information collection by individuals and groups. Furthermore, we consider groups operating

under different aggregation procedures. In our design, individuals and groups trade off information

accuracy and costs, either statically or dynamically. Since participants face the same incentives as

individuals or as groups, optimal choices should, theoretically, be independent of the aggregation

rule. In particular, in our sequential settings, individuals and groups should use a constant cutoff

posterior, as in Wald (1947), to determine when information collection comes to a halt. Similarly,

in static settings, individuals and groups should choose the same sample size regardless of the

aggregation rule.

We find the following patterns in our data. First, on average, sequential information collec-

1Wald (1947)’s insight was perceived so profound that, in the introduction to his book, it is noted that “Because
of the usefulness of the sequential probability ratio test in development work on military and naval equipment, it was
classified Restricted within the meaning of the Espionage Act.”
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tion leads to decision accuracies that come close to those that are predicted by the theory, but

these accuracies decline over deliberation time. This pattern suggests that individuals display

time-declining thresholds instead of the stationary ones predicted by the theory. Second, static

information collection is excessive. Third, groups exhibit markedly different behaviors than indi-

viduals, with majority rule leading to faster (and less accurate) decisions. Despite these deviations

from the theoretically-optimal behavior, we find that welfare is higher when information is collected

dynamically, especially under unanimity.

Our results have implications for institutional design when information collection is an impor-

tant component of decision making. Using committees, rather than individuals, can be beneficial

even if increasing the size of the decision body does not affect the overall information available.

Nevertheless, the rules governing how collective decisions are made and the information protocol

in place—static or dynamic—need to be customized in tandem.

At the core of our experimental design is the following decision problem. There are two ex-ante

equally likely states, A or B. States can represent a guilty or an innocent defendant, a safe or unsafe

drug, an investment that is profitable or not, etc. Ultimately, each participant must guess the state

of the world and gets rewarded when correct. Each state is associated with a Brownian motion.

The drift is µ when the state is A and −µ when the state is B. The Brownian motion’s variance

is state-independent. As time goes by, the realized sample path of the Brownian motion becomes

increasingly informative about the underlying state. There is a flow cost of information collection.

Whenever information collection terminates, participants know the posterior probability that the

state is A and submit their guess. Naturally, the optimal guess corresponds to the more likely state.

Our focus is on the trade-off pertaining to information collection: waiting longer before making a

decision increases accuracy, but comes at a cost.

We consider both static and dynamic information-collection procedures. The dynamic setting

implements the sequential sampling setup.2 Participants track the evolution of the Brownian path

and can stop at any time to submit their guess. The static setting is designed to resemble the

dynamic setting while emulating the classical hypothesis testing setup. Participants determine, at

the outset, the time horizon during which they collect information by observing the Brownian path.

They then see the path unravel for their desired time, get informed of the ultimate posterior over

2Specifically, our setup mimics that of Dvoretzky et al. (1953).
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states, and make their guess.3

In our benchmark treatments, decisions are made by individuals, as in the canonical paradigms.

In additional treatments, decisions are made in groups. When in a group, we consider two

commonly-used institutions: majority and unanimity. In the dynamic setting, group members

decide whether to stop or continue information collection at each point in time. Under majority,

whenever two members agree on a guess, information collection terminates for the group, and the

majority guess is submitted. Analogously, under unanimity, whenever all members agree on the

guess, information collection terminates, and that guess is implemented. In the static setting, group

members all submit their desired information-collection horizon at the outset. Under majority rule,

the median time is implemented for the group, whereas under unanimity, the maximal time is im-

plemented. In all our group treatments, information is public: group members are privy to the

same information. Furthermore, group members receive the same payoff, derived from the common

costs accrued during the group’s information-collection period and the group’s guess accuracy.

Our individual treatments offer a natural benchmark for the basic predictions emerging from

the classical statistical information-collection procedures. In the dynamic setting, it is optimal to

stop whenever there is sufficient confidence in guessing the state, namely when the posterior belief

exceeds a time-independent threshold—at that point, the costs of additional information exceed its

benefits. With our parameters, the optimal threshold posterior is 0.81. In our experimental treat-

ments, individuals’ mean posterior at decision time is relatively close to that predicted by theory,

standing at 0.77. However, participants do not use time-independent thresholds: we see decreasing

thresholds over time, with participants becoming more lenient as time passes.4 In particular, con-

trary to theoretical predictions, quicker decisions tend to be more accurate. As we discuss in our

literature review, this observation is consistent with a wide neuroscience literature documenting a

similar pattern using perception tasks. Our data are unique since, by design, we directly observe

the posterior probabilities participants see over time. In the static setting, our parameters are

such that the optimal information-collection horizon is 30 seconds. In our experiments, on aver-

3Ex-ante, it is not clear which decision protocol is simpler. Static information collection asks for only one choice
at the outset, whereas dynamic information collection requires continuous monitoring of the posterior’s evolution.
Nonetheless, static information collection provides more limited feedback than dynamic information collection on the
relation between sample size and decision accuracy.

4Although we see participants making decisions at lower posteriors as time goes by within rounds, this pattern
does not extend across rounds: participants’ mean stopping posteriors are higher in the second half of our sessions.
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age, individuals choose 42 seconds, a choice that is 40% higher than is optimal. Since individuals

under-collect information in the dynamic setting, the wedge in decision accuracy between dynamic

and static information collection is not as large as theoretically predicted. Nevertheless, when ac-

counting for information costs, dynamic information collection yields higher expected payoffs, as

Wald (1947) suggested.

To identify group effects, disjoint from preference-aggregation effects, our groups are, by design,

homogeneous.5 Theoretically, efficient group outcomes should coincide with individual outcomes.

Specifically, threshold posteriors and waiting times should be independent of the decision rule.

Nonetheless, we find that participants in groups behave differently from participants making de-

cisions in isolation. This behavior depends on both the information-collection protocol and the

voting rule in place.

Do group interactions always affect behavior? Not necessarily. In dynamic treatments under

unanimity, participants’ behavior is virtually identical to that seen in our individual treatment.6

Still, this group neutrality does not hold under majority, as participants make much quicker deci-

sions than in our individual treatment. It is challenging to find a force rooted in group dynamics

that explains this hastiness under majority while having no effect in unanimity. We suggest individ-

uals may display a demand for agency : a desire to have a say in the vote. In dynamic treatments,

under unanimity, all group members get to express their preferences before a decision is made—a

demand for agency should have no effect. In contrast, under majority, a decision can be taken

before all members had cast their vote and a demand for agency introduces a potential race. An-

other possible explanation relates to our finding of declining decision thresholds. Although the

theoretically optimal stationary thresholds are individually optimal, and the best response to any

symmetric stationary threshold, best responding to decreasing thresholds by other group members

involves faster decisions.

Since participants’ behavior differs from the theoretical benchmark, in principle, so could the

welfare rankings between static and dynamic treatments. Nonetheless, we find that sequential

information collection always outperforms static information collection in terms of expected welfare.

5Chan et al. (2018) analyze theoretically dynamic group information collection in the presence of heterogeneity.
We view the homogeneous setting as a natural empirical starting point.

6The group outcomes differ since we see heterogeneity in individual behaviors and unanimous decisions reflect the
preferences of the most demanding group member.
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In fact, the highest welfare is observed in the case of groups that collect information sequentially

and use unanimity rule. The impact of the information-collection protocol is nuanced, however,

and not always as pronounced at theory predicts. In particular, decisions made by groups using

majority are more accurate when information is collected statically rather than dynamically. This

is a consequence of the excessive information collection in our static treatments combined with the

hastiness observed in our dynamic majority treatments. Thus, when democratic decision bodies

affect a large population, so that information costs are inconsequential to society, static information

collection may be beneficial.

1.2 Related Literature

The problem of testing statistical hypotheses is an old one. Its origin can be traced back to Thomas

Bayes, who provided the well-known formulation of posterior probabilities of event “causes” in the

18th century. Classical hypothesis testing has been used, formally or informally, for centuries, see

Stephan (1948). It came of age with the development of statistical hypothesis tests by Neyman

and Pearson (1933), who showed that the likelihood ratio test is the most powerful hypothesis test

for a given data set. Examples abound for its uses. See, for example, Greene (2018).

Sequential sampling, proposed by Wald (1945, 1947), introduced the idea of collecting data

dynamically. With each piece of data, a likelihood ratio test is performed to determine whether more

observations are needed to accomplish a desired level of statistical confidence. When data come at

a cost, Wald’s method offers efficiency gains over its static counterpart—when data is collected in

increments, a researcher can condition additional data collection on what had already been observed.

Sequential sampling has been used widely to describe how individuals collect information, more on

that below, and to guide researchers in the creation of databases, see Dominitz and Manski (2017)

and references therein.

Recent theoretical work has investigated how groups approach the deliberative process, linking

information acquisition with ultimate decisions. Persico (2004), Martinelli (2006), and Gerardi

and Yariv (2007, 2008) investigate environments in which information collection by a committee is

“static,” reminiscent of classical hypothesis testing. In those models, each individual can acquire

a costly signal about a payoff-relevant state. The aggregation process then introduces free-riding

motives. This contrasts with our setting, where any information collected by the group is public,
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with its costs equally shared.

Strulovici (2010), Chan et al. (2018), and Henry and Ottaviani (2019) consider environments in

which information collection is sequential: the committee decides at each date whether to continue

acquiring costly information, or stop and choose an alternative. In particular, Chan et al. (2018),

which our dynamic group treatments mimic, as well as Henry and Ottaviani (2019) and McClellan

(2021), build on the literature on sequential hypothesis testing that started with Wald (1947).

In terms of experimental work, an old literature in psychology considers settings similar to

ours when looking at individual choices. Becker (1958) studies dynamic information collection of

8 participants and suggests non-stationary decision heuristics. Edwards and Slovic (1965) also

study dynamic information collection, where 10 participants gain either no information or very

precise information at each step, so that updating is trivial. They report evidence for under- and

over-collection. Green et al. (1964) report data from 36 participants who make static information-

collection choices. They, too, report both under- and over-buying of information. Perhaps the

most related to our work is the paper of Fried and Peterson (1969), who document behavior of

20 participants choosing information statically and dynamically. Like us, they see non-stationary

behavior in the dynamic setting and show that, despite deviations from optimal behavior, dynamic

information collection yields higher expected values. While this literature serves as a natural

backdrop to our study, there are several important differences. First and foremost, we investigate

how groups using different rules collect information statically and dynamically. Methodologically,

beyond the substantially larger sample size and more detailed statistics, our design allows us to

disentangle Bayesian updating from optimization heuristics by providing participants the posterior

at every point in the dynamic treatment. Furthermore, while these previous studies commonly

present participants with a finite number of informative signals they can acquire, the volume of

information participants can collect in our setting is effectively unbounded, thereby making the

problem easier to interpret through the lens of the classical models of information collection.

Within economics, there is a large literature that studies how individuals collect and process

information statically. Many papers consider the collection of information when agents have non-

instrumental motives, for example seeking confirmatory information as in Fischer et al. (2005) or

ego-promoting information as in Eil and Rao (2011). Relatively few papers study experimentally

how individuals trade off precision of payoff-relevant information and its costs, which is at the
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heart of the classic hypothesis testing paradigm. Ambuehl and Li (2018) elicit valuations of payoff-

relevant information structures. They show that valuation of information under-reacts to increased

informativeness, but that individuals value information that may yield certainty particularly highly.

Hoffman (2016) uses a field experiment in which business experts are compensated for their guess

of the price and quality of actual websites. Participants can acquire a costly signal before deciding.

He also finds that participants underpay for strong signals and overpay for weak signals. Our

static treatments add to this literature by illustrating how both individuals and groups resolve the

accuracy-cost trade-off.7

Several papers inspect individual dynamic search behavior experimentally, see Gabaix et al.

(2006), Brown et al. (2011), Caplin et al. (2011), and references there. In these experiments,

participants spend resources over time in the hopes of identifying a good alternative, but the

underlying optimization problem is quite different from ours. Chen and Heese (2021)’s experiment

resembles our individual dynamic treatment. However, they focus on alternatives’ ethical valence.8

The neuroscience literature has produced a rich body of work that inspects binary perceptual

tasks. Response times are often interpreted as costly, turning the problem into a sequential sampling

one, often termed the drift-diffusion model. Much of the focus of this literature concerns the

association between correct choice rates and response times, see for instance Swensson (1972),

Luce et al. (1986), Ratcliff and Smith (2004), and Ratcliff and McKoon (2008). The main finding

emerging from this literature is that quick decisions tend to be more accurate. This insight is in

line with our observation of declining thresholds in the dynamic treatments: as time passes, our

participants stop information collection with less certainty on the correct choice. An important

contrast with these studies is that we observe—in fact, provide—the posterior probability that any

choice is correct over time. This allows us to speak directly to new theories of dynamic choice that

have emerged recently, see Baldassi et al. (2020) and Fudenberg et al. (2018).

7Several studies inspect information collection in strategic settings different from ours. Elbittar et al. (2020) and
Bhattacharya et al. (2017) consider information aggregation settings in which individuals acquire private information,
Szkup and Trevino (2021) explore information collection in the context of global games, while Gretschko and Rajko
(2015) focus on auctions.

8Canen (2017) provides some field evidence on voters sequentially collecting information prior to elections. Inter-
estingly, the idea of using sequential experimental designs has been suggested in various contexts, see El-Gamal and
Palfrey (1996), Chapman et al. (2019), Imai and Camerer (2018), and references therein.
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2 Experimental Design

A description of the interface and sample instructions are available in the Online Appendix. At

the core of our experimental design is the choice of the amount of information to acquire prior

to making a binary decision. There are two possible states: A and B. Although labeled neutrally

in the lab, these can stand for a guilty or innocent defendant in the jury context, a good or bad

policy in the political context, a profitable or unprofitable investment in a finance context, etc. At

the start of each period, one of the states is chosen at random with probability 1/2. Participants

ultimately need to guess the state and are paid according to the correctness of their guess. In the

lab, participants receive $2 for a correct guess and nothing otherwise.

Before making their guess, participants have access to information that evolves according to

a continuous-time Wiener process. The process has state-independent instantaneous variance σ2,

but state-dependent drift. When the state is A, the drift is µ; When the state is B, the drift is

−µ. To produce reasonable expected round durations, throughout our treatments, µ = 0.84 and

σ2 = 1. Naturally, our experimental software provides an approximation of the continuous setup,

where the interface is updated five times a second.9

Our treatments vary across two dimensions: whether information acquisition decisions are static

or sequential and whether choices are made by individuals, groups using majority rule, or groups

using unanimity rule. Each participant took part in only one of the resulting six treatments.

In what follows, we start by describing our sequential treatments. The design of these treatments

guided our design of the static treatments, which are described next.

Sequential Sampling Our dynamic treatments mimic the sequential-sampling environment of

Dvoretzky et al. (1953). In these treatments, participants observe information evolve over time

and, at each instant, can guess A, B, or wait for further information by choosing W . Information

comes at a flow cost of 40 cents a minute.

In the treatment in which individuals make decisions on their own—the individual dynamic

treatment—a round ends as soon as a participant makes an A or B guess.

9We use a single parameterization, which allows for a rich study of information collection in a variety of settings
with a manageable number of treatments. This trade-off between richness of parameters and environments is present
across experimental topics: repeated games, auctions, voting, etc., see Kagel and Roth (1995). Our design is amenable
to different parameter choices, offering a natural future step.
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In our group treatments, participants are randomly matched to form groups of three in each

round. Information is public: all individuals in the group observe the same information. A round

ends as soon as a quorum of q individuals agrees on an A or B guess. In the majority dynamic

treatment, q = 2. In the unanimity dynamic treatment, q = 3. As long as a quorum has not been

reached, participants can change their decisions between A, B, and W at any time. Throughout,

participants can see the choices of other group members.

Static Sampling Our static treatments mimic the setting of the classical hypothesis testing

environment. At the beginning of each round, participants decide on the amount of time they want

to spend collecting information. As in the dynamic treatments, information costs are fixed at 40

cents a minute.

When individuals make decisions independently—the individual static treatment—they observe

the information evolve for the amount of time that they chose.10 Their guess is then automated to

reflect the state that is more likely given the information collected: either A or B.11

Our static-sampling group treatments are analogous to those corresponding to the dynamic

treatments. In each round, participants are randomly re-matched into groups of 3. At the outset of

each round, participants submit simultaneously their desired waiting time. In the majority static

treatment, the resulting group waiting time is the median desired waiting time of group members:

this is the minimal time at which a majority of group members would agree to stop information col-

lection. It is the maximal desired waiting time of group members in the unanimity static treatment:

this is the minimal time at which all group members would agree to stop information collection.

As in the individual treatment, participants observe the information evolve for the amount of time

chosen by the group. The group guess, A or B, is again automated.

Feedback and Payments In all treatments, the feedback at the end of each round contains

participants’ payoffs and other group members’ choices when relevant. In groups, all members are

paid the same amount, incorporating the accuracy of the group’s guess and information costs.

10This design was chosen for two reasons. First, we wanted to maximize comparability with the sequential-sampling
treatments. Second, we wanted to offer participants sufficient learning opportunities.

11The guess is automated in order to reduce noise in our data. Because participants’ guesses in the individual
dynamic treatment best respond to the information 98% of the time, it is unlikely this restriction impacts our
qualitative results.
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Each treatment was preceded by two practice rounds, followed by 30 payoff-relevant rounds.

Participants were ultimately paid for 20 randomly-selected rounds out of these 30.

Information Processes The 30 information processes participants experienced in the experi-

mental rounds were identical across treatments. To select these processes, we randomly generated

15 sample paths with the parameters specified above. These processes are “representative” in that

the mean, median, and five quintiles of the theoretically-optimal sequential stopping times match

those of the underlying distribution (see the following section for a description of the theoretical

predictions). These processes correspond to the first 15 real rounds in each treatment. The last 15

processes in each treatment were derived by generating the reflected “mirror images” of the first

15 processes. Namely, whenever the realized state in the original process is A (or B), it is B (or A)

in the reflected process. Furthermore, at any time t, if the original process indicates a probability

p that the state is A, the reflected process indicates a probability 1 − p that the state is A. The

reflected processes were used in the same order as the original processes. In that way, participants

effectively faced the same 15 decision problems twice during a session. This design element allows

us to evaluate learning in a highly controlled fashion.12

The evolution of a Wiener process provides continuous information on the likelihood of either

state. Nonetheless, the Bayesian calculus necessary to deduce this likelihood is non-trivial. The

difficulty this calculus introduces is orthogonal to our investigation.13 To mitigate the impacts

of participants’ limitations in statistical analysis, our design directly displays the evolution of the

probability that the state is A (or B). Furthermore, this design element echoes features of a variety

of applications, where decision makers receive digested information that they base their choices on:

the FDA, politicians making policy choices, boards of trusties, etc. often receive summary results

of various studies, rather than analyze the underlying data themselves.

Auxiliary Elicitations At the end of each session, participants completed two risk-elicitation

tasks as in Gneezy and Potters (1997). Namely, participants were provided with 200 tokens that

they had to allocate between a safe investment, returning token for token, and a risky investment

12As we soon describe, the evolution of the process was depicted through a uni-dimensional scale capturing posterior
probabilities updated over time. Identifying repetitions is extremely unlikely: it would require the memorization of
many ordered values and the realization that they are mirrored.

13It is well known that lab participants are frequently challenged by statistical updating, see for instance the survey
of Benjamin (2019).
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Table 1: Participants and Rounds

Dynamic Static
Participants Rounds Participants Rounds

Individual 34 1,020 31 930
Majority 48 480 48 480

Unanimity 48 480 45 450

with a mean higher than 1 and a non-trivial variance (e.g., one paying 2.5 the amount invested

with probability 50%). In addition, participants took part in two dictator-games, one in which the

amount of tokens transferred was translated 1 : 1 and one in which the amount of tokens transferred

was doubled for the recipient. Participants were paid for one randomly-chosen risk-elicitation task

and one randomly-chosen dictator game.14

Summary The experiments were run at the Princeton Experimental Laboratory for the So-

cial Sciences (PExL) with 254 participants. We conducted at least four sessions for each group

treatment, with at least 12 participants in each. Table 1 summarizes our treatments and the corre-

sponding volume of participants.15 The experimental software was programmed using oTree (Chen

et al., 2016).

Approach to Data Analysis As may be expected, participants’ behavior changes during early

experimental rounds as they learn about the problem. We see no evidence for substantial learning

in later rounds. For details, see the Appendix. Throughout the paper, we present figures aggregated

across all experimental rounds as those displayed appear virtually identical when we use either the

full data or the last half of our sessions. Regression results are presented for data corresponding to

all rounds in the text, and for the last 15 rounds in the Online Appendix. The qualitative messages

remain the same.16 We also discuss individual- and session-level heterogeneity in the Appendix. We

see little variability across sessions and limited effects of group partners in early rounds on behavior

in later rounds, which is why we use individual-level clustering; see our Online Appendix, where we

also report key results with session-level clustering. Risk attitudes and altruism proclivities do not

appear to play an important role in explaining patterns in our data, even after measurement-error

14We elicited duplicate responses to allow for measurement-error correction as suggested in Gillen et al. (2019).
15Given our grouping protocol, the number of rounds per participant in our group treatments is three times lower

than in the individual treatment.
16Recall that the processes participants encounter in the first and second half of each session are equivalent.
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correction. We therefore do not include data from these elicitations in our main specifications. See

the Online Appendix for related analyses, which also allow for various levels of clustering.

3 Theoretical Predictions

We now outline the theoretical predictions for our various treatments. For details, see Dvoretzky

et al. (1953) or Chan et al. (2018).

We consider the setting described in our experimental design. An agent assesses which one of

two ex-ante equally likely states, A or B, are realized. Information follows a Wiener process with a

variance of 1. When the state is A, the process has drift µ = 0.84; When the state is B, the process

has drift −µ = −0.84. Tracking this information comes at a flow cost of c. The agent guesses

the state that is more likely once information collection terminates. For ease of exposition, we

normalize the reward for an ultimately correct guess of the state to be 1. With this normalization,

the flow cost corresponding to that used in our experiments is c = 0.2.

It is convenient to define µ′ ≡ 2µ2. The agent’s posterior belief is then given by a Wiener

process, with drift µ′ and instantaneous variance 2µ′ in state A, and drift −µ′ and instantaneous

variance 2µ′ in state B. For our parameters, µ′ = 1.4.

3.1 Static Treatments

In order to obtain the optimal wait time in the static setting, we need to compute the probability

of guessing the true state correctly for any chosen time t. This probability can be shown to be

given by the following expression17∫ ∞
0

1√
4πµ′t

e
− (x−µ′t)2

4µ′t dx =
1

2

(
erf

(√
µ′t

2

)
+ 1

)
.

In the static setting, a risk-neutral agent maximizes

max
t

1

2

(
erf

(√
µ′t

2

)
+ 1

)
− c t.

17If Φ(·) denotes the cumulative distribution function of the standard normal, the error function erf(·) is defined
so that erf(x) = 2Φ(

√
2x)− 1.
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The optimal wait time is then

t∗ =
2W

(
(µ′)2

32πc2

)
µ′

,

where W (·) is the Lambert W function (i.e., W (x) = w if and only if x = wew).

With our parameter values t∗ = 0.49. Since one unit of time in the lab is one minute, this

optimal wait time translates to 29.58 seconds.18 A consequence of our parameter choices is that

the optimal duration is not overly extreme, implying that errors are unlikely to be one-sided.

Consider now a group of n > 1 homogeneous agents who choose their desired search times

simultaneously. The group then collects information for a duration corresponding to either the

median or the maximal specified time. As before, the group guess corresponds to the more likely

state given the posterior that is generated by the collected information. Group members are

(identically) rewarded as in the one-agent setting.

The utilitarian efficient equilibrium for the group corresponds to the optimal search time de-

scribed above, namely 29.58 seconds. Furthermore, this choice is weakly dominant for any agent,

regardless of the strategies other agents in the group utilize.

3.2 Sequential Treatments

One of the main contributions of Wald (1945) and the continuous-time counterpart of Dvoretzky

et al. (1953) is to demonstrate that, in the sequential-sampling setting, an optimizing agent uses

a simple threshold policy. Namely, at any time t, the agent calculates the log-likelihood ratio

θt = log
(
Pr[A]
Pr[B]

)
. The optimal policy specifies a pair of cutoffs (g,G), with G ≥ g, such that the

agent stops information collection and guesses the state is A whenever θt ≥ G. Similarly, the agent

stops information collection and guesses the state is B whenever θt ≤ g.

For θ ∈ [g,G], let u(θ|g,G) represent the expected payoff from the deliberation process. A

similar derivation to that of Chan et al. (2018) yields19

18A discussion of this setting in the presence of risk aversion is presented in the Online Appendix.
19Our formulation here differs from that of Chan et al. (2018) in that they consider exponentially discounted

utilities, whereas we consider flow costs of time spent on information collection. This modification simplifies the
experimental interface.
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u(θ|g,G) =
eG(eθ − eg) + (eG − eθ)

(1 + eθ)(eG − eg)

− c

µ′
(G− θ)(eG+θ + eg) + (θ − g)(eg+θ + eG)− (G− g)(eθ + eG+g)

(1 + eθ)(eG − eg)
.

The corresponding first-order condition with respect to the lower boundary is then20

∂u(θ|g,G)

∂g
=

−(eG − eθ)
(1 + eθ)(eG − eg)2

[
eg(eG − 1)− c

µ′
(
(G− g)eg(eG − 1) + (eG − eg)(1− eg)

)]
= 0.

This condition shows that the cutoffs satisfying the first-order condition do not depend on the

current log-likelihood ratio θ. Thus, solutions are stationary.

Because the problem is symmetric, the solution satisfies g = −G. The optimal value of G can

then be determined by the implicit function c
(
2eGG+ e2G − 1

)
− eGµ′ = 0. With µ′ = 1.4 and

c = 0.2, the numerical solution for the optimal boundary is G∗ = 1.46. Translated into probabilities,

this value becomes e1.46

1+e1.46
= 0.81. Thus, in the dynamic version, a risk-neutral agent should wait

until the probability of the most likely state is 81%. Once again, our parameter choices ensure that

the optimal stopping threshold is not overly extreme, so that errors are unlikely to be one-sided.

Consider now a group of n > 1 homogeneous agents. At each point in time, each agent decides

whether she would like to stop and guess A, stop and guess B, or wait. The group continues

information collection until either a majority or a unanimity of agents in the group choose to guess

the same state.

The utilitarian efficient equilibrium for the group, under both majority and unanimity, corre-

sponds to the optimal search policy described above, namely utilizing a threshold of 81%. In our

experiment, participants make group decisions with other individuals who do not choose the exact

81% threshold. However, it is easy to show that, as long as agents use symmetric cutoff policies,

the 81% threshold is still the best response for any agent. Therefore, there are no immediate

consequences for optimal choices because of potentially noisy behavior of other agents.

4 Broad Patterns of Behavior

Table 2 displays an aggregate overview of some of our results. It displays the estimated mean of

the posteriors with which the pivotal vote has been cast, and the estimated mean time taken to

cast the pivotal vote. As can be seen, our individual and majority dynamic treatments lead to less

20The first-order approach is indeed valid, we omit details for the sake of brevity.
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Table 2: Aggregate Behavior

Dynamic Treatment Static Treatment
Mean Posterior Mean Time Waited Mean Posterior Mean Time Waited

All Rounds Last 15 All Rounds Last 15 All Rounds Last 15 All Rounds Last 15

Individual
0.77 0.78 33.56 37.55 0.75 0.75 41.69 40.45

(0.003) (0.005) (0.687) (1.12) (0.004) (0.006) (0.561) (0.824)

Majority
0.73 0.73 23.07 24.38 0.74 0.74 36.25 34.48

(0.002) (0.003) (0.335) (0.51) (0.003) (0.005) (0.326) (0.515)

Unanimity
0.82 0.84 46.71 53.68 0.76 0.75 40.46 37.77

(0.002) (0.003) (0.724) (1.11) (0.004) (0.005) (0.343) (0.547)

Theory 0.81 39.03 0.72 29.58

Standard errors in parentheses

accurate decisions than theoretically predicted, whereas the unanimity dynamic treatment yields

outcomes that are extremely close to those theory predicts.21 Furthermore, the majority dynamic

treatment corresponds to the least amount of waiting, an observation we shall return to.

Differences between threshold posteriors in the data and those predicted by theory may, at

first blush, appear small. Nonetheless, these differences translate to fairly large differences in wait

times. For instance, the unanimity dynamic treatment leads to double the wait time in majority

dynamic treatment. This is a direct consequence of the convexity of precision costs— the marginal

time required to attain a given increase in precision is increasing in the level of the precision.

Static treatments yield excessive waiting relative to that predicted by theory. Again, the

majority-rule treatment generates the hastiest decisions, though differences are not significant.

Contrary to theory, mean decision times are longer in the static treatments than in the dynamic

treatments for both individuals and groups using majority. Moreover, the differences between mean

posteriors at decision times in static and dynamic treatments are not as large as theory predicts.

Figure 1 depicts the evolution of posteriors and the choices made in each of our 15 processes in

the individual treatments, both static and dynamic. Our use of identical processes across treatments

allows for such a direct comparison. In order to simplify the presentation, each panel aggregates

observations from two reflected processes (for example, panel 1 corresponds to the first and sixteenth

process, panel 2 to the second and seventeenth process, etc.). The Figure illustrates the point at

which individuals “pulled the trigger” and the pivotal vote was cast.

The Figure suggests some important themes that appear in our more detailed analysis below.

21The path of posteriors intersects the stopping threshold from below. If participants implemented a threshold
with trembles drawn independently over time, our estimated threshold would underestimate the “true” threshold: a
downward tremble in the threshold is more likely to lead to termination than an upward tremble. In the Appendix,
we allow for such noise and show that the resulting bias is very small in our data.
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Figure 1: Pulling the Trigger: Individual Treatments
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First, it is apparent that decisions are heterogeneous, corresponding to a spectrum of stopping

posteriors. Second, many observations are close to optimal. In fact, many participants stop infor-

mation collection at the theoretically-predicted posterior accuracy (corresponding to the horizontal

dashed lines within each panel). In the dynamic setting, participants clearly respond to information

in that decisions are more clustered around higher posteriors. Third, individuals in the dynamic

treatment become more lenient, requiring less accuracy to stop, the longer they wait: they display

decreasing thresholds. Consider, for example, process 10. Several individuals decide late in the

process, when posteriors are close to 50%, despite choosing not to stop at earlier points, when

posteriors were close to 80%. Last, because in the static treatment individuals cannot condition

their choices on the history, the resulting decision posteriors are far more dispersed.22 For instance,

in processes 9 and 12, some static choices take place at extreme posteriors (close to zero) that had

already stabilized for some time. Earlier stopping would have been preferable if agents had been

able to condition their behavior on the history. In contrast, in processes 2 (around 50 seconds)

and 14 (around 35 seconds), some static decisions terminate at posteriors of around 50% in regions

where no dynamic decisions terminate.

The analogous figure for our majority and unanimity treatments appears in the Appendix.

22We return to a discussion of posterior dispersion in Section 7.
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Results are similar: we see more leniency over time in the dynamic treatments, and more decisions

at extreme posteriors—either low or high—in the static treatments.

In what follows, we analyze the behavior that underlies these initial observations. The next

section describes behavior in our dynamic treatments. The section that follows offers a comparison

with their static counterparts.

5 Sequential Information Collection

5.1 The Impacts of Decision Procedures

For each of our dynamic treatments, Figure 2 displays the cumulative distribution functions of the

posteriors when the decision was made (the left panel) as well as the associated decision times

(the right panel). We see a substantial impact of the governing decision rule. Distributions can be

ordered via first order stochastic dominance, with the unanimity dynamic treatment yielding the

highest-accuracy decisions and taking the longest to conclude, and the majority dynamic treatment

yielding the least-accurate and hastiest decisions. In particular, the averages presented in Table

2 are not principally driven by outliers. As discussed in Section 3, theory suggests we should not

observe any differences in outcomes among voting rules. However, theory also predicts a single

threshold posterior, whereas we observe substantial heterogeneity in behavior in the individual

treatment. Given this heterogeneity, it is natural to ask whether the differences we observe across

our dynamic treatments are simply a mechanical consequence of the grouping of three random

individuals that respond heterogeneously to the task at hand. Specifically, groups governed by

majority rule decide according to the second order statistic, whereas groups governed by unanimity

rule decide according to the third order statistic.

To assess whether the differences we see among these treatments are purely mechanical, we

simulate hypothetical groups of three participants by drawing data from our individual treatment.23

Figure 2 presents the resulting cumulative distribution functions from these simulated groups,

alongside the distributions we observe in our data. The additional accuracy granted by groups

using unanimity appears to be a purely mechanical phenomenon.24 In contrast, groups using

23For each round, we randomly group the 34 participants in our individual treatment into 11 groups of 3 participants,
randomly discarding one. We do so 1, 000 times. Across all 30 rounds, 330, 000 groups are therefore simulated.

24A two-sided Kolmogorov-Smirnov test fails to reject the hypothesis that these distributions, the simulated and
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Figure 2: Dynamic Treatment CDFs
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majority rule yield substantially less accurate and hastier decisions than those of simulated groups

using majority, suggesting that hasty majority choices are not the pure consequence of a mechanical

aggregation effect.25 We will discuss this phenomenon in more detail in Section 5.5 below.

5.2 Non-stationary Behavior

We now assess the determinants of when participants decide to terminate information collection.

Theoretically, the probability of voting should be 1 when the posterior reaches its theoretical

threshold value of 0.81, and 0 for any lower posterior. In particular, the probability of voting should

respond only to observed posterior probabilities, not to the time that has passed, to features of the

sample path, or to choices of other group members.

We describe the behavior of our participants by presenting results from a probit regression. The

left-hand side variable captures whether a participant has voted, and the main explanatory variable,

is the posterior. In the left panel, as an additional explanatory variable we include the time (in

minutes) to allow for time dependence in voting outcomes. To allow for the possibility of path

dependence, in the right panel, we also include features of the sample paths. Specifically, we divide

each round into (non-overlapping) 5-second time intervals. Within each 5-second window, we record

our left-hand side variable—whether a vote was cast; our explanatory variables—the posterior and

observed unanimity group decisions, are identical. One possible concern is that observations generating these figures
are correlated. This raises questions about the validity of standard statistical tests for comparing these distributions;
see additional analysis in the Online Appendix. We soon use regression analysis, with adequate error clustering, to
statistically determine what affects decisions.

25A two-sided Kolmogorov-Smirnov test rejects the hypothesis that these distributions are identical, though the
caveat regarding such tests still holds. We use regression analysis below to make a stronger statistical case for the
difference between group treatments.
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time at the end of the window; as well as the slope and standard deviation of the sample path.26

We utilize data up until participants cast their individual votes. Thus, an observation consists of an

indicator of whether the participant cast their vote by the end of the 5-second interval, the posterior

at the end of the interval, the time at the end of the interval, as well as the slope and standard

deviation of the process during that same 5-second interval. Table 3 reports the corresponding

coefficient estimates.

Table 3: Probit Regression

P (V ote)

Individual Majority Unanimity Individual Majority Unanimity

Posterior 5.357∗∗∗ 5.149∗∗∗ 5.690∗∗∗ 5.071∗∗∗ 3.787∗∗∗ 5.463∗∗∗

(0.400) (0.426) (0.406) (0.402) (0.478) (0.427)
Time 0.242∗∗ 0.798∗∗∗ 0.333∗∗∗ 0.313∗∗∗ 0.673∗∗∗ 0.328∗∗∗

(0.120) (0.179) (0.111) (0.109) (0.189) (0.110)
Slope 0.137∗∗∗ 0.132∗∗∗ 0.0475∗

(0.0360) (0.0338) (0.0253)
StandardDev -0.142 0.626∗∗ 0.350∗

(0.212) (0.275) (0.203)
Constant -4.980∗∗∗ -4.626∗∗∗ -5.263∗∗∗ -4.891∗∗∗ -3.880∗∗∗ -5.192∗∗∗

(0.344) (0.291) (0.312) (0.332) (0.367) (0.335)

N 7865 6772 11113 6824 5301 9660

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The left panel of Table 3 indicates that decisions to cast a vote are responsive to posteriors,

with higher posteriors naturally leading to increased voting probabilities. In addition, stopping

decisions are not stationary : controlling for posteriors, the more time passes, the more likely

agents are to make a decision. For example, in the individual treatment, waiting for one additional

minute is equivalent to an approximate increase of 4.5 percentage points in the observed posteriors

(0.045× 5.357 ∼ 0.242): the probability an individual casts a vote with a hypothetical posterior of

0.80 at the outset approximately coincides with the probability an individual casts a vote with a

posterior of 0.76 after one minute has passed. Furthermore, time appears to have a stronger impact

on the likelihood of making a decision when groups use majority rule.

In the right panel, we also include features of the sample paths. The coefficients corresponding

to posteriors and time passed change only slightly. In addition, the coefficient corresponding to

Slope is positive and significant. This implies that after a brief period in which posteriors increase

rapidly, a decision is more likely, particularly for individuals and groups using majority rule. The

26The slope corresponds to the average posterior gain per minute calculated using the 5-second window. To make
the ranges of posteriors and standard deviations comparable across 5-second windows, we normalize the standard
deviation through a multiplication by 5. Different time windows, of 3,...,7 seconds, yield similar results. So do
regressions focusing on the last 15 rounds of each session. See the Online Appendix for details.
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coefficient corresponding to Standard Dev is barely significant, however. That is, recent variation

in posteriors has a limited effect.

In the Online Appendix, we show that results remain qualitatively similar when clustering errors

at the session level. For an alternative approach in which we analyze observed stopping posteriors

directly, see the Appendix. Similar conclusions emerge.

Our non-stationarity results are related to the results of Brown et al. (2011). They exper-

imentally study a stationary job-search problem with a known distribution of wage offers. Re-

ported reservation wages decrease over time. They consider two potential explanations for this

phenomenon: non-stationary time discounting, and a “sunk-cost fallacy” whereby agents set reser-

vation wages in response to cumulative costs. Both effects are present in their treatments, although

the first is more pronounced. As mentioned above, our participants also react to features of the

process itself, a phenomenon that could not be examined in Brown et al. (2011). Furthermore,

although within a round later decisions are made at lower posteriors, this is not the case between

rounds. In fact, the average stopping posteriors, as well as durations, are higher in sessions’ second

half.27 In addition, one of our findings is incompatible with agents placing exaggerated weight on

cumulative costs: as we documented in Section 4, agents wait excessively in our static treatments.

Our finding that the probability of casting a vote is increasing in time, even while controlling

for the posterior, is also connected to the drift-diffusion model (DDM)—see, e.g., Swensson (1972),

Luce et al. (1986), Ratcliff and Smith (2004), and Ratcliff and McKoon (2008). As mentioned

above, this literature finds that quick decisions tend to be more accurate. An important contrast

with these studies is that we observe—in fact, provide—the posterior probability that any choice is

correct at each point in time. This allows us to speak directly to new theories of dynamic choice that

have emerged recently. The explanation provided by Fudenberg et al. (2018) for the relationship

between speed and accuracy relies on decision-makers’ uncertainty about payoffs, which translates

into uncertainty about the process and leads to optimal non-stationary behavior. In our setting,

the problem is inherently stationary, and the only uncertainty is about which of two drifts governs

the process. In our data, experience does not significantly reduce the degree to which thresholds are

decreasing, suggesting that it is unlikely that “subjective uncertainty” about the process is what

27Recall that the second 15 rounds utilize the same processes as the first 15 rounds, only mirrored. Thus, the
increase in the observed stopping posteriors cannot be an artifact of features of the processes themselves.
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Figure 3: Dynamic Treatment CDFs by Vote Order
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drives behavior. Furthermore, as mentioned, stopping behavior responds to the sample path itself,

behavior that cannot be explained with a pre-determined (potentially time-variant) threshold, as

in Fudenberg et al. (2018).28

5.3 Voting First, Second, and Third

We now discuss how the patterns of behavior compare between our treatments. In Figure 3 we

present the distributions of posteriors corresponding to the first and second votes in the majority

treatment (in the left panel), and the distributions of posteriors corresponding to the first, second,

and third votes in the unanimity treatment (in the right panel). Alongside these distributions,

we present analogous distributions for simulated groups of three generated from the individual

treatment via the procedure described in Section 5.1.

An implication of our discussion in Section 5.1 is that the third-order statistic from the indi-

vidual simulated treatment is very close to the distribution of the third and pivotal voter from

the unanimity treatment. The right panel of Figure 3 confirms this finding and reveals that this

similarity also holds for the first and second voter. Therefore, this figure reinforces the idea that

individual voter behavior under unanimity is very similar to behavior of individuals deciding in iso-

lation, and that the differences in outcomes under unanimity are exclusively due to the aggregation

rule acting on heterogeneous individuals.

For the majority treatment, the left panel of Figure 3 demonstrates that hasty behavior is not

28Baldassi et al. (2020) offer an axiomatic approach to the drift-diffusion model. McClellan (2021) derives non-
stationary threshold posteriors as the consequence of agency frictions. Strack and Viefers (2021) report on path
dependence in a related search setting. See also references therein.
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Figure 4: Share of W Votes in Dynamic Majority and Unanimity Treatments
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only a characteristic of the second (and pivotal) voter; the first voter appears to be hasty as well.

Both the first- and second-order statistics from the simulated individual treatment stochastically

dominate the observed distributions corresponding to the first and second voters from the majority

treatment. Interestingly, the distribution of second voters under majority is very similar to the

distribution of first voters in the individual simulated treatment, a point we soon return to.

5.4 Individual-Level Dynamic Choices

In a group setting, as long as a pivotal vote has not been cast, participants can change their vote

from supporting one alternative, say A, to either waiting (W) or supporting the other alternative

B (following the notation of Section 2). In both our group treatments, roughly 85% of rounds

end with each participant casting at most one vote. Therefore, the first votes in a group yield a

good approximation of order statistics for the group treatments. They also offer the theoretically

valid way to compare group and individual treatments—in the individual treatment, the first vote

terminates information collection. Nonetheless, if participants use symmetric cutoff strategies, a

transition from a choice of A to a choice of B, or vice versa, should entail a range of posteriors

in which W is chosen. When the posterior that the state is A (or B) is high enough, A (or B) is

chosen; when there is no strong support for either state, W is chosen.

Individual behavior resembles these theoretically-predicted patterns, if imperfectly, as shown

in Figure 4. The figure illustrates the individual vote sequence in our majority and unanimity
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Figure 5: Individual-Level Dynamic Voting Order Across Rounds
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dynamic treatments. The vertical axis represents the fraction of W choices. Theoretically, the first

vote is for A or B. With a cutoff strategy, any switch away from the initial vote is to a W choice,

followed by an A or B choice, and so on. The figure depicts this benchmark. Behavior in the data

is close to the theoretical benchmark, albeit with one difference: participants do not utilize the W

option between A and B choices to the full extent that the theoretical benchmark indicates.

We now discuss the degree to which there are persistent “types” in our sample. As Figure

5 shows, we do not see substantial persistence in vote orders of individuals: there are very few

participants who are always first, always second, or always third to vote. Each dot in a figure’s panel

corresponds to one participant. The figure displays the number of rounds participants ended up

as first movers, second movers, or third movers. The left-most panel, titled Simulated Individual,

displays the outcome of 330,000 simulations of groups of three participants from our individual

treatments, formed at random, and the resulting order of votes—using the observed times at which

these participants voted—see details in Footnote 23. The second panel, corresponding to our

individual treatment, displays a similar figure using only one random grouping of participants. The

two right panels report the order of votes in our majority and unanimity treatments.

Some individuals appear to be willing to vote with little information, and often move first.

Some demand a high level of certainty and often vote last. However, we see few individuals who

always move first, second, or third.29

29In the Appendix, we also show the distribution of mean decision posteriors by individuals. While in our individual
and unanimity treatments we see a substantial fraction consistently approximating the optimal behavior, there are
no clear “types” that emerge otherwise.
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5.5 Explaining Hasty Majority Decisions

Why are decisions under majority so hasty while unanimity decisions are not? There are several

known behavioral channels the literature has suggested for explaining behavior changes in groups

that do not appear consistent with our data. For example, the experimental literature has explored

many ways by which individuals display other-regarding preferences in groups; see Cooper and

Kagel (2016). However, it is challenging to reconcile individuals’ hasty behavior under majority

with their seemingly unaltered behavior under unanimity. Another classic group effect pertains

to individuals’ desire for diffusion of responsibility ; see Darley and Latané (1968). A desire to

diffuse responsibility corresponds to individuals actively preferring not to affect the group’s choice.

Such a desire would push the second and third voters in the unanimity treatment to vote faster

in order to avoid being pivotal. However, as shown in Figure 3, behavior by second voters under

unanimity does not significantly differ from behavior by second voters in simulated groups based

on our individual treatments. In what follows, we propose two complementary explanations for

hasty majority decisions.

5.5.1 Demand for Agency

Recent work suggests individuals desire to influence outcomes. See, for instance, Fehr et al. (2013),

Bartling et al. (2014), and Pikulina and Tergiman (2020). Such a demand for agency generates

hasty majority decisions, but has limited effect on individuals acting on their on or in groups using

unanimity. Indeed, when operating alone, or in a group using unanimity, agency is guaranteed—in

both cases, a decision can only be made after each participant has cast a vote. In contrast, under

majority rule, the group decision is made by two out of three group members, those who are first

to vote. Thus, agency eludes a participant who pursues a more demanding threshold. There is,

then, a non-trivial trade-off between desired accuracy and hastiness for the sake of agency.30

To evaluate the plausibility of a demand for agency, we start by inspecting remaining voters’

responses to the first vote being cast. Our interest is in examining how behavior compares across

treatments. Under majority rule, a demand for agency would introduce a race between the remain-

30Another interpretation of the desire to influence is a demand for pivotality, whereby individuals wish to be
decisive. Such a desire would lead second voters in the unanimity treatment to delay their votes in order to be more
likely to be the pivotal voter. As already mentioned, this behavior is inconsistent with our data.
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Table 4: Difference in Posterior: Second vs First Voter

(p2 − p1)
Constant 0.193∗∗∗

(0.0176)
dM -0.154∗∗∗

(0.0338)
dU -0.00695

(0.0205)
p1 -0.607∗∗∗

(0.0639)
p1 × dM 0.164∗∗∗

(0.0548)
p1 × dU 0.00585

(0.0288)

N 330960

Standard errors in parentheses

Process-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

ing two group members and thereby reduce the posterior at which the second vote is cast. Table

4 displays the results of a regression in which, within each combination of treatment, group, and

round, we calculate the difference between the posterior at which the second vote was cast, and the

posterior at which the first vote was cast.

The variables dM and dU are dummy variables corresponding to the majority and unanimity

treatments, respectively. The variable p1 stands for the posterior associated with the first vote

cast in the group. Since p1 can take values between 0.5 and 1, we re-normalize the values of p1

by subtracting 0.5. Thus, the intercept corresponds to the additional accuracy required by the

second voter when the first voter casts a vote with a posterior of 0.5. The variables p1 × dM

and p1 × dU correspond to the interactions between p1 and the corresponding treatment dummies,

allowing for different slopes across treatments.31 To calculate the difference between the posteriors

with which votes are cast, we rely on choices across different individuals. Thus, we cluster errors

at the process level. We once more rely on simulating the first, second, and third votes from the

individual treatment based on the procedure described in Section 5.

As can be seen, dM and p1 × dM are both statistically significant at the 1% level, indicating a

different slope and intercept for the majority treatment: in that treatment, the second voter places

a lower “premium” on top of the posterior with which the first vote is cast. In other words, second

voters are hastier under majority than they are under unanimity, or in the simulated groups based

31Results remain virtually identical when controlling for learning and the time it takes to reach the theoretical
stopping threshold in each sample path.
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on the individual treatment. In contrast, there is no statistically significant difference between

either the intercepts or the slopes of the unanimity and (simulated) individual treatments.32

The results of Table 4 are consistent with a demand for agency exhibited by later voters under

majority rule. Furthermore, given the observed responsiveness of second voters to first-voters’

choices under majority, there is a strategic reason for first voters to expedite their choices as

well. Relatively impatient agents, who are likely to be first voters, can manipulate the pivotal

threshold posteriors to be more in line with their preferences. If agents did not exhibit a demand

for agency, a lenient group member, associated with a low threshold posterior, would have to

accept the higher, median threshold posterior utilized in the group. Instead, with a demand

for agency, by expediting her choice, the more lenient member induces a hastier second vote—

ideally, she would tailor the posterior at which she votes so that the pivotal vote would occur

at precisely her desired threshold posterior. This is consistent with our observations: Figure 3

indicates that the distribution of posteriors when the second, pivotal votes are cast under majority

closely approximates the distribution of posteriors when the first, most lenient votes occur under

both the unanimity and the (simulated) individual treatments.

In our design, participants observe other group members’ choices while collecting informa-

tion. This design element captures many group decisions, where agents deliberate and share their

thoughts before reaching a collective agreement. By definition, allowing agents to observe others’

choices has bite only in our dynamic group treatments. For those treatments, one of our findings

is that there are no group effects under unanimity, despite the fact that participants observe what

others are doing. This suggests that knowing when others desire to stop may have limited relevance

when decisions need to be unanimous. However, under majority, the demand for agency channel

could be affected by participants observing other group members’ choices: the response of second

voters we describe relies on the observation of first voters. Nonetheless, first voters’ hastiness under

majority cannot be solely attributed to the monitoring structure we impose. First votes are has-

tened without any preceding observation of others’ choices. Understanding the effects of imperfect

monitoring in sequential settings such as ours is interesting both theoretically and experimentally.

32In the Online Appendix, we compare the difference between the posteriors of the third and second vote in the
unanimity treatment with that of the simulated individual treatment. There appears to be no statistically significant
difference between the intercepts, whereas the slope of the unanimity treatment appears different only at the 10%
significance level.
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5.5.2 Best Responses to Declining Thresholds

At every instant, participants decide whether to act immediately or pay a cost to improve decisions

in the future. If future decisions are constrained to be sub-optimal, a rational decision maker may

best respond by voting quicker than otherwise. In fact, Chan et al. (2018) show that, when voters

exhibit sufficient heterogeneity in preferences, under majority, some voters may rush to a decision

in equilibrium: a current pivotal voter may foresee losing her status as pivotal in the future.

In our experiment, participants receive homogeneous payoffs, implying that individually optimal

behavior involves constant and homogeneous thresholds. Of course, as we document in Section 5.3,

participants’ actual behavior is heterogeneous. This heterogeneity need not make a difference in

understanding optimal behavior: as discussed in Section 3, as long as agents display symmetric

thresholds, the best response is the individually optimal symmetric threshold regardless of the

degree of heterogeneity. However, Section 5.2 shows that many participants also display declining

thresholds. As we now illustrate, a rational participant who suspects her group members have

declining thresholds may choose to be hastier under majority rule.

The logic is simple: a rational voter grouped with individuals exhibiting declining thresholds

effectively faces a constrained problem. The induced constraint reduces the voter’s continuation

value, but does not affect the value of voting immediately and stopping. Hence, interacting with

other participants with declining thresholds increases the relative appeal of voting earlier.

Using the notation introduced in Section 3, consider a rational voter whose individually optimal

decision thresholds are (g∗, G∗). This voter interacts with two other group members. Assume, for

the moment, that the first of these two follows a threshold strategy (with either stationary or

declining thresholds for either alternative) and that she is always the first to vote. Suppose the

third voter has declining decision thresholds. She votes for A at time t when θ ≥ G (t) and

votes for B at time t when θ ≤ g (t), with G (t) > g (t) for all t, G(t) and −g(t) decreasing in

t, where G
(
t̂
)

= G∗ and g
(
t̂
)

= g∗ for some t̂. Under majority rule, after time t̂, our rational

voter is constrained by the presence of the third voter. In effect, she is constrained to choose A

between [0, G (t)] and B between [g (t) , 0]. Let (g̃ (t) , G̃ (t)) denote an optimal solution to this

constrained stopping problem. Although the solution does not have a closed-form expression, it is

straightforward to see that g̃ (t) ≥ g∗ for all t. Let V (t, θ) and Ṽ (t, θ) denote the value functions
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of the unconstrained and constrained stopping problems, respectively, at time t with log-likelihood

ratio θ. Recall that (g∗, G∗) is the unique optimal solution in the unconstrained case, and that

any feasible stopping strategy in the constrained case is also feasible in the unconstrained case. If

g̃ (t) < g∗ at some t, then for θ ∈ (g̃ (t) , g∗), we must have Ṽ (t, θ) < V (t, θ) = D (θ), where D(θ)

stands for the immediate payoff from voting for B. This inequality contradicts the supposition

that (g̃ (t) , G̃ (t)) is optimal, as the voter can choose to stop at t when the belief is θ. A similar

reasoning shows that G̃ (t) ≤ G∗ for all t.

This discussion suggests that a pivotal voter who expects others to use declining thresholds may

choose lower standards of accuracy, leading to faster decisions under majority rule.33 By contrast,

under unanimity rule, the rational voter is pivotal and unconstrained by the decisions of the other

two voters after t̂. Hence, she will simply follow her individual optimal rules after t̂. In this case, the

group decision will be decided by the third-order statistic of the individual thresholds and coincide

with that of a simulated group that comprises the same three voters.

6 Static Information Collection

6.1 Group Level Distributions

In the dynamic treatments, we focused on the posterior probabilities associated with votes. In the

static treatments, participants choose the duration of information acquisition at the outset. Thus,

our focus shifts to the time chosen for information collection.

Figure 6 presents the cumulative distribution functions of chosen times across our static treat-

ments, as well as the corresponding realized posterior probabilities.34 In contrast to observations

from the dynamic treatments, the distributions of chosen times across our static treatments appear

similar to one another, although chosen times in the majority treatment are roughly first order

stochastically dominated by those in both the individual and unanimity treatments: similar to our

dynamic settings, groups using majority rule are hastier. These observations are in line with the

33A similar logic applies even if the rational voter is initially the first voter with the lowest demanded accuracy.
If other voters’ thresholds eventually lead to this voter becoming pivotal, then the first voter will optimally vote to
stop earlier than her individually optimal threshold.

34Participants predominantly specified an integer number of seconds, with some attraction to round numbers,
corresponding to the apparent jumps in the distributions.
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Figure 6: Static Treatment CDFs
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average times chosen across treatments reported in Table 2.35 The chosen-time distribution corre-

sponding to the unanimity treatment second order stochastically dominates that of the individual

treatment. That is, times chosen by individuals are more dispersed than times chosen by groups

using unanimity rule.

The similarity between the distributions should be interpreted with caution. As in the dynamic

case, the heterogeneity in individual choices implies that, were group members mimicking their

choices as individuals, there would be differences across treatments; chosen times in our majority

and unanimity treatments would correspond to the median and maximal preferred times within the

groups. Therefore, to understand behavior in the group treatments, we simulate the distributions

of choices in groups following the procedure described in Section 5. Namely, for each round, we

form random groups of three individuals from our individual treatment and consider the median

(majority simulated) and maximum (unanimity simulated) times within that group.

Under unanimity, it is the “most patient” group member who governs a group’s decisions. It

is then unsurprising that the distribution of resulting simulated wait times under unanimity differs

substantially from that corresponding to individual decisions. It also differs from our observed

unanimity treatment, implying a non-mechanical difference between individual treatments and

groups using unanimity rule. There is a similar non-trivial effect on groups using majority rule that

is not mechanical: the simulated distribution does not coincide with those generated by observed

group behavior.36 Regression analysis in the Online Appendix confirms that the effects of both

35In the Online Appendix, we use regression analysis with various levels of clustering to evaluate the differences
across treatments.

36The two-sided Kolmogorov-Smirnov test rejects the hypothesis that the distributions associated with the simu-
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majority and unanimity rule are not purely a mechanical artifact. Furthermore, while we see some

learning leading participants to select shorter times in the second half of our sessions, this learning

is limited in scope and duration; see the Appendix for further details. In particular, throughout

our experiments, both types of group treatments lead to hastier decisions than those generated by

a purely mechanical aggregation effect.

The distribution of induced stopping posteriors are similar across our three treatments, although

simulated groups using unanimity first-order stochastically dominate all other distributions. Why

do we see differences in chosen times, but little differences in induced posteriors? In our static

treatments, participants choose excessively long information-collection durations. Since expected

induced posteriors are concave in these durations, the differences in chosen times between the

treatments translate into smaller differences in the corresponding posteriors.

6.2 Individual-Level Static Choices

Figure 7 presents the distribution of the shortest (denoted by I, in analogy to Figure 3), median

(denoted by II), and longest (denoted by III) chosen times for the (simulated) individual, majority,

and unanimity static treatments.37

Figure 7: Static Treatment CDFs by Vote Order
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Figure 7 reveals a clear first order stochastic dominance relationship for the shortest, median,

and longest times chosen across our treatments. The distributions of all three times corresponding

to the unanimity treatment are dominated by those corresponding to the majority treatment, which

lated and observed unanimity decisions, as well as the simulated and observed majority decisions, are identical.
37As for the dynamic treatments, when considering our individual treatment, we group participants into random

groups of three and consider the shortest, median, and longest chosen times.
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Figure 8: Individual-Level Static Voting Order Across Rounds
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are dominated by those corresponding to the simulated groups based on the individual treatment.

In particular, behavior under both majority and unanimity differs from that in simulated groups.

This echoes our conclusion that group effects are present and go beyond the pure mechanical effects

driven by heterogeneity in our sample. In contrast to our dynamic treatments, all individual group

members’ votes are hastier under unanimity.

Figure 7 also suggests different degrees of heterogeneity among group members across our

treatments. The times chosen within groups are closest in our unanimity treatment and furthest

apart in our individual treatment. For instance, the distance between the median shortest and

median longest chosen times under unanimity is approximately 20 seconds; the median distance

is 30 seconds in simulated groups based on our individual treatment. Thus, more inclusive rules

appear to generate a pressure for conformity.

Figure 8 is the analogue of Figure 5.38 As in our dynamic treatments, the figure suggests no

substantial persistence in terms of “types,” with very few individuals nearly always stating the

lowest, the median, or the longest desired duration in their group.39

Certainly, there are several features that differ across our dynamic and static treatments. Most

notably, in dynamic treatments, participants observe processes evolve as they make their decisions,

and can monitor other group members’ choices over time. Instead, all decisions are made ex-ante

in our static treatments. Both information-collection protocols lead to hasty majority decisions.

38As for our dynamic treatments, we use 330,000 simulated random groups of three participants based on our
individual treatment. We record each individual’s order in the simulated group for each round, using their desired
wait time in the data. The panel corresponding to the individual treatment displays similar results from one simulated
grouping. The right-most panels correspond to the majority and unanimity treatment data.

39In the Appendix, we also show the distribution of mean desired wait times by individuals. There are no consistent
“types” across our treatments.
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However, in the static treatments, there is excessive information collection, even after many rounds

of experience, and both majority and unanimity rules hasten participants’ decisions significantly.

In what follows, we assess the welfare implications of these differences.

7 Performance

In this section, we compare the performance of individuals and groups to shed light on the impact

of procedures and decision rules on ultimate outcomes, accounting for both decision quality and

information costs.

Decision Accuracy In many settings, decisions made by a small group of individuals affect a

large population—political decisions, jury verdicts, determinations of agencies such as the FDA

or EPA, and so on. In such environments, a natural welfare criterion pertains to the accuracy

of decisions: information-collection costs are born by only a minuscule fraction of the population.

Theoretically, individuals and groups make the same choices regardless of the voting rule, and the

only distinction is between static and dynamic information collection. The predicted accuracy is

0.81 in the dynamic setting, higher than the predicted accuracy of 0.72 in the static setting.

As Table 2 indicates, in our data, the accuracy differences between static and dynamic infor-

mation collection are far smaller than theoretically predicted. Nonetheless, groups using unanimity

and collecting information sequentially yield the most accurate decisions.

In contrast with theoretical predictions, under majority rule, static information collection yields

more accurate decisions than its dynamic counterpart. This is a consequence of participants in

our static treatments overshooting the theoretical benchmark. Although excessively costly for

decision-makers, this overshooting generates greater accuracy. At the same time, in the dynamic

setting, majority rule leads to particularly hasty decisions, which are therefore less accurate than

theoretically predicted. There is a caveat to this comparison, however. By their nature, static

decisions cannot directly target the posterior at which information collection stops. Thus, stopping

posteriors tend to be more dispersed than when targeting an explicit accuracy threshold.

Figure 9 displays the distributions of posteriors in our dynamic and static treatments.40 The left

and middle panels display realized posteriors under the dynamic and static treatments, respectively

40Separate figures for each of our decisions rules yield qualitatively identical patterns.
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Figure 9: Posterior Histograms
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(the vertical line on the left panel denotes the theoretically predicted stopping posterior of 0.81).

The solid histogram on the right panel displays expected posteriors for the static treatments,

conditional on their average observed waiting times (40 seconds). The hollow histogram on the

right panel displays the theoretically expected posteriors for the static treatments with optimal

wait time (29.6 seconds). As can be seen, the posteriors generated in our dynamic treatments

(left panel) are far less dispersed than those of our static treatments (middle panel). This is in

line with theoretical predictions. Thus, under majority, although static information collection may

outperform the theoretical benchmark in terms of expected decision accuracy, it does run the risk

of decisions being made with inconsistent precision levels.

Decision Accuracy and Costs We now turn to the evaluation of welfare accounting for costs;

that is, welfare from the point of view of the committee making the decision. Indeed, in many

environments—firms’ hiring processes, publication review protocols, managerial investment choices—

information costs are internalized by those affected by the ultimate decision.

We normalize the payoff for a correct guess to 1, the cost to 0.2, and divide the time waited

in seconds by 60. Utilizing the posterior and time of the pivotal vote, we calculate the following

performance measure, corresponding to average welfare

λbenchmarki,g = pi,g − 0.2 · ti,g

where i represents a treatment, and g represents a particular group in a particular round within

the treatment. We report the estimated mean of these performance measures under λbenchmark and

Performance Level in Table 5 (first column).

In line with theoretical predictions, dynamic treatments generate higher performance than static
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Table 5: Performance

λbenchmark λexpected

Performance Level Relative Performance Performance Level Relative Performance

Individual Dynamic 0.655 0.863 0.651 0.841
(0.00344) (0.0191) (0.00292) (0.0162)

Majority Dynamic 0.650 0.832 0.648 0.820
(0.00498) (0.0277) (0.00273) (0.0152)

Unanimity Dynamic 0.662 0.902 0.660 0.889
(0.00560) (0.0311) (0.00216) (0.0120)

Individual Static 0.615 0.936 0.609 0.883
(0.00325) (0.0265) (0.00213) (0.0173)

Majority Static 0.617 0.952 0.615 0.935
(0.00513) (0.0417) (0.00115) (0.00933)

Unanimity Static 0.620 0.978 0.614 0.924
(0.00444) (0.0361) (0.00123) (0.00999)

N 3840 3840 3840 3840

Standard errors in parentheses

Individual-level clustering

treatments. These differences are statistically significant at any conventional significance level.

Furthermore, there is a non-trivial interaction between the decision rule and information-collection

protocols, albeit not statistically pronounced. In our dynamic treatments, the average performance

of groups voting under unanimity exceeds the performance of individuals and groups using majority.

In our static treatments, the average performance of groups using either majority or unanimity

exceeds that of individuals. These comparisons remain the same, if slightly less pronounced, when

focusing on the last 15 session rounds, see the Online Appendix for details.

The performance measure assessed above necessarily inherits the randomness induced by the

particular information processes participants face. Consider, for example, our static treatments.

Given the choice of time spent on information collection, the resulting posterior depends on the

realized sample path. This inherent randomness introduces noise in our assessments, which could

render comparisons between treatments insignificant. Instead, one could consider expected welfare,

accounting for the expected posterior implied by each choice of stopping times. Similarly, in our

dynamic treatments, it is natural to consider the expected time induced by any choice of decision

accuracy and assess performance accordingly.

In the dynamic case, for any threshold posterior p, the expected stopping time is E[t|p] =
(2p−1) log

(
p

1−p

)
µ . Thus, we define the expected performance for the dynamic treatments as41

41As a caveat, in our dynamic treatments, we effectively assume time-independent thresholds for these estimates.
This approximation simplifies assessments dramatically and yields results that are in line with those from our alter-
native performance measures.
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λexpectedi,g = pi,g − 0.2 · E[t|pi,g]

In the static case, for any chosen duration t, the expected posterior is E [p|t] = 1
2

(
erf
(√

1.4t
2

)
+ 1
)

.

Accordingly, we define the expected performance for the static treatments as

λexpectedi,g = E[p|ti,g]− 0.2 · ti,g

We report the estimated mean of these performance measures under λexpected and Performance

Level in Table 5 (third column). As was the case with our benchmark performance measures,

all dynamic treatments outperform all static treatments at any conventional significance level.

Now, however, noise reduction brings forth differences between the dynamic and static treatments.

The dynamic unanimity treatment outperforms the dynamic individual (p < 0.05) and majority

treatments (p < 0.01), while the static individual treatment is outperformed by static majority

(p < 0.01) as well as static unanimity (p < 0.05). Thus, after accounting for noise inherited by our

processes, we find statistically significant differences between and within the dynamic and static

treatments. Importantly, the efficacy of rules governing decision making depends crucially on the

information-collection format in place.

Relative Performance We now assess how close participants came to the theoretically optimal

performance. To do so, we calculate the theoretically optimal performance by utilizing the optimal

posterior p∗ = 0.81 for the dynamic case and the optimal wait time t∗ = 29.58 for the static case.

λ∗dynamic = p∗ − 0.2 · E[t|p∗] = 0.68 λ∗static = E[p|t∗]− 0.2 · t∗ = 0.62.

In contrast, an immediate decision would yield an accuracy of 0.5 at no cost. This constitutes a

plausible lower bound on performance and results in an expected payoff of λ = 0.5.42 A measure

capturing the relative performance is then

λ̃i,g =
λi,g − λ
λ∗j − λ

j ∈ {dynamic, static}.

An estimated relative performance of 0 indicates that, on average, the treatment performs no better

than an immediate decision that incorporates no information. In contrast, an estimated relative

performance of 1 indicates the treatment exhibits optimal performance.43 We report these estimated

42It is certainly possible to achieve lower performance. For example, an excessively long wait can yield negative
expected payoffs. We do not observe such behavior in our data.

43By definition, the comparison of decision-making rules within either our static or dynamic treatments coincides
with the comparison generated by our expected welfare measure.
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relative performances in Table 5 under Relative Performance (second and fourth columns).

As can be seen, static treatments exceed the dynamic treatments when it comes to information

utilization. For example, focusing on our arguably less noisy measure of expected performance

(fourth column), the dynamic treatments reach scores between 0.82 and 0.89, whereas the static

treatments reach scores between 0.88 and 0.94 (comparisons that, again, remain virtually identical

when focusing on the last 15 rounds alone).

Substantively, while information is utilized more efficiently in our static treatments, dynamic

information collection is sufficiently more effective that it still yields greater expected welfare.

8 Conclusions

This paper reports results from a set of experimental treatments testing static and sequential sam-

pling, in individuals and groups. Sequential sampling yields superior outcomes to static sampling,

with groups under unanimity delivering the best outcomes. Contrasting theoretical predictions, se-

quential sampling yields time-decreasing thresholds and static sampling yield excessive information

collection. Furthermore, groups behave differently than individuals, beyond mechanical aggregation

effects. Majority rule yields the quickest decisions, particularly in sequential sampling.

Our experimental paradigm and our results point to several possible future directions of inquiry.

In our study of individuals, it would be interesting to consider behavior under a richer set of

parameters. In our study of groups, we have focused on a baseline case in which the model predicts

no group effects. This is intended as an initial benchmark on which to build a richer understanding

of heterogeneous committees, as in the model studied in Chan et al. (2018). Specifically, similar

experiments could be designed with group members experiencing heterogeneous preferences over

alternatives and heterogeneous information costs. It would also be interesting to vary other features

of groups: their size, the monitoring available to group members, etc.44

44Naturally, the study of larger groups would entail some non-trivial logistical hurdles as most physical laboratories
are limited in size.
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9 Appendix

9.1 Pulling the Trigger: Majority and Unanimity

Figure 1 in the text depicts the evolution of posteriors and the corresponding choices in our indi-

vidual treatments. Figure 10 and Figure 11 below provide analogous graphs for our majority and

unanimity treatments, which depict decision posteriors corresponding to pivotal votes.

The general patterns observed for our individual treatments remain. For example, later decisions

in our dynamic treatments often correspond to lower accuracies in our dynamic treatments and

posteriors generated in our static treatments are more dispersed than those emerging from our

dynamic treatments. However, there are some differences. In particular, groups using majority

pull the trigger far quicker than groups using unanimity, in line with results described in the text.

Figure 10: Pulling the Trigger: Majority Treatments
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9.2 Non-stationary Threshold Posteriors

In the text, we consider individuals’ voting probabilities in each of our treatments. We now take a

different approach, analyzing the realized decision posteriors when the pivotal vote is cast. Table 6

displays regression analysis pertaining to individual and group choices—the stopping posterior—in

our dynamic treatments. We use the shorthand of I, M , and U for the individual, majority, and

unanimity treatments, respectively. The variables dM and dU are dummy variables for the majority

and unanimity treatments. To allow for learning, we include dummy variables of the form Last

15 X, with X denoting the treatment; these indicate whether observations are taken from the last

15 rounds of our sessions. Last, we consider the impacts of time spent collecting information to

potentially account for non-stationary thresholds. We do so in two ways. First, we classify the

processes as “Slow” or “Quick”. For this classification, we calculate the time it takes to reach

the theoretically optimal threshold of 0.81 in each process. If a process takes more time than the
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Figure 11: Pulling the Trigger: Unanimity Treatments
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median process to pass the 0.81 threshold (i.e., 29.8 seconds) we label it “Slow”; otherwise, the

process is labeled “Quick”. The resulting variable Slow X is a dummy variable indicating whether a

process is slow in each treatment X. We also consider the time spent collecting information in each

treatment X, denoted by Time X. The last three specifications allow for fixed effects corresponding

to the individuals casting the pivotal votes. Errors are clustered at the individual level.

The first column of Table 6 echoes our observations in the text. We see significant differences

between treatments, with less precise, or hasty, majority decisions and more precise, or slower,

unanimous decisions. Compared to the individual treatment, the mean posterior with which the

pivotal majority vote is cast is about 4 percentage points lower, whereas the mean posterior with

which the pivotal vote is cast is about 4 percentage points higher.

Throughout, we see a significant effect of learning over the first 15 rounds, with participants

becoming more patient, casting their vote with a significantly higher decision posterior. Because

both the individual and majority treatments yield, on average, posteriors well below the theoret-

ically optimal, the increase in decision posteriors in later rounds is a move towards the optimal

choice. In the unanimity treatment, however, learning leads to overshooting, with an average deci-

sion posterior of 0.84 in the last 15 rounds. As mentioned at the outset, and elaborated on below,

we do not see evidence of substantial learning beyond the first 15 rounds.

The second and third columns consider the impacts of the underlying process, i.e., whether it

is slow or quick. Slow processes are associated with significantly lower decision posteriors across all

our dynamic treatments. This association is present and similar in both magnitude and significance,

even when restricting attention only to the last 15 rounds of each session. It is most pronounced

for groups deciding through majority rule, and least pronounced in groups using unanimity. Lower

decision posteriors in slow processes indicate a non-stationary threshold for halting information

collection. The last two columns of Table 6 illustrate a declining-threshold pattern more directly,
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Table 6: Decreasing Thresholds

Posterior

Ordinary Regression Fixed Effects Regression

All Rounds Last 15 Rounds All Rounds Last 15 Rounds

Constant 0.755∗∗∗ 0.785∗∗∗ 0.806∗∗∗

(0.00846) (0.00738) (0.0109)
dM -0.0362∗∗∗ -0.0303∗∗∗ -0.0372∗∗∗

(0.0112) (0.0107) (0.0128)
dU 0.0444∗∗∗ 0.0347∗∗∗ 0.0431∗∗∗

(0.0103) (0.00885) (0.0124)
Last 15 I 0.0247∗∗∗ 0.0247∗∗∗ 0.0299∗∗∗

(0.00647) (0.00647) (0.00790)
Last 15 M 0.0162∗∗∗ 0.0162∗∗∗ 0.0224∗∗∗

(0.00613) (0.00611) (0.00653)
Last 15 U 0.0376∗∗∗ 0.0376∗∗∗ 0.0430∗∗∗

(0.00717) (0.00688) (0.00726)
Slow I -0.0648∗∗∗ -0.0576∗∗∗

(0.00557) (0.00625)
Slow M -0.0774∗∗∗ -0.0736∗∗∗

(0.00717) (0.0101)
Slow U -0.0440∗∗∗ -0.0271∗∗∗

(0.00652) (0.00989)
Time I -0.000651∗∗∗ -0.00110∗∗∗

(0.000209) (0.000238)
Time M -0.00130∗∗∗ -0.00165∗∗∗

(0.000340) (0.000523)
Time U -0.000524∗∗∗ -0.000723∗∗∗

(0.000132) (0.000218)

N 1980 1980 990 1980 990

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

and echo the results presented in the text. Namely, we introduce an explicit dependence on the

time at which a pivotal vote is cast.45 The estimated coefficients corresponding to decision times

are negative and statistically significant: the longer it takes for the pivotal vote to be cast, the

lower is the threshold posterior. As before, the least affected treatment is unanimity and the most

affected treatment is majority. In particular, in the majority treatment, in the last 15 rounds, for

each 5 seconds that the group decision is delayed, the average threshold posterior decreases by

almost one percentage point.

9.3 Estimation with Implementation Trembles

We now consider the possibility that participants implement their optimal threshold with trembles.

Suppose that instead of casting their vote based on their preferred threshold f(t), participants

cast their vote based on f(t) + εt, where εt is drawn from a normal distribution with mean 0 and

standard deviation σε.

In order to estimate the true f(t), we first calculate, in our data, the average time participants

45The fixed-effects specification is appropriate since, without it, we could in principle identify a misleading positive
association between decision times and decision posteriors. Indeed, mechanically, since we consider a diffusion with
drift, posteriors exhibit an increasing trend. Group fixed effects cannot be used due to the random matching protocol
we utilize. We therefore use pivotal-voter fixed effects to adequately capture the response to time passed.
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Figure 12: Individual Intercepts With and Without Trembles

0.5 0.55

45 o

0.650.6 0.7 0.75 0.8 0.85 0.9 0.95 1
α

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
α~

The graph above depicts the fixed-effects estimates of individual-level intercepts α̂ displayed on the horizontal axis and
corrected estimates of individual level intercepts α̃ on the vertical axis.

take to cast a vote t̄, and the observed estimated path of stopping posteriors—identified by an

intercept α̂ and slope β̂— derived from running an individual-level fixed-effects linear regression on

the individual dynamic treatment data. In our estimation exercise, we match these three “moments”

of our data: t̄, α̂, and β̂.

Specifically, we simulate Brownian paths with the parameters utilized in the experiment. We

also simulate potential thresholds with different intercepts α̃ and slopes β̃. Afterwards, we im-

plement the decisions with different noise levels σ̃f . For each conjectured {α̃, β̃, σ̃f}, we calculate

the square distance from the the three moments we match, namely t̄, α̂, and β̂. Technically, we

estimate our parameters of interest via the method of simulated moments (MSM). Our estimated

parameter values are then α̃, β̃, and σ̃ε that minimize the sum of squared errors.46

Figure 12 plots the individual level intercepts estimated with and without trembles. From

our observed data, we estimate the average intercept as α̂ = 0.782, while the estimated slope is

β̂ = −0.000457. After accounting for potential implementation trembles, we estimate the variance

of the implementation error to be σε = 0.01, α = 0.789, and β = −0.000486. Thus, with this

approach, and with these utilized moments, we do not find an economically significant difference

from the estimations in which we simply ignore potential implementation trembles.

9.4 Learning

Dynamic Treatment Learning In order to assess learning in our dynamic treatments, we

examine whether there is a trend in participants’ stopping posteriors over the course of our sessions.

In Table 7 we regress participants’ stopping posteriors on Round, which stands for the session round;

Slow, which identifies the process occurring during the round as a slow or a quick process (see

46We use Monte Carlo simulations to show that this method is indeed reliable in our setting, consistently estimating
the true parameter values.
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Table 7: Dynamic Treatment Learning

Posterior

Individual Treatment Majority Treatment Unanimity Treatment

All Rounds First 15 Last 15 All Rounds First 15 Last 15 All Rounds First 15 Last 15

Round 0.00154∗∗∗ 0.00511∗∗∗ -0.000277 0.00150∗∗∗ 0.00177 0.00271∗∗∗ 0.00192∗∗∗ 0.00267∗∗∗ 0.00360∗∗∗

(0.000555) (0.00114) (0.00118) (0.000420) (0.00150) (0.000742) (0.000276) (0.000788) (0.000764)
Round× Slow 0.000619 0.00223 0.00190 -0.000186 0.0110∗∗∗ 0.00184 0.000912∗ 0.00904∗∗∗ -0.00246∗

(0.000445) (0.00249) (0.00163) (0.000701) (0.00253) (0.00175) (0.000515) (0.00182) (0.00134)
Slow -0.0705∗∗∗ -0.0860∗∗∗ -0.101∗∗ -0.0712∗∗∗ -0.168∗∗∗ -0.119∗∗∗ -0.0782∗∗∗ -0.147∗∗∗ -0.000178

(0.00882) (0.0220) (0.0372) (0.0133) (0.0251) (0.0405) (0.00966) (0.0169) (0.0296)
Correctt−1 -0.0218∗∗∗ -0.0402∗∗∗ -0.00913 -0.0256∗∗∗ -0.0333∗∗∗ -0.0183∗ -0.0287∗∗∗ -0.0247∗∗∗ -0.0364∗∗∗

(0.00655) (0.00910) (0.00997) (0.00687) (0.00912) (0.00969) (0.00588) (0.00643) (0.00968)
Differencet−1 0.0367 0.0290 -0.0172 0.0417 0.0319 -0.0348

(0.0371) (0.0610) (0.0427) (0.0282) (0.0338) (0.0387)
Individual Level FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 986 476 510 728 339 389 1392 672 720

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Section 9.2 above); and an interaction between Round and Slow, allowing for a different learning

trend depending on the process.47 We run an individual-level fixed-effects regression, allowing for

a different intercept for each participant. By running the regression separately for each dynamic

treatment, we allow for learning to affect these treatments differently. To see whether there were

enough rounds for learning to converge, we run additional regressions separately for the first and

the last 15 rounds. In addition, we control for Correctt−1 that equals 1 if the previous period’s

individual decision, or group decision in the majority and unanimity treatment, was correct, and

equals 0 if the previous period’s decision was incorrect. Finally, we control forDifferencet−1, which

equals the difference between participants’ last-period choice from the mean stopping posterior of

other members of their group in the last period (for our majority and unanimity treatments only).

From the estimated coefficients of Correctt−1, we see that, on average, participants cast their

individual votes with a lower posterior in round t if their or their group’s guess in round t− 1 was

correct. In contrast, the coefficients of Differencet−1 is never statistically significant, implying

that group effects operate more forcefully through the outcomes they generate.

Importantly, when it comes to learning, the regressions in the second and third columns reveal

that both the magnitude and statistical significance of Round and Round×Slow drop in the last 15

rounds in the individual treatment. A similar decrease is observed for our majority and unanimity

treatments. Even in cases where statistical significance persists, the magnitude is much lower in

the last 15 round. The finding that the magnitude of learning is substantially lower in the last 15

rounds compared to the first 15 rounds, as well as the decrease in statistical significance, leads us

to believe that 30 rounds afforded sufficient learning opportunities.

Static Treatment Learning We now perform a similar analysis for the static treatment. The

specification of the regressions presented in Table 8 is as described in Section 9.4. However, the

47We showed that participants tend to vote with a lower posterior when faced with a slow process, which is why we
allow for different slopes and intercepts depending on the features of the process. Otherwise, if earlier rounds entail
quicker processes, for example, we could erroneously infer a declining stopping posterior.
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Table 8: Static Treatment Learning

Time Waited

Individual Treatment Majority Treatment Unanimity Treatment

All Rounds First 15 Last 15 All Rounds First 15 Last 15 All Rounds First 15 Last 15

Round -0.223∗ -0.758∗∗∗ -0.140 -0.260∗∗∗ -0.628∗∗∗ -0.0220 -0.444∗∗∗ -0.767∗∗∗ -0.241∗

(0.117) (0.232) (0.138) (0.0931) (0.211) (0.130) (0.0900) (0.190) (0.128)
Correctt−1 -1.964∗ -2.228∗ -0.0829 -1.458∗∗ -1.856 -0.747 0.0774 -0.574 0.619

(1.020) (1.093) (1.437) (0.623) (1.369) (0.716) (0.813) (0.901) (0.930)
Differencet−1 0.384∗∗ 0.381∗∗ 0.0656∗ 0.140∗∗∗ 0.0669 0.0685

(0.155) (0.165) (0.0366) (0.0456) (0.0596) (0.0562)
Individual Level FE Yes Yes Yes Yes Yes Yes Yes Yes Yes

N 899 434 465 1392 672 720 1305 630 675

Standard errors in parentheses

Individual-level clustering
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

dependent variable, corresponding to participants’ choice, is now desired duration rather than

stopping posterior. Furthermore, in the static case, participants cannot react differently to slow

and quick sample paths, since those evolve only after decisions have been made. Thus, we do not

include Slow and Round× Slow in the regressions of Table 8.

The estimated coefficients of Correctt−1 and Differencet−1 are typically insignificant: par-

ticipants do not greatly react to whether or not the last-period decision was correct, or to the

difference between their last-period decision and other group members’ last-period decision. Once

more, the magnitude and statistical significance of Round greatly diminishes in the last 15 rounds.

This leads us to believe that participants had sufficient rounds to learn and adjust their decisions.

9.5 Individual-Level Choice Heterogeneity

Figure 13 depicts the distributions of the mean posteriors at the time of voting in our dynamic

treatments, where mean posteriors are calculated for each participant separately.

Figure 13: Dynamic Treatments Individual Heterogeneity
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In line with our discussion in the text, in the individual and unanimity treatments, a substan-

tial fraction of individuals consistently vote at a posterior close to the optimal threshold. Under

majority, we see more variation across individuals.

Figure 14 shows the distribution of the mean desired times, calculated separately for each
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participant, in our static treatments.

Figure 14: Static Treatments Individual Heterogeneity
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In the static treatments, we also see somewhat narrower distributions of behaviors under the
individual and unanimity treatments than in the majority treatment. However, in line with our
discussion, these distributions are concentrated at different desired wait durations across our treat-
ments.
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